IMPROVED POSITIONS AND SOME OPTICAL IDENTIFICATIONS FOR 451 4C RADIO SOURCES BETWEEN DECLINATIONS 4° AND 20°

By D. Wills* and J. G. Bolton \dagger

[Manuscript received July 14, 1969]
Summary
Accurate positions have been measured at Parkes for 4514 C radio sources between declinations 4° and 20°. For most of the sources the r.m.s. uncertainty is $\pm 10^{\prime \prime}$ arc in each coordinate. Optical identifications are suggested for 94 sources, of which 22 are galaxies and 72 are possible quasi-stellar objects.

I. Introduction

Searches for optical identifications of radio sources in the 4C catalogue (Pilkington and Scott 1965; Gower, Scott, and Wills 1967) have been hampered in the past by the uncertainties in the measured source declinations. Apart from occasional lobe ambiguities of $7^{\prime} \cdot 5$ arc, the right ascensions given in the 4 C catalogue are usually accurate to $\pm 20^{\prime \prime}$ arc, but the r.m.s. errors in declination range from $\pm 2^{\prime}$ are for the strong sources at high declinations to $\pm 10^{\prime}$ arc for the weak sources at low declinations. Declinations of 644 C sources with flux density $\ddagger S_{178} \geqslant 5 \cdot 0$ have been measured by Wills (1967) with an accuracy of $\pm 10^{\prime \prime}$ arc and optical identifications have been made for some of these sources.

About half of the sources in the 4C catalogue can be observed with the Parkes telescope. Accurate positions of many of the stronger sources which are also listed in the Parkes catalogue of radio sources (Shimmins and Day 1968; Division of Radiophysics, CSIRO 1969) have already been measured and optical identifications secured where possible. The positions of many of the weaker 4 C sources north of declination 20° have been determined by Olsen (1967) and positions for the weaker sources between declinations 4° and -4° are currently being measured by J. V. Wall and A. J. Shimmins with the Parkes telescope. The present paper reports positional observations of 4484 C radio sources between right ascensions $03^{\mathrm{h}} 30^{\mathrm{m}}$ and $23^{\mathrm{h}} 30^{\mathrm{m}}$, in the declination range 4° to 20°. Three 4 C sources outside this right ascension range were also measured, as were two sources which do not appear in the 4 C catalogue. For most of the sources the r.m.s. uncertainty is $\pm 10^{\prime \prime}$ arc in each coordinate; it has already been amply demonstrated that this accuracy is sufficient to enable optical identifications to be made for most of the radio sources whose optical counterparts are brighter than about 19^{m}. From inspection of the Palomar Sky Survey prints

[^0]identifications are suggested for 22 radio galaxies and 72 possible quasi-stellar objects. The observations were made at a frequency of 2700 MHz and the estimated r.m.s. errors in the measured flux densities are between $\pm 5 \%$ and $\pm 10 \%$ for most of the sources. The distribution of spectral indices for the different identification classes has been examined and the proportion of identifications at different flux density levels is discussed. The reliability of the 4 C positions has been estimated from the distribution of declination and right ascension errors and from the frequency of lobe shifts.

II. Selection of Sources

The observations were made in 1969 from April 27 to May 3, mainly between $14^{\mathrm{h}} 00^{\mathrm{m}}$ and $08^{\mathrm{h}} 00^{\mathrm{m}}$ local time. In order to minimize the telescope pointing corrections it was desirable to limit the observations to within about 1 hr of meridian transit, and this fact, together with the restriction on local time, excluded the area between right ascensions $23^{\mathrm{h}} 30^{\mathrm{m}}$ and $03^{\mathrm{h}} 30^{\mathrm{m}}$. As the possibility of securing optical identifications decreases rapidly near the galactic plane no sources were observed within galactic latitudes $\left|b^{\text {II }}\right|<10^{\circ}$.

Fig. 1.-Area covered by the present observations. Single hatching indicates regions in which sources with $S_{178} \geqslant 3 \cdot 0$ were observed and double hatching shows regions in which positions of all 4 C sources were measured.

Of the 8384 C sources within the above region, 56 are listed in the revised 3 C catalogue (Bennett 1962); these were excluded from the observing programme, as were 113 additional sources whose positions have already been measured at Parkes or for which reliable optical identifications have been suggested (e.g. Bolton and Ekers 1966; Clarke, Bolton, and Shimmins 1966; Shimmins, Clarke, and Ekers 1966; Bolton, Shimmins, and Merkelijn 1968; Shimmins 1968; Merkelijn 1969). Of the remaining 6694 C sources within the region, 478 were observed, together with 34 C sources outside this range of right ascension. Positions were also measured for 2 sources not listed in the 4 C catalogue but which were found near 4 C sources.

Within the above region, accurate positions are now available for virtually all 4C sources with $S_{178} \geqslant 3 \cdot 0$; positional observations are complete to $S_{178}=2 \cdot 0$ over about 60% of this area. Figure 1 shows the area covered; single hatching indicates the coverage for sources with $S_{178} \geqslant 3 \cdot 0$ and double hatching the area of full coverage.

III. Observations

The observations were made with the Parkes 210 ft reflector and the 2700 MHz receiver described by Batchelor, Brooks, and Cooper (1968). A dual feed system was used in which one feed is on the optical axis of the reflector and the other is displaced by $18^{\prime} \cdot 5$ arc. The output of the receiver then represents the difference between the signals received by the two feeds. With an output time constant of 2 sec, peak-to-peak noise fluctuations are equivalent to $S_{2700}=0 \cdot 07$.

The positions were measured by making forward and reverse scans at the rate of $0^{\circ} \cdot 5$ per minute in each coordinate. Scans in declination, with the telescope right ascension set to the precessed 4 C value, were made first, since the errors in the 4 C right ascensions are small compared with the beamwidth of the telescope. The declination found from the first set of scans was then used for the right ascension scans.

The off-set feed was placed at feed angle 90° for the declination scans and 0° for the right ascension scans; as the observations were made close to the meridian, feed angle differs little from position angle. Occasionally, in order to avoid a confusing source in the off-set beam, feed angles other than 90° and 0° had to be used. The use of two orthogonal feed angles ensures that the flux density of a source, calculated from the mean of the two sets of observations, is not affected by linear polarization of the source, which can be large at 2700 MHz .

In addition to the usual analogue recording, on-line data processing was available in a PDP- 9 computer, using a programme written by R. N. Manchester. The receiver output and scanning coordinate were sampled at uniform time intervals, and the recorded source profile was then smoothed using a low-pass digital filter to remove most of the receiver noise. After removal of any linear baseline drift the source amplitude and position were determined. The midpoints of cuts through the smoothed profile at the $37 \cdot 5 \%, 50 \%$, and 62.5% levels were determined and the source position taken as the mean of these three values. Average values of the source amplitude and position were finally computed for an allocated number of scans, usually two in each coordinate.

The use of the computer considerably reduced the effort normally needed for hand analysis. It was satisfactory for about 90% of the sources observed, and hand analysis was employed for the reduction of those observations which had been affected by a confusing source.

Measurements were attempted of 4784 C sources, and successful observations were made of 451 . Seventeen sources which were not found are listed below:

$$
\begin{aligned}
& 4 \mathrm{C} 04 \cdot 31 \text { (i), } 05 \cdot 32 \text { (ii), } 06 \cdot 31 \text { (ii), } 07 \cdot 24 \text { (ii), } 09 \cdot 59 \text { (i), } 10 \cdot 11 \text { (ii), } \\
& \quad 10 \cdot 16 \text { (ii), } 11 \cdot 16 \text { (ii), } 11 \cdot 29 \text { (ii), } 13 \cdot 50 \text { (ii), } 13 \cdot 63 \text { (i), } 15 \cdot 50 \text { (i), } \\
& 17 \cdot 51 \text { (ii), } 18 \cdot 28 \text { (i), } 19 \cdot 12 \text { (i), } 19 \cdot 61 \text { (i), } 19 \cdot 62 \text { (i) }
\end{aligned}
$$

Where the source number is followed by (i) it indicates that a search was made for the
source within 20^{\prime} arc in declination at the 4 C right ascension and within 20^{\prime} arc in right ascension at the 4 C declination. Where the source number is followed by (ii) a search was made within 20^{\prime} in declination at the 4 C right ascension and at the two right ascensions corresponding to the nearest lobe shifts.

The following sources were found at or near the 4C position but were judged too weak $\left(S_{2700}<0 \cdot 1\right)$ to allow a satisfactory position to be measured:

$$
4 \mathrm{C} 08 \cdot 34,11 \cdot 43,12 \cdot 32,14 \cdot 47,15 \cdot 72,15 \cdot 74,19 \cdot 48
$$

The following sources were found to be weak and in confused regions, and satisfactory positions could not be measured:

$$
4 \mathrm{C} 17 \cdot 17,18 \cdot 28,18 \cdot 43
$$

Twenty-six sources were found approximately $7^{\prime} \cdot 5$ or 15^{\prime} arc (one or two lobe shifts) away from the 4 C right ascension; they are listed below. In the list (e) and (l) indicate that the sources were found at a right ascension earlier or later than the value given in the 4 C catalogue; (ee) denotes a double lobe shift to an earlier value than that given in 4 C ; and $(\mathrm{e}, 1)$ indicates that components of a 4 C source were found at the two nearest lobe-shifted right ascensions:

```
\(4 \mathrm{C} 04 \cdot 14\) (ee), \(04 \cdot 46\) (e), \(05 \cdot 35\) (e), \(05 \cdot 63\) (l) \(06 \cdot 35(\mathrm{e}, 1), 06 \cdot 41(\mathrm{l})\),
    \(08 \cdot 65\) (l), 09.57 (ee), \(10 \cdot 32\) (e), 10.56 (ee), \(11 \cdot 38\) (l), \(12 \cdot 33\) (ee),
    \(12 \cdot 46\) (l), \(12 \cdot 64(\mathrm{l}), \quad 13 \cdot 27(\mathrm{e}), 14 \cdot 40(\mathrm{l}), \quad 15 \cdot 12(\mathrm{e}, \mathrm{l}), 15 \cdot 24(\mathrm{e})\),
    \(15 \cdot 44(\mathrm{e}), \quad 15 \cdot 58(\mathrm{e}), \quad 16 \cdot 47(\mathrm{e}), \quad 16 \cdot 52(\mathrm{l}), \quad 17 \cdot 30(\mathrm{e}), \quad 18 \cdot 24(\mathrm{l})\),
    \(19 \cdot 59\) (e), \(19 \cdot 76\) (l)
```

The following 33 sources were found close to the right ascension given in 4C, and the possible lobe shift indicated in the catalogue is not required:

$$
\begin{array}{r}
4 \mathrm{C} 04 \cdot 34,04 \cdot 37,04 \cdot 59,05 \cdot 34,05 \cdot 39,05 \cdot 46,05 \cdot 54, \\
05 \cdot 67,06 \cdot 40,07 \cdot 38,08 \cdot 60,09 \cdot 48,09 \cdot 55,09 \cdot 56, \\
10 \cdot 26,10 \cdot 34,11 \cdot 33,11 \cdot 42,12 \cdot 47,13 \cdot 40,13 \cdot 85, \\
15 \cdot 34,15 \cdot 35,15 \cdot 47,15 \cdot 69,15 \cdot 71,16 \cdot 36,16 \cdot 56, \\
16 \cdot 69,17 \cdot 54,17 \cdot 75,19 \cdot 55,19 \cdot 70
\end{array}
$$

IV. Positional Calibration

The telescope pointing corrections were determined from observations of sources of small radio diameter which have been optically identified, usually with quasi-stellar objects, and for which accurate optical positions are available. Table $1(a)$ lists these sources and their adopted optical positions. One calibrating source was observed, where possible, every 90 min . Unfortunately, there are no suitable calibrating sources within the declination range of interest between right ascensions $16^{\mathrm{h}} 30^{\mathrm{m}}$ and $21^{\mathrm{h}} 00^{\mathrm{m}}$. In this region, and in certain other cases, observations were made of sources with angular diameters either known or suspected to be larger than about $10^{\prime \prime}$ arc. The adopted positions of these sources are listed in Table $1(b)$. Observations of these sources were used to check day-to-day changes in the telescope pointing but they were not used in the final calibration.

The differences between the measured radio position and adopted optical position for the calibration sources in Table $1(a)$ were first examined as a function of time throughout the observing period. The average positional difference was found
to vary slightly from day to day; this was confirmed by day-to-day changes of the measured positions of the secondary calibrators (Table $1(b)$). The maximum deviation of the day-to-day correction from the mean for the whole period was $7^{\prime \prime}$ arc. A diurnal variation of the right ascension differences between $14^{\mathrm{h}} 00^{\mathrm{m}}$ and $17^{\mathrm{h}} 00^{\mathrm{m}}$, local time,

Table 1
POSITION CALIBRATORS

(1) PKS Cata- logue Number	(2) Other Cata- logue Number	(3)			(4)			(5) (6) Mean Residuals (radio-optical)		(7) No. of Observations
		Optical Position (1950.0)								
			R.A			Dec.		R.A.	Dec.	
		h	m	S	-	,	"	("arc)	("arc)	
(a) Primary										
$0340+04$	3C 93	03	40	$51 \cdot 47$	04	48	$21 \cdot 6$	-6	+2	1
$0430+05$	3C120	04	30	$31 \cdot 46$	05	15	$01 \cdot 0$	-2	-6	2
0440-00		04	40	$05 \cdot 40$	-00	23	$22 \cdot 0$	-7	-3	2
$0518+16$	3C 138	05	18	$16 \cdot 51$	16	35	$26 \cdot 2$	0	+5	5
$0725+14$	3C 181	07	25	$20 \cdot 10$	14	43	$47 \cdot 3$	-7	+3	7
$0802+10$	3C 191	08	02	03.78	10	23	$58 \cdot 1$	-2	0	2
$0838+13$	3C 207	08	38	01•73	13	23	$05 \cdot 4$	$+5$	+7	3
$0903+16$	3C 215	09	03	$44 \cdot 15$	16	58	$15 \cdot 7$	+3	-4	3
$0957+00$	4C00-34	09	57	$43 \cdot 84$	00	19	$50 \cdot 0$	-2	-1	1
$1040+12$	3C 245	10	40	06.03	12	19	$15 \cdot 0$	0	+4	6
$1116+12$	4C 12-39	11	16	$20 \cdot 79$	12	51	$06 \cdot 3$	$+5$	+3	5
$1241+16$	3C $275 \cdot 1$	12	41	27-68	16	39	$18 \cdot 7$	-7	+1	1
$1328+25$	3C 287	13	28	$16 \cdot 12$	25	24	$37 \cdot 1$	+6	-2	1
$1354+19$	4C 19.44	13	54	$42 \cdot 30$	19	33	$41 \cdot 0$	-3	+3	5
$1514+07$	3C317	15	14	$17 \cdot 00$	07	12	$16 \cdot 7$	$+5$	+2	3
$1622+23$	3C 336	16	22	$32 \cdot 45$	23	52	$00 \cdot 7$	+13	-3	1
$1641+17$	3C 346	16	41	$35 \cdot 33$	17	21	$19 \cdot 9$	-9	+4	3
$2045+06$	3C 424	20	45	$44 \cdot 40$	06	50	$10 \cdot 2$	0	-8	6
$2120+16$	3C 432	21	20	$25 \cdot 64$	16	51	$46 \cdot 0$	-1	-6	2
$2145+06$	4C06-69	21	45	$35 \cdot 90$	06	43	$43 \cdot 0$	+7	-7	2
$2230+11$	CTA 102	22	30	07•71	11	28	$22 \cdot 8$	$+6$	+2	4
(b) Secondary										
$0947+14$	3C 228	09	47	$25 \cdot 50$	14	57	$26 \cdot 2$	+35	-32	4
$1217+02$		12	17	$38 \cdot 35$	02	20	$20 \cdot 9$	$+9$	-14	2
$1222+13$	3C $272 \cdot 1$	12	22	$32 \cdot 47$	13	09	54.8	-8	-10	2
$1305+06$	3C 281	13	05	$22 \cdot 52$	06	58	$16 \cdot 4$	-16	-14	2
$1420+19$	3C 300	14	20	$40 \cdot 10$	19	49	$12 \cdot 4$	+4	-9	4
$1559+02$	3C 327	15	59	$55 \cdot 67$	02	06	$12 \cdot 3$	+24	-8	1
$1618+17$	3C 334	16	18	07.40	17	43	$30 \cdot 5$	+4	+13	7
$1836+17$	3C 386	18	36	$12 \cdot 85$	17	09	06.7	-4	+9	9
$1949+02$	3C 403	19	49	$44 \cdot 57$	02	22	$37 \cdot 1$	-5	-10	5

was also found. This is presumably attributable to the effects of solar heating on the telescope (no observations were made between $08^{\mathrm{h}} 00^{\mathrm{m}}$ and. $14^{\mathrm{h}} 00^{\mathrm{m}}$, when similar effects might also be expected).

The measured radio positions were corrected for the above two effects and the remaining differences were then examined as functions of zenith angle and hour angle. No variation with zenith angle was found but small variations with hour angle were found both in right ascension and in declination, as shown in Figure 2. The dashed curve in Figure 2(a) represents the best fit to the right ascension error. It is similar in form to the variation found by Merkelijn (1969) and has been approximated by the two straight lines. The difference between the dashed curve and the approximation has a maximum of $6^{\prime \prime}$ are near hour angle $00^{\mathrm{h}} 15^{\mathrm{m}}$ but there is no significant difference over most of the hour angle range. The full line in Figure 2(b) indicates the corrections which were applied to the measured source declinations.

Fig. 2.-Differences between optical and radio positions of calibrating sources as functions of hour angle.

The mean corrections for day-to-day, diurnal, and hour angle effects were finally applied to the calibration sources to determine the residual errors (corrected radio position minus optical position). The distributions of these residuals were centred at zero and the r.m.s. deviations of the individual values were $\pm 6^{\prime \prime}$ arc in each coordinate. These values represent the combination of short-term variations in the telescope pointing, together with any remaining small systematic effects. Columns 5 and 6 of Table 1 give the mean residual in each coordinate for the source concerned, and column 7 the number of observations made. It can be seen that some of the larger angular diameter sources in Table $l(b)$ are quite suitable as position calibrators at this frequency when positions with accuracy no greater than about $\pm 10^{\prime \prime}$ are are required; the quasi-stellar source PKS $0947+14$ (3 C 228) is a notable exception.

Receiver noise fluctuations do not affect the measurements of the calibration sources but they contribute considerably to the positional errors in the measurements of the weaker sources. The magnitude of this effect was estimated by examining the
differences between the apparent positions of sources as determined from the individual scans of a forward and reverse pair, after removing a constant difference due to the receiver time constant. The results are summarized in Figure 3(a), which shows the estimated r.m.s. errors in the final source positions as a function of the flux density at 2700 MHz , after averaging one pair of scans. In this figure the calibration error ($\pm 6^{\prime \prime}$ arc) has been combined in quadrature with the errors due to receiver noise fluctuations. Sources were not used for this analysis if they were obviously affected by a confusing source; those measurements which were affected by confusion are indicated in Table 2, and the uncertainties in the positions given in these cases may be several times the error shown in Figure 3(a).

Fig. 3.-Estimated r.m.s. errors in (a) right ascension or declination and (b) flux density as functions of 2700 MHz flux density.

V. Flux Densities

After the position measurement of a source had been completed the sensitivity of the receiver was determined by injecting a $1^{\circ} \mathrm{K}$ noise signal from a noise discharge tube. The flux density scale was calibrated from observations of 3 C 245 (PKS 1040+12) for which a value $S_{2700}=2 \cdot 09 \pm 0 \cdot 04$ was adopted (Kellermann, Pauliny-Toth, and Tyler 1968). Observations of this source on successive days showed an r.m.s. variation of $\pm 1.5 \%$ in the ratio of the source amplitude to the amplitude of the noise signal.

The r.m.s. errors in flux density due to receiver noise fluctuations were estimated in a manner similar to that already outlined for the position errors, i.e. from a comparison of the amplitudes of the forward and reverse pairs of a scan. Figure $\mathbf{3}(b)$
shows the overall r.m.s. errors in flux density, including a $\pm \mathbf{3} \%$ uncertainty in the flux density scale.

The flux densities were calculated from the mean of the source amplitudes given by the declination and right ascension scans and appropriate corrections were applied in the few cases where the coordinate set for the scan differed by more than 1^{\prime} arc from that determined in the subsequent scan pair. In some cases large differences in the source amplitudes from the two pairs of scans were noted; these are clearly due to the use of orthogonal feed angles and the intrinsic linear polarization of the sources. Such objects are noted in Table 2. The use of only two feed angles allows the detection of polarization mainly when the polarization position angle of a source is close to 0° or 90°, so that the number of highly polarized sources noted in Table 2 is a lower limit to the actual number.

The 2700 MHz flux densities given in Table 2 are peak flux densities, i.e. no corrections have been applied for beam broadening due to the angular extent of a source. Very few cases of beam broadening were found, and in the majority the broadening was found to be in declination. This is not unexpected, because the 4C catalogue was compiled from observations with an east-west interferometer and sources of large east-west extent can be excluded from 4C. In most cases where beam broadening was apparent, the skew nature of the source profile suggested a close confusing source rather than a single extended object.

In addition to the 2700 MHz flux densities from the present work, Table 2 includes the 178 MHz flux densities of the sources, as given in the 4 C catalogue. In some cases, data from the pencil beam survey made at 178 MHz by Caswell and Crowther (1969) are available. Seven of the sources in the present sample have a 4 C flux density which is less than 0.7 of the value found from the total power observations, implying that they are probably of large angular size ($\gtrsim 2^{\prime}$ arc) or seriously affected by confusion. They are:

$$
4 \mathrm{C} 11 \cdot 42,11 \cdot 44,11 \cdot 51,13 \cdot 62,14 \cdot 35,14 \cdot 48,14 \cdot 77
$$

VI. Optical Identifications

The prints of the Palomar Sky Survey have been searched for optical identifications at the positions of all the sources in Table 2. The search was carried out with the aid of transparent overlays prepared on the CDC 3600 computer of CSIRO. Each overlay is marked with the positions of the radio source and 10 reference stars from the Smithsonian catalogue. The positions of suggested optical counterparts can be estimated to an accuracy of about $\pm 0^{\prime} \cdot 1$ arc, except when the object is near to the edge of a Sky Survey print or where there is an unfavourable configuration of reference stars.

The results of the search are as follows:
22 fields contained a single galaxy within the estimated errors of the radio position.
6 fields contained several faint galaxies, but the accuracy of the radio position did not permit a unique identification to be made. These cases are denoted by "II" in column 7 of Table 2.

Figs 4-15.-Finding charts for the identifications. The scale is $5 \mathrm{~mm}=\mathbf{1}^{\prime}$ arc. North-east is at the top left-hand corner of each chart.

4C 08•41
4C 09•35

4C $07 \cdot 46$
4C $08 \cdot 15$

4C 09•17
4C 09•31

Fig. 6

4C 07•22
4C 08•62

4C 11 •70

4C $11 \cdot 33$

4C 11 -32
Fig. 8

4C $11 \cdot 28$

4C 11 - 52

4C $14 \cdot 39$

4C $13 \cdot 85$
4C $14 \cdot 36$
Fig. 10

4C $13 \cdot 55$

4C $15 \cdot 26$

4C 17•22

$$
4 \mathrm{C} 17 \cdot 21
$$

4C 17•87

DW $0839+18$

4C 17•60

6S•LI Dt

4C 17•52

4C 18.07

D. WILLS AND J. G. BOLTON

4C 19•45

4C 19•43

4C 19•74

Fig. 15

72 fields contained a stellar object which was noticeably brighter on the blue survey print and which could be a quasi-stellar object.
No identifications could be suggested for the remaining sources. Classifications of their fields given in Table 2 are: III, field contains a few stars of normal colour; IIIa, as for III but some obscuration possibly present; IIIb, blank; IIIc, very crowded star field; IV, field obscured.

Finding charts for the 94 suggested identifications are given in Figures 4-15. The charts were prepared from the Palomar Sky Survey prints and are 10^{\prime} arc square, with north at the top and east to the left. Blue prints were used for the finding charts of suggested quasi-stellar objects and for the galaxies $4 \mathrm{C} 05 \cdot 48$ and $08 \cdot 41$, and red prints for the remainder of the galaxies.

VII. Source List

The results of the position measurements and identification search are given in Table 2.

Column 1 gives the 4 C catalogue number and columns 2 and 3 the measured position of the source. Where, in seven cases, two positions are listed for the same 4 C number the 4 C results are probably a combination of the two sources.

Columns 4 and 5 contain the flux densities at 2700 MHz from the present observations and at 178 MHz from the 4 C catalogue. The latter value is given in parentheses where two sources were found at 2700 MHz corresponding to one 4 C source.

Column 6 contains the spectral index,* α_{2700}^{178}. The value is shown in parentheses where the 2700 MHz observation was affected by a confusing source or the source appeared to be extended in one or both coordinates.

Column 7 contains the source identification or, in cases where no identification is suggested, the field class as described in Section VI. Abbreviations used are: E, elliptical galaxy; N, galaxy with a bright semi-stellar nucleus; db, double galaxy; g, galaxy which is too faint to be classified; QSO?, possible quasi-stellar object.

Photographic magnitudes for the galaxies and visual magnitudes for the quasi-stellar objects are given in column 8. These were estimated from the Sky Survey prints and may be in error by as much as 1^{m}.

Columns 9 and 10 give the differences between the measured radio position of the source and the position of the suggested optical identification, as estimated from the Sky Survey prints.

Column 11 contains remarks on the 2700 MHz observations and on optical objects close to the radio position but outside the estimated error of the position measurement. Abbreviations used are: conf., confused; ext., extended; pol., strongly polarized at 2700 MHz ; BSO, blue stellar object; Sp., spiral galaxy; n., north; s., south; p., preceding; f., following. "R.A. from 4C" indicates that the 4 C right ascension is given in column 2. The 4 C value was used in a few cases where the source was weak at 2700 MHz and the 2700 MHz observation was marred by interference or receiver instability.

[^1]Table 2
POSITIONS AND IDENTIFICATIONS OF SOURCES

Table 2 (Continued)

				$\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & 0 \\ & \text { in } \end{aligned}$	$\underset{0}{4}$			＜
				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$		$\begin{aligned} & 0 \\ & \text { U } \\ & \text { J } \\ & \text { in } \end{aligned}$	
				$\begin{aligned} & \text { + } \\ & \substack{0 \\ \hline} \end{aligned}$	$\underset{\substack{ \pm \omega}}{ }$		$\underset{\forall}{\cup}$	0
$4 i$				$\stackrel{\square}{\square}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ \hline 60 \end{gathered}$		$\underset{\text { d }}{\stackrel{1}{2}}$	$\begin{aligned} & 40 \\ & 0 \\ & \hline 1 \end{aligned}$
$\begin{array}{ll} \cup & 0 \\ \forall & \vdots \\ n & y \end{array}$			4		$\begin{aligned} & = \\ & \text { 人~ } \end{aligned}$		$\begin{array}{ll} + \\ 0 & \ddots \\ a & \end{array}$	$\begin{aligned} & U \\ & \text { iv } \end{aligned}$
$\begin{array}{ll} \text { 态 } & \text { H } \\ \text { H } \end{array}$			\bullet	טי	$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{array}{ll} \text { 首 } \\ \text { N } \end{array}$	$\infty \text {. 튼 }$
－		＋	\bigcirc		年		:	0^{44}
		$\begin{aligned} & \text { H } \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { n } \end{aligned}$	$\begin{array}{ll} \circ \\ 0 \\ \text { W } \\ \infty \\ \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0.0 \end{aligned}$			
\cdots		$\therefore \quad \dot{0}$	\bullet				－－	
A		an us	0				as un	
－	0	N	N	0			N	
$\dot{0}$		4	4				－	
م		4	4				م	
－	0	0	\pm	\bigcirc			0 N	
	\sim	10	10	\cdots			10	
∞	9	$\infty \quad \infty$	∞				の 0	
$\stackrel{-1}{ }$	\cdots	\cdots	$\stackrel{\infty}{-1}$	$\stackrel{\infty}{\infty}$			O \cdots	
ソU	～～ロ	$\cdots \stackrel{\sim}{0}$	\cdots	ヘ．			a．U 0 －	
に島に号	HッO゚ツ	HOHツO	ツ○に以に			H	○ツツツ○	ツツツツツ
H以トにO	ツッブッツ	HO゙ット	にずに可	どム	に吕	哭	のツツツ\％	ツツツに日
ペー								
nnoon				앙	$\bigcirc 0$	앙	Mono	이앙
			ㅇำの	9	90	\cdots	$\cdots \wedge 0 \infty$	$\infty \infty$
0 －0	00000	00000	OOroo	0	0 r	－	$00-100$	O
	＊ONON	＋ONMT	공․․	\cdots	$\cdots \infty$		Noonr	NNNMm
NNNNナ	Mn＊Nin	ルMNNN	NN以Mm	\cdots	mi		メMベm	ツツMへへ
Mnmoor	いサONN	moncon	－Nのmい					
HNHNに	$\rightarrow+0 N \%$	MNHTN	MNNNN	$\cdots \mathrm{N}$	N	N	OサHM心	MMNH．
$00^{\circ} 0^{\circ}$	O0000	$00^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ}$	00°	－	－0000	$00^{\circ 0} 0$
	oㅇ연	ㅇNoma	Nホ	NM	Nサ	O	M以Mピ	－＋＋＋
gago	かの水が 	にOホNさ MONHF	orro	$0 N$	$6 M$	O	MoNon	かのamm minomm
$\infty \infty \infty$	$\begin{array}{lll} \infty & \infty & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	옹용ㅇㅇ	9999909	gig	90	$\stackrel{\square}{\circ}$	agaga	옹웅웅
moonm	$00 \wedge \pm 0$	－Mogo	OOOMJ	$0 \pm$	00	\cdots	HoNuN	ロNNNH
OMホMn	NサMNo	MNOHN		NM	吅年	N	Hion	NMNom
으N心N Nin		○ロのinN NサONに	MNNN N	－1－	mo	\pm	がNべが	
${ }^{\infty}{ }^{-1} \text { ㅇNNN }$	NNJino	$\begin{array}{lll} \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	윽억N	サ	いN	$\xrightarrow{\text { N }}$	NmonN	tiono
MNOHN	にNNOめ	のーヅon	$0 \times \infty \infty$	N	min		N ∞－	Mmot
$\because 1 \sim 00$	$0 \cdot H N N$	NMMMM	MMMホ！	4	¢	\sim	以心ONN	$\cdots \mathrm{N}$
$\begin{array}{lllll}\infty \\ 0 & \infty & \infty & \infty & \infty \\ 0 & \infty \\ 0\end{array}$	aiosoi	oiaioiai	oioioio	$\dot{0}$	$\begin{aligned} & 0 . \\ & 00 \\ & 0 \end{aligned}$	oi	ioigio	웅

				$\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & 0 \\ & \text { in } \end{aligned}$	$\underset{0}{4}$			＜
				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$		$\begin{aligned} & 0 \\ & \text { U } \\ & \text { J } \\ & \text { in } \end{aligned}$	
				$\begin{aligned} & \text { + } \\ & \substack{0 \\ \hline} \end{aligned}$	$\underset{\substack{ \pm \omega}}{ }$		$\underset{\forall}{\cup}$	0
$4 i$				$\stackrel{\square}{\square}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ \hline 60 \end{gathered}$		$\underset{\text { d }}{\stackrel{1}{2}}$	$\begin{aligned} & 40 \\ & 0 \\ & \hline 1 \end{aligned}$
$\begin{array}{ll} \cup & 0 \\ \forall & \vdots \\ n & y \end{array}$			4		$\begin{aligned} & = \\ & \text { 人~ } \end{aligned}$		$\begin{array}{ll} + \\ 0 & \ddots \\ a & \end{array}$	$\begin{aligned} & U \\ & \text { iv } \end{aligned}$
$\begin{array}{ll} \text { 态 } & \text { H } \\ \text { H } \end{array}$			\bullet	טי	$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{array}{ll} \text { 首 } \\ \text { N } \end{array}$	$\infty \text {. 튼 }$
－		＋	\bigcirc		年		:	0^{44}
		$\begin{aligned} & \text { H } \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { n } \end{aligned}$	$\begin{array}{ll} \circ \\ 0 \\ \text { W } \\ \infty \\ \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0.0 \end{aligned}$			
\cdots		$\therefore \quad \dot{0}$	\bullet				－－	
A		an us	0				as un	
－	0	N	N	0			N	
$\dot{0}$		4	4				－	
م		4	4				م	
－	0	0	\pm	\bigcirc			0 N	
	\sim	10	10	\cdots			10	
∞	9	$\infty \quad \infty$	∞				の 0	
$\stackrel{-1}{ }$	\cdots	\cdots	$\stackrel{\infty}{-1}$	$\stackrel{\infty}{\infty}$			O \cdots	
ソU	～～ロ	$\cdots \stackrel{\sim}{0}$	\cdots	ヘ．			a．U 0 －	
に島に号	HッO゚ツ	HOHツO	ツ○に以に			H	○ツツツ○	ツツツツツ
H以トにO	ツッブッツ	HO゙ット	にずに可	どム	に吕	哭	のツツツ\％	ツツツに日
ペー								
nnoon				앙	$\bigcirc 0$	앙	Mono	이앙
			ㅇำの	9	90	\cdots	$\cdots \wedge 0 \infty$	$\infty \infty$
0 －0	00000	00000	OOroo	0	0 r	－	$00-100$	O
	＊ONON	＋ONMT	공․․	\cdots	$\cdots \infty$		Noonr	NNNMm
NNNNナ	Mn＊Nin	ルMNNN	NN以Mm	\cdots	mi		メMベm	ツツMへへ
Mnmoor	いサONN	moncon	－Nのmい					
HNHNに	$\rightarrow+0 N \%$	MNHTN	MNNNN	$\cdots \mathrm{N}$	N	N	OサHM心	MMNH．
$00^{\circ} 0^{\circ}$	O0000	$00^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ}$	00°	－	－0000	$00^{\circ 0} 0$
	oㅇ연	ㅇNoma	Nホ	NM	Nサ	O	M以Mピ	－＋＋＋
gago	かの水が 	にOホNさ MONHF	orro	$0 N$	$6 M$	O	MoNon	かのamm minomm
$\infty \infty \infty$	$\begin{array}{lll} \infty & \infty & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	옹용ㅇㅇ	9999909	gig	90	$\stackrel{\square}{\circ}$	agaga	옹웅웅
moonm	$00 \wedge \pm 0$	－Mogo	OOOMJ	$0 \pm$	00	\cdots	HoNuN	ロNNNH
OMホMn	NサMNo	MNOHN		NM	吅年	N	Hion	NMNom
으N心N Nin		○ロのinN NサONに	MNNN N	－1－	mo	\pm	がNべが	
${ }^{\infty}{ }^{-1} \text { ㅇNNN }$	NNJino	$\begin{array}{lll} \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	윽억N	サ	いN	$\xrightarrow{\text { N }}$	NmonN	tiono
MNOHN	にNNOめ	のーヅon	$0 \times \infty \infty$	N	min		N ∞－	Mmot
$\because 1 \sim 00$	$0 \cdot H N N$	NMMMM	MMMホ！	4	¢	\sim	以心ONN	$\cdots \mathrm{N}$
$\begin{array}{lllll}\infty \\ 0 & \infty & \infty & \infty & \infty \\ 0 & \infty \\ 0\end{array}$	aiosoi	oiaioiai	oioioio	$\dot{0}$	$\begin{aligned} & 0 . \\ & 00 \\ & 0 \end{aligned}$	oi	ioigio	웅

				$\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & 0 \\ & \text { in } \end{aligned}$	$\underset{0}{4}$			＜
				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$		$\begin{aligned} & 0 \\ & \text { U } \\ & \text { J } \\ & \text { in } \end{aligned}$	
				$\begin{aligned} & \text { + } \\ & \substack{0 \\ \hline} \end{aligned}$	$\underset{\substack{ \pm \omega}}{ }$		$\underset{\forall}{\cup}$	0
$4 i$				$\stackrel{\square}{\square}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ \hline 60 \end{gathered}$		$\underset{\text { d }}{\stackrel{1}{2}}$	$\begin{aligned} & 40 \\ & 0 \\ & \hline 1 \end{aligned}$
$\begin{array}{ll} \cup & 0 \\ \forall & \vdots \\ n & y \end{array}$			4		$\begin{aligned} & = \\ & \text { 人~ } \end{aligned}$		$\begin{array}{ll} + \\ 0 & \ddots \\ a & \end{array}$	$\begin{aligned} & U \\ & \text { iv } \end{aligned}$
$\begin{array}{ll} \text { 态 } & \text { H } \\ \text { H } \end{array}$			\bullet	טי	$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{array}{ll} \text { 首 } \\ \text { N } \end{array}$	$\infty \text {. 튼 }$
－		＋	\bigcirc		年		:	0^{44}
		$\begin{aligned} & \text { H } \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { n } \end{aligned}$	$\begin{array}{ll} \circ \\ 0 \\ \text { W } \\ \infty \\ \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0.0 \end{aligned}$			
\cdots		$\therefore \quad \dot{0}$	\bullet				－－	
A		an us	0				as un	
－	0	N	N	0			N	
$\dot{0}$		4	4				－	
م		4	4				م	
－	0	0	\pm	\bigcirc			0 N	
	\sim	10	10	\cdots			10	
∞	9	$\infty \quad \infty$	∞				の 0	
$\stackrel{-1}{ }$	\cdots	\cdots	$\stackrel{\infty}{-1}$	$\stackrel{\infty}{\infty}$			O \cdots	
ソU	～～ロ	$\cdots \stackrel{\sim}{0}$	\cdots	ヘ．			a．U 0 －	
に島に号	HッO゚ツ	HOHツO	ツ○に以に			H	○ツツツ○	ツツツツツ
H以トにO	ツッブッツ	HO゙ット	にずに可	どム	に吕	哭	のツツツ\％	ツツツに日
ペー								
nnoon				앙	$\bigcirc 0$	앙	Mono	이앙
			ㅇำの	9	90	\cdots	$\cdots \wedge 0 \infty$	$\infty \infty$
0 －0	00000	00000	OOroo	0	0 r	－	$00-100$	O
	＊ONON	＋ONMT	공․․	\cdots	$\cdots \infty$		Noonr	NNNMm
NNNNナ	Mn＊Nin	ルMNNN	NN以Mm	\cdots	mi		メMベm	ツツMへへ
Mnmoor	いサONN	moncon	－Nのmい					
HNHNに	$\rightarrow+0 N \%$	MNHTN	MNNNN	$\cdots \mathrm{N}$	N	N	OサHM心	MMNH．
$00^{\circ} 0^{\circ}$	O0000	$00^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ}$	00°	－	－0000	$00^{\circ 0} 0$
	oㅇ연	ㅇNoma	Nホ	NM	Nサ	O	M以Mピ	－＋＋＋
gago	かの水が 	にOホNさ MONHF	orro	$0 N$	$6 M$	O	MoNon	かのamm minomm
$\infty \infty \infty$	$\begin{array}{lll} \infty & \infty & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	옹용ㅇㅇ	9999909	gig	90	$\stackrel{\square}{\circ}$	agaga	옹웅웅
moonm	$00 \wedge \pm 0$	－Mogo	OOOMJ	$0 \pm$	00	\cdots	HoNuN	ロNNNH
OMホMn	NサMNo	MNOHN		NM	吅年	N	Hion	NMNom
으N心N Nin		○ロのinN NサONに	MNNN N	－1－	mo	\pm	がNべが	
${ }^{\infty}{ }^{-1} \text { ㅇNNN }$	NNJino	$\begin{array}{lll} \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	윽억N	サ	いN	$\xrightarrow{\text { N }}$	NmonN	tiono
MNOHN	にNNOめ	のーヅon	$0 \times \infty \infty$	N	min		N ∞－	Mmot
$\because 1 \sim 00$	$0 \cdot H N N$	NMMMM	MMMホ！	4	¢	\sim	以心ONN	$\cdots \mathrm{N}$
$\begin{array}{lllll}\infty \\ 0 & \infty & \infty & \infty & \infty \\ 0 & \infty \\ 0\end{array}$	aiosoi	oiaioiai	oioioio	$\dot{0}$	$\begin{aligned} & 0 . \\ & 00 \\ & 0 \end{aligned}$	oi	ioigio	웅

				$\begin{aligned} & 0 \\ & 0 \\ & \text { U } \\ & 0 \\ & \text { in } \end{aligned}$	$\underset{0}{4}$			＜
				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$		$\begin{aligned} & 0 \\ & \text { U } \\ & \text { J } \\ & \text { in } \end{aligned}$	
				$\begin{aligned} & \text { + } \\ & \substack{0 \\ \hline} \end{aligned}$	$\underset{\substack{ \pm \omega}}{ }$		$\underset{\forall}{\cup}$	0
$4 i$				$\stackrel{\square}{\square}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ \hline 60 \end{gathered}$		$\underset{\text { d }}{\stackrel{1}{2}}$	$\begin{aligned} & 40 \\ & 0 \\ & \hline 1 \end{aligned}$
$\begin{array}{ll} \cup & 0 \\ \forall & \vdots \\ n & y \end{array}$			4		$\begin{aligned} & = \\ & \text { 人~ } \end{aligned}$		$\begin{array}{ll} + \\ 0 & \ddots \\ a & \end{array}$	$\begin{aligned} & U \\ & \text { iv } \end{aligned}$
$\begin{array}{ll} \text { 态 } & \text { H } \\ \text { H } \end{array}$			\bullet	טי	$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \end{array}$		$\begin{array}{ll} \text { 首 } \\ \text { N } \end{array}$	$\infty \text {. 튼 }$
－		＋	\bigcirc		年		:	0^{44}
		$\begin{aligned} & \text { H } \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { n } \end{aligned}$	$\begin{array}{ll} \circ \\ 0 \\ \text { W } \\ \infty \\ \\ \hline \end{array}$	$\begin{aligned} & 0.0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0.0 \end{aligned}$			
\cdots		$\therefore \quad \dot{0}$	\bullet				－－	
A		an us	0				as un	
－	0	N	N	0			N	
$\dot{0}$		4	4				－	
م		4	4				م	
－	0	0	\pm	\bigcirc			0 N	
	\sim	10	10	\cdots			10	
∞	9	$\infty \quad \infty$	∞				の 0	
$\stackrel{-1}{ }$	\cdots	\cdots	$\stackrel{\infty}{-1}$	$\stackrel{\infty}{\infty}$			O \cdots	
ソU	～～ロ	$\cdots \stackrel{\sim}{0}$	\cdots	ヘ．			a．U 0 －	
に島に号	HッO゚ツ	HOHツO	ツ○に以に			H	○ツツツ○	ツツツツツ
H以トにO	ツッブッツ	HO゙ット	にずに可	どム	に吕	哭	のツツツ\％	ツツツに日
ペー								
nnoon				앙	$\bigcirc 0$	앙	Mono	이앙
			ㅇำの	9	90	\cdots	$\cdots \wedge 0 \infty$	$\infty \infty$
0 －0	00000	00000	OOroo	0	0 r	－	$00-100$	O
	＊ONON	＋ONMT	공․․	\cdots	$\cdots \infty$		Noonr	NNNMm
NNNNナ	Mn＊Nin	ルMNNN	NN以Mm	\cdots	mi		メMベm	ツツMへへ
Mnmoor	いサONN	moncon	－Nのmい					
HNHNに	$\rightarrow+0 N \%$	MNHTN	MNNNN	$\cdots \mathrm{N}$	N	N	OサHM心	MMNH．
$00^{\circ} 0^{\circ}$	O0000	$00^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ}$	00°	－	－0000	$00^{\circ 0} 0$
	oㅇ연	ㅇNoma	Nホ	NM	Nサ	O	M以Mピ	－＋＋＋
gago	かの水が 	にOホNさ MONHF	orro	$0 N$	$6 M$	O	MoNon	onamm minomm
$\infty \infty \infty$	$\begin{array}{lll} \infty & \infty & 0 \\ 0 & 0 & 0 \\ 0 \end{array}$	옹용ㅇㅇ	9999909	gig	90	$\stackrel{\square}{\circ}$	agaga	옹웅웅
moonm	$00 N+N$	－Mogo	OOOMJ	$0 \pm$	00	\cdots	HoNuN	ロNNNH
OMホMn	NサMNo	MNOHN		NM	吅年	N	Hion	NMNom
으N心N Nin		○ロのinN NサONに	MNNN N	－1－	mo	\pm	がNべが	
${ }^{\infty}{ }^{-1} \text { ㅇNNN }$	NNJino	$\begin{array}{lll} \infty & \infty \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$	윽억N	サ	いN	$\xrightarrow{\text { N }}$	NmonN	tiono
MNOHN	にNNOめ	のーヅon	$0 \times \infty \infty$	N	min		N ∞－	Mmot
$\because 1 \sim 00$	$0 \cdot H N N$	NMMMM	MMMホ！	4	¢	\sim	以心ONN	$\cdots \mathrm{N}$
$\begin{array}{lllll}\infty \\ 0 & \infty & \infty & \infty & \infty \\ 0 & \infty \\ 0\end{array}$	aiosoi	oiaioiai	oioioio	$\dot{0}$	$\begin{aligned} & 0 . \\ & 00 \\ & 0 \end{aligned}$	oi	ioigio	웅

n
∞
+1 QSO？
III号 U
B
H
H

～． －U U

I II

呂に
：
 NOFMJ
NNNホ

サMOMF

$\infty \infty$
Moonm
－MホMin
ㅇNNNNN

$\begin{array}{llll}\infty \\ 0 & \infty & \infty & \infty \\ 0 & 0 \\ 0\end{array}$

[^2]Table 2 (Continued)

(1)		(2)			(3)		(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
4C	Position (1950.0)						S_{2700}	S_{178}	α_{2700}^{178}	Type	Mag.	Posn relative to		
Cata- logue		R.A.			Dec.								Source . 1 arc)	Remarks
Number	h		s	0		"						R.A.	Dec.	
10.29	10	17	27.3	10	54	59	0.23	2.6	0.90	III				
10.30	10	58	10.5	11	02	23	0.38	4.5	0.90	QSO?	18	0	1 s .	Pol.
10.32	11	26	53.8	10	27	23	0.24	2.1	0.80	III				
10.33	11	30	24.9	10	40	18	0.47	4.1	0.80	QSO?	17			
10.34	12	03	23.1	10	59	48	0.22	2.2	0.85	QSO?	17.5	1 p	$1 \mathrm{~s}$	
10.35	13	06	36.6	10	45	26	0.28	2.5	0.80	II				Abell cluster. $17^{m} \mathrm{~g} 0^{\prime} .7 \mathrm{p}$
10.36	13	38	38.0	10	47	03	0.30	2.9	0.85	QSO?	19	2 f	2 s	Abel1 cluster. 17. \% 0.7 p.
10.37	13	59	46.6	10	20	26	0.21	2.1	0.85	III				
10.38	14	05	52.4	10	22	01	0.25	3.7	1.00	III				
10.40	15	09	03.0	10	12	48	0.36	3.1	0.80	III				
10.42	15	19	50.0	10	23	29	0.19	2.2	0.90	III				R.A. from 4C
10.46	16	18	47.2	10	53	18	0.61	3.4	0.65	III				BSO $0^{\prime} .6 \mathrm{~s} . \mathrm{p}$.
10.47	16	37	27.0	10	34	47	0.31	5.0	1.00	III				
10.55	18	02	19.6	09	59	49	0.64	5.0	0.75	IIIC				BSO 0 '. 4 p. Pol.
10.56	18	07	53.8	10	16	48	0.22	4.2	(1.10)	IIIC				Conf. Possibly not the 4C source
10.61	19	56	20.2	10	26	36	0.23	2.7	(0.90)	IIIc				Conf. or ext. in Dec.
10.62	20	02	07.5	10	21	11	0.45	3.6	0.75	IIIC				Pol.
10.63	20	21	18.6	10	31	29	0.21	3.5	1.05	III				
10.64	20	57	39.2	10	11	32	0.20	2.5	0.95	III				
10.67	21	58	49.6	10	08	34	0.28	3.2	(0.90)	III				BSO $0^{\prime} .5 \mathrm{n}$. Conf. in Dec.
11.19	04	37	26.6	11	28	20	0.42	3.0	0.70	I I I				
11.20	05	23	27.9	11	38	28	0.49	5.5	0.90	IV				
11.27 .	07	45	06.8	11	53	32	0.23	2.6	0.90	III				
11.28*	08	30	34.1	11	38	10	0.35	5.0	(0.95)	QSO?	17	2 p	1 s.	
11.30	08	41	00.6	11	24	56	0.19	2.7	0.95	III				
11.32	09	26	02.3	11	47	16	0.26	3.0	0.90	QSO?	19	1 p	2 n .	
11.33	09	58	49.2	11	23	14	0.27	2.9	0.85	g	18.5		1 s .	Other gals nearby
11.34	10	11	37.6	11	06	13	0.52	2.7	0.60	QSO?	19.5	1 p	1 s .	Other gals nearby
11.35	10	31	25.9	11	27	41	0.65	5.4	0.80	III				Nearby source
11.36	10	42	05.0	10	54	01	0.09	2.1	(1.05)	I II				Possibly not the 4C source

11.37	10	55	47.9	11	21	44	0.17	2.2	0.95	III				
11.38	11	02	00.4	11	19	30	0.37	3.6	0.85	III				
11.41	11	56	55.4	11	02	42	0.35	3.6	0.85	III				
11.42	12	01	52.5	11	45	48	0.33	2.0	（0．65）	IIIb				Conf．
11.44	13	01	29.3	11	43	06	0.18	2.6	（1．00）	III				Conf．source $10^{\prime} \mathrm{n}$ ．
11.46	13	50	28.2	11	21	40	0.78	3.4	0.55	I I I				
11.49	15	21	32.7	11	06	18	0.56	4.0	0.70	db	18.5	1 f	0	In cluster
11.50	15	48	21.4	11	29	28	0.52	3.9	0.75	QSO？	17.5	0	3 n ．	
11.51	15	56	56.0	11	24	30	0.39	3.2	0.80	III				Possibly faint cluster
11.52	16	01	46.6	11	36	00	0.30	3.4	0.90	QSO？	18.5	0	0	Pol．
11.61	20	07	14.7	12	00	23	0.16	2.0	0.95	II I C				
11.62	20	14	50.5	11	36	59	0.20	2.4	0.90	IIIC				
11.63	20	19	05.7	11	26	30	0.28	3.0	0.85	IIIC				
11.64	20	22	59.6	11	56	43	0.45	3.3	0.75	IIIc				
11.65	20	57	42.0	12	12	48	0.19	2.3	0.90	IIIC				
11.66	21	36	01.8	11	44	23	0.36	3.7	0.85	IIIc				
11.70	22	39	06.3	11	29	53	0.43	3.8	0.80	QSO？	15.5	2 f	2 s ．	
12.16	03	48	36.5	12	33	42	0.32	3.6	（0．90）	III				Conf．in R．A．
12.22	05	01	57.4	12	40	18	0.28	3.3	0.90	III				
12.31	07	42	41.9	12	16	58	0.36	4.0	0.90	III				
12.33	09	00	54.7	12	42	26	0.27	2.4	0.80	III				
12.34	09	15	25.6	12	40	32	0.31	2.3	0.75	III				
12.35	09	43	07.1	12	19	20	0.27	2.1	0.75	QSO？	19.5	1 f．	2 n ．	BSO $0^{\prime} .7$ n．f．
12.36	09	48	08.4	12	29	36	0.19	2.6	0.95	III				
12.38	11	04	43.3	12	55	58	0.34	3.8	0.90	III				
12.40	11	18	49.6	12	52	27	0.13	2.1	1.00	III				
12.43	11	58	22.4	12	27	06	0.23	2.7	0.90	III				
12.44	11	59	35.3	13	02	20	0.15	2.9	1.10	IIIb				Source $13^{\prime} \mathrm{p}$ ．
12.46	13	07	05.5	12	10	21	0.58	2.1	0.50	QSO？	19	2 p	0	
12.47	13	08	25.8	12	05	38	0.35	2.6	0.60	III				
12.48	13	25	26.6	12	38	32	0.35	2.3	（0．70）	III				Conf．source $10^{\prime} \mathrm{s}$ ．
12.51	13	59	22.9	12	30	27	0.20	2.0	0.85	III				Conf．source 10＇s．
12.52	14	01	05.6	12	20	18	0.15	2.3	1.00	III				
12.56	15	56	47.4	12	19	14	0.34	3.9	0.90	III				Possibly faint cluster
12.57	16	20	43.3	12	46	54	0.25	3.3	0.95	III				

${ }^{*}$ For 4C 11.28 the declination given is the mean of two components，separation approximately 7^{\prime} arc in Dec．

11.37	10	55	47.9	11	21	44	0.17	2.2	0.95	III				
11.38	11	02	00.4	11	19	30	0.37	3.6	0.85	III				
11.41	11	56	55.4	11	02	42	0.35	3.6	0.85	III				
11.42	12	01	52.5	11	45	48	0.33	2.0	（0．65）	IIIb				Conf．
11.44	13	01	29.3	11	43	06	0.18	2.6	（1．00）	III				Conf．source $10^{\prime} \mathrm{n}$ ．
11.46	13	50	28.2	11	21	40	0.78	3.4	0.55	I I I				
11.49	15	21	32.7	11	06	18	0.56	4.0	0.70	db	18.5	1 f	0	In cluster
11.50	15	48	21.4	11	29	28	0.52	3.9	0.75	QSO？	17.5	0	3 n ．	
11.51	15	56	56.0	11	24	30	0.39	3.2	0.80	III				Possibly faint cluster
11.52	16	01	46.6	11	36	00	0.30	3.4	0.90	QSO？	18.5	0	0	Pol．
11.61	20	07	14.7	12	00	23	0.16	2.0	0.95	II I C				
11.62	20	14	50.5	11	36	59	0.20	2.4	0.90	IIIC				
11.63	20	19	05.7	11	26	30	0.28	3.0	0.85	IIIC				
11.64	20	22	59.6	11	56	43	0.45	3.3	0.75	IIIc				
11.65	20	57	42.0	12	12	48	0.19	2.3	0.90	IIIC				
11.66	21	36	01.8	11	44	23	0.36	3.7	0.85	IIIc				
11.70	22	39	06.3	11	29	53	0.43	3.8	0.80	QSO？	15.5	2 f	2 s ．	
12.16	03	48	36.5	12	33	42	0.32	3.6	（0．90）	III				Conf．in R．A．
12.22	05	01	57.4	12	40	18	0.28	3.3	0.90	III				
12.31	07	42	41.9	12	16	58	0.36	4.0	0.90	III				
12.33	09	00	54.7	12	42	26	0.27	2.4	0.80	III				
12.34	09	15	25.6	12	40	32	0.31	2.3	0.75	III				
12.35	09	43	07.1	12	19	20	0.27	2.1	0.75	QSO？	19.5	1 f．	2 n ．	BSO $0^{\prime} .7$ n．f．
12.36	09	48	08.4	12	29	36	0.19	2.6	0.95	III				
12.38	11	04	43.3	12	55	58	0.34	3.8	0.90	III				
12.40	11	18	49.6	12	52	27	0.13	2.1	1.00	III				
12.43	11	58	22.4	12	27	06	0.23	2.7	0.90	III				
12.44	11	59	35.3	13	02	20	0.15	2.9	1.10	IIIb				Source $13^{\prime} \mathrm{p}$ ．
12.46	13	07	05.5	12	10	21	0.58	2.1	0.50	QSO？	19	2 p	0	
12.47	13	08	25.8	12	05	38	0.35	2.6	0.60	III				
12.48	13	25	26.6	12	38	32	0.35	2.3	（0．70）	III				Conf．source $10^{\prime} \mathrm{s}$ ．
12.51	13	59	22.9	12	30	27	0.20	2.0	0.85	III				Conf．source 10＇s．
12.52	14	01	05.6	12	20	18	0.15	2.3	1.00	III				
12.56	15	56	47.4	12	19	14	0.34	3.9	0.90	III				Possibly faint cluster
12.57	16	20	43.3	12	46	54	0.25	3.3	0.95	III				

11.37	10	55	47.9	11	21	44	0.17	2.2	0.95	III				
11.38	11	02	00.4	11	19	30	0.37	3.6	0.85	III				
11.41	11	56	55.4	11	02	42	0.35	3.6	0.85	III				
11.42	12	01	52.5	11	45	48	0.33	2.0	（0．65）	IIIb				Conf．
11.44	13	01	29.3	11	43	06	0.18	2.6	（1．00）	III				Conf．source $10^{\prime} \mathrm{n}$ ．
11.46	13	50	28.2	11	21	40	0.78	3.4	0.55	II I				
11.49	15	21	32.7	11	06	18	0.56	4.0	0.70	db	18.5	1 f ．	0	In cluster
11.50	15	48	21.4	11	29	28	0.52	3.9	0.75	QSO？	17.5	0	3 n ．	
11.51	15	56	56.0	11	24	30	0.39	3.2	0.80	III				Possibly faint cluster
11.52	16	01	46.6	11	36	00	0.30	3.4	0.90	QSO？	18.5	0	0	Pol．
11.61	20	07	14.7	12	00	23	0.16	2.0	0.95	IIIc				
11.62	20	14	50.5	11	36	59	0.20	2.4	0.90	IIIc				
11.63	20	19	05.7	11	26	30	0.28	3.0	0.85	IIIc				
11.64	20	22	59.6	11	56	43	0.45	3.3	0.75	IIIc				
11.65	20	57	42.0	12	12	48	0.19	2.3	0.90	IIIC				
11.66	21	36	01.8	11	44	23	0.36	3.7	0.85	IIIc				
11.70	22	39	06.3	11	29	53	0.43	3.8	0.80	QSO？	15.5	2 f	2 s	
12.16	03	48	36.5	12	33	42	0.32	3.6	（0．90）	III				Conf．in R．A．
12.22	05	01	57.4	12	40	18	0.28	3.3	0.90	III				
12.31	07	42	41.9	12	16	58	0.36	4.0	0.90	III				
12.33	09	00	54.7	12	42	26	0.27	2.4	0.80	III				
12.34	09	15	25.6	12	40	32	0.31	2.3	0.75	III				
12.35	09	43	07.1	12	19	20	0.27	2.1	0.75	QSO？	19.5	1 f	2 n ．	BSO $0^{\prime} .7$ n．f．
12.36	09	48	08.4	12	29	36	0.19	2.6	0.95	III				
12.38	11	04	43.3	12	55	58	0.34	3.8	0.90	III				
12.40	11	18	49.6	12	52	27	0.13	2.1	1.00	III				
12.43	11	58	22.4	12	27	06	0.23	2.7	0.90	III				
12.44	11	59	35.3	13	02	20	0.15	2.9	1.10	IIIb				Source 13＇p．
12.46	13	07	05.5	12	10	21	0.58	2.1	0.50	QSO？	19	2 p ．	0	
12.47	13	08	25.8	12	05	38	0.35	2.6	0.60	III				
12.48	13	25	26.6	12	38	32	0.35	2.3	（0．70）	III				Conf．source $10^{\prime} \mathrm{s}$ ．
12.51	13	59	22.9	12	30	27	0.20	2.0	0.85	III				
12.52	14	01	05.6	12	20	18	0.15	2.3	1.00	III				
12.56	15	56	47.4	12	19	14	0.34	3.9	0.90	III				Possibly faint cluster
12.57	16	20	43.3	12	46	54	0.25	3.3	0.95	III				

0

$$
\rho
$$

a N
4
N
N
15.5

い
III
db
QSO？
III
QSO？
気気葋品
完

None
$00^{\circ} 00^{\circ}$

∞
$\stackrel{\sim}{\infty}$
$\dot{0}$
$\infty \circ$ 웅ㅇㅇㅇ
00000
\therefore

NoO
NMMNN
NMMM～～
ナOONサ
MホMM
OHOM
Nimm
个
$00^{\circ} 0^{\circ}$

サーN゙心㇒

NGNGM

のササッM
NOLNNON
NNOHN
品円NM

Table 2 (Continued)

	\dot{y}	\dot{a}	\dot{a}
0	-	N	N
m	$4 i$	\dot{n}	$\dot{4}$
\dot{n}	-1	m	m

n	n	n	
0	n	0	∞
r	n	n	r

$$
\stackrel{N}{\mathrm{~N}}
$$

$$
17.5
$$

NルNサM サMNール

Mm NON
M

－NNO\＆
NMッヅ

路䟚 프를

 NへMMN

$\begin{array}{lll}\text { No } & 0 \\ H\end{array}$ HFHMM
$0 \infty 0$
H
Non Ho
なぁがない

シ்்்்்
！n
1.0
0.7

N
NMMMM
N

$\infty m+0 \infty$
MNNL
$00^{\circ} 0^{\circ} 0^{\circ}$
$\infty M \mathrm{NO}$
MNN
MMNホN
M

aOOMM

$14.63 \quad 16 \quad 16 \quad 52$. 꾸
∞ noナm

0000
$M \infty+M O$
$M+M M N$
NONNHN
ばなが
Mo の®の

0
N
ㅇ
∞
∞
0
1.05
0.85

0	\sim
∞	0
0	
0	0

00
i
$\stackrel{3}{0}$
$\stackrel{i}{-}$

○்MN～

NにのMは
のnのMホ
$00^{\circ} 00^{\circ}$
oホMOO
－$-\dot{\circ}$

ペッルのサ
Mo O \quad on
NOHMN
NOMN甘

∞ のOMo
かino
NNWNO
NNさ゚かも
H
∞
∞
$+\infty$世 世

Table 2 (Continued)

Table 2 (Continued)

Table 2 (Continued)

上MHNM ナHサ以H NNM\＆N NM்NN

$\bigcirc \sim \pm+\infty$	¢onom
NMNON	$\cdots+0$－
00000	00000
ONOON	NOMNM
－MrN	－ハサー
のN以ON	∞ OLNO
HHMOM	
anana	anoson
いいのr	\cdots
$\rightarrow+\infty \infty$	－0， 0
－	－${ }^{-1}$
かolooro	－omn
$\cdots \mathrm{m}+\mathrm{m}$	$\cdots+N+1$
OMNHin	$\cdots M N \infty$
O以N	Mサハサハ
NMM＊	の上パロ
\boldsymbol{H}	
NM以Nの	－rNサー
ananor	asososo
Hやのnm	

VIII. Discussion

(a) Errors in 4C Catalogue Positions

The estimated accuracy of the positions given in Table 2 exceeds that of the 4 C catalogue positions by a factor of 2 in right ascension and by a factor of at least 12 in declination. The differences between the present positions and those listed in the 4 C catalogue have been examined for all sources which are not noted in Table 2 as being confused or extended or as having two components at 2700 MHz and which are not noted as unreliable in the 4 C catalogue.

In right ascension the average difference between the present positions and the 4 C positions was found to be $0^{\mathrm{s} \cdot} \cdot 1 \pm 0^{\mathrm{s}} \cdot 05$, and the r.m.s. position difference was $\pm 1^{\mathrm{s}} \cdot 25$. No investigation was made of right ascension differences as a function of 178 MHz flux density or of the 4 C reliability class (a, b).

Table 3
differences in declination between 4C catalogue positions and present measurements

178 MHz Flux Density	4 C Class	No. of Sources	Systematic Declination Error	R.M.S. Declination Error
$S_{178} \geqslant 3$	a	161	$-0^{\prime} \cdot 3 \pm 0^{\prime} \cdot 2$	$2^{\prime} \cdot 5$
$2 \leqslant S_{178}<3$	a	115	$-0^{\prime} \cdot 3 \pm 0^{\prime} \cdot 3$	$3^{\prime} \cdot 0$
$S_{178} \geqslant 3$	b	45	$+0^{\prime} \cdot 7 \pm 0^{\prime} \cdot 6$	$3^{\prime} \cdot 9$
$2 \leqslant S_{178}<3$	b	39	$-1^{\prime} \cdot 0 \pm 0^{\prime} \cdot 9$	$5^{\prime} \cdot 4$

In declination the positional differences were examined separately for sources with flux density greater or less than $S_{178}=3 \cdot 0$, and for sources in the two reliability classes. The results are summarized in Table 3. The accuracy of the declinations for weaker sources of class a is clearly greater than that for the stronger sources in class b. The values given for the stronger 4 C sources may not be representative of all the strong 4 C sources, since the observing list did not contain those sources for which accurate positions had previously been measured.

The individual sources which were found to be lobe shifted in right ascension have been listed in Section III. The 26 sources comprise 6% of the present sample, which is lower than the $41(9 \%)$ suggested lobe ambiguities in the present sample of 4 C . While the proportion of actual lobe shifts (8 out of 41) is higher for sources listed with possible lobe ambiguities in 4C, most of the actual lobe shifts occur for sources not listed as such.

(b) Source Spectra

Of the 4514 C sources in Table 2, there are 386 for which the observations of flux density at both 178 MHz and 2700 MHz are believed to be unaffected by confusion or the angular extent of the source. The median spectral index for these 386 sources is $0 \cdot 86$, and the dispersion is $\pm 0 \cdot 16$. There is no significant difference between the median spectral indices for sources above and below $S_{178}=3 \cdot 0$.

The sample of 386 sources does not include 1054 C sources which are common to the Parkes catalogue and for which flux densities and more precise positions were already available. For these sources the median spectral index between 178 MHz
and 2700 MHz is 0.73 and the dispersion $\pm 0 \cdot 23$. The lower value of spectral index is not unexpected, because the finding survey for the Parkes catalogue was made at 408 MHz and further selection was made at 1410 MHz .

The median spectral index of 0.77 for the 57 possible quasi-stellar objects in the sample is lower than that for the other sources and the distribution of their spectral indices is markedly skew. Of 11 sources in the whole sample with spectral index $\leqslant 0 \cdot 5,8$ are identified with possible quasi-stellar objects and the remainder are unidentified.

(c) Identification Content

A remarkable feature of the present study is the very small proportion of fainter 4 C sources which can be identified with galaxies, and the relatively high proportion of sources which are quasi-stellar objects. Only 22 identifications with

Table 4
cumulative identification percentage at different flux density levels

178 MHz Flux Density	Quasi-stellar Objects $(\%)$	Galaxies $(\%)$	Unidentified $(\%)$
$S_{178} \geqslant 10$	17	50	33
$S_{178} \geqslant 4 \cdot 5$	22 ± 4	27 ± 3	51 ± 6
$S_{178} \geqslant 3 \cdot 0$	19 ± 3	18 ± 2	63 ± 5
$S_{178} \geqslant 2 \cdot 0$	20 ± 2	14 ± 2	66 ± 4

individual galaxies are suggested and only one of these is brighter than 15^{m}. Of five suggested identifications with bright galaxies in the region (Caswell and Wills 1967), on the basis of the 4 C catalogue positions, only one ($4 \mathrm{C} 17 \cdot 52$) is confirmed. The four disproved identifications with bright galaxies are:

$$
4 \mathrm{C} 08 \cdot 47,11 \cdot 35,14 \cdot 37,19 \cdot 42
$$

The results of the present study have been combined with the results of identifications of sources in the revised 3C catalogue and the brighter 4 C sources in the present area, to determine the percentage of sources which can be identified above a particular flux density. For this purpose only those sources outside galactic latitude $\left|b^{\mathrm{II}}\right|<20^{\circ}$ have been considered, in order to avoid those in crowded star fields or obscured regions.

The results are summarized in Table 4, which shows the cumulative percentage of sources in the different identification classes. For sources with $S_{178} \geqslant 10$, data from the entire revised 3C catalogue were used, since the total number of revised 3C sources in the present area is rather small (44). Data for the range $4.5 \leqslant S_{178}<10$ comprise 121 sources, most of which were previously observed at Parkes. There are 183 sources in the range $3 \cdot 0 \leqslant S_{178}<4.5$ from the whole area of the present investigation and 191 sources in the range $2 \leqslant S_{178}<3$ from the area of double hatching in Figure 1. Normalization was carried out for the area changes involved for sources with $S_{178}<10$ and $S_{178}<3$. The errors indicated in Table 4 are the statistical errors based on the normalized source count at each level of flux density.

The decrease in the percentage of fainter sources which can be identified with galaxies follows naturally from the known form of the radio luminosity distribution for galaxies and from the small spread in their absolute optical magnitudes. The constancy of the percentage of quasi-stellar objects among radio sources at different flux density levels, and selected at a given frequency, has been pointed out by Bolton (1968) for frequencies of 408 MHz and above; the present results show that this trend is closely followed at 178 MHz , where few previous data were available at the low flux densities.

The interpretation of this result and of the rather small spread in the apparent optical magnitudes of quasi-stellar objects so far identified with radio sources depends critically on the distances assumed for the objects. If their redshifts are not of cosmological origin and they are local objects, the identification results would be consistent with a model in which the quasi-stellar objects have a small spread in absolute optical luminosity (and distance) but a fairly steep radio luminosity function, which has the same shape over a wide range of frequencies. If the quasi-stellar objects are at distances consistent with a cosmological interpretation of their redshifts then the results imply a rather delicate balance between their luminosity or space density evolution and the metric of the cosmology.

IX. Acknowledqments

This work was carried out while one of us (D.W.) was a guest investigator at the Division of Radiophysics, CSIRO, supported jointly by CSIRO and by a research grant from the National Science Foundation. We thank Miss Jeannette K. Merkelijn. for assistance with some of the observations and we are grateful to Dr. R. N. Manchester for writing the computer programme which greatly speeded the reduction of the observations.

X. References

Batchelor, R. A., Brooks, J. W., and Cooper, B. F. C. (1968).-IEEE Trans. Antennas Propag. AP16, 228.
Bennett, A. S. (1962).-Mem. R. astr. Soc. 68, 163.
Bolton, J. G. (1968).-Astr. J. 74, 131.
Bolton, J. G., and Ekers, Jennifer A. (1966).-Aust. J. Phys. 19, 471.
Bolton, J. G., Shimmins, A. J., and Merkelijn, Jeannette K. (1968).-Aust. J. Phys. 21, 81. Caswell, J. L., and Crowther, J. H. (1969).-A pencil-beam survey of radio sources at 178 MHz . Mon. Not. R. astr. Soc. (in press).
Caswell, J. L., and Wills, D. (1967).-Mon. Not. R. astr. Soc. 135, 231.
Clarke, Margaret E., Bolton, J. G., and Shimmins, A. J. (1966).-Aust. J. Phys. 19, 375. Davis, M. M. (1967).-Bull. astr. Insts Neth. 19, 201.
Division of Radiophysics, CSIRO (1969).-Aust. J. Phys. astrophys. Suppl. No. 7.
Gower, J. F. R., Scott, P. F., and Wills, D. (1967).-Mem. R. astr. Soc. 71, 49.
Kellermann, K. I., Pauliny-Toth, I. I. K., and Tyler, W. C. (1968).-Astr. J. 73, 298.
Merkelijn, Jeannette K. (1969).-Aust. J. Phys. 22, 237.
Olsen, E. T. (1967).-Astr. J. 72, 738.
Pilkington, J. D. H., and Scott, P. F. (1965).-Mem. R. astr. Soc. 69, 183.
Shimmins, A. J. (1968).-Aust. J. Phys. 21, 65.
Shimmins, A. J., Clarke, Margaret E., and Ekers, R. D. (1966).-Aust. J. Phys. 19, 649.
Shimmins, A. J., and Day, G. A. (1968).-Aust. J. Phys. 21, 377.
Wills, D. (1967).—Mon. Not. R. astr. Soc. 135, 339.

[^0]: * Department of Astronomy, University of Texas, Austin, Texas, U.S.A.
 \dagger Division of Radiophysics, CSIRO, P.O. Box 76, Epping, N.S.W. 2121.
 \ddagger Throughout this paper, flux densities are given in units of $10^{-26} \mathrm{Wm}^{-2} \mathrm{~Hz}^{\mathbf{- 1}}$.

[^1]: * Spectral index is defined by $S(\nu) \propto \nu^{-\alpha}$, where ν is the frequency.

[^2]: ＋For 4C 10.28 the right ascension is very uncertain．A search for the optical identification was also made at the same declination，using the 4C
 right ascension．

