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Abatract 

From the sum rules for hadron scattering, the nucleon form factors, and the 
masses of the hadrons, the properties of quarks are estimated as: 2 Ge V Jc2 ;:; quark 
mass ;:; 30 Ge V Jc 2 , 0·1 fm ;:; range of the quark-quark interaction ;:; 0·25 fm. 
The hadrons are described by a relativistic independent quark model using the 
Dirac equation with a potential energy term for the effective interaction. This 
model is compared with a rigid rotor model. 

1. INTRODUCTION 

This paper reports an attempt to estimate the properties of quarks, as indicated 
by the successes of the quark model. The quark model (Kokkedee 1969), in which a 
baryon consists of three quarks and a meson consists of a quark and anti quark, 
cannot give a complete description of hadrons. For instance, a nucleon will contain 
additional quark-antiquark pairs, some of which form mesons; because the binding 
energy of a meson in the nucleon is very much smaller than that of the other con
stituents of the nucleon, the density of mesons will extend further out of the nucleon. 

The quark model can only be expected to apply to some core of a hadron, the 
properties concerning the outer parts of the hadron being more appropriately de
scribed by other means, such as a virtual meson cloud around a nucleon, or by more 
complicated models including the additional quark-antiquark pairs. 

In this paper we estimate the quark mass, and the root-mean-square separation 
distance of the quarks in the core. By considering the scattering sum rules for the 
total hadronic cross sections and the nucleon form factors we estimate the root-mean
square separation distance of the quarks in the hadronic core. 

We use the one-particle Dirac equation as the basis of the dynamical description 
of the hadrons. There are two alternatives for introducing the quark-quark inter
action. We may write the interaction as a potential energy (i.e. the fourth component 
of a 4-vector), as would be expected if the quark-quark interaction is a vector inter
action, or alternatively we may write the interaction as a scalar term, as would be 
expected if the quark-quark interaction is a scalar interaction. In the present paper 
we choose the former while in the following paper (Smith 1970; present issue, pp. 
627-32) the latter interaction is used. . 

Using this dynamical description, and the estimate of the root-mean-square 
separation distance of the quarks in the cor~, the quark mass required to produce the 
observed hadron spectra is estimated. 
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II. RANGE OF THE QUARK-QUARK INTERAOTION 

Sum rules relating meson-baryon and baryon-baryon total cross sections 
obtained in the quark model are based on the simple postulates (Levin and Frankfurt 
1965; Lipkin and Scheck 1966) that the quark forward scattering amplitudes are 
additive and isospin invariant. These assumptions led to the following sum rules for 
total cross sections (Lipkin and Scheck 1966; James and Watson 1967) 

a(pp)+a(pn) = 2a(1T-p) + a(1T+p) , 

a(pn)+a(pp) = a(1T-p)+2a(1T+p) . 

(2) 

(3) 

Since the quarks in the core of the hadron are very strongly bound, we expect 

where rc is the radius of the core and b is the range of the quark-quark interaction. 
We assume that the range for the quark-quark interaction is the same as for the 
quark-antiquark interaction and that the size of the core is the same for mesons and 
baryons, for the sake of simplicity and for the lack of any experimental evidence as 
yet against these assumptions. The quark model should apply to hadron-hadron 
scattering when the distance between the two hadrons is less than 2b. Since the 
investigation of this region requires a wavelength ,\ smaller than or comparable with 
the diameter of the region, 

,\ ;s 4b, (4) 

we expect the sum rules (1), (2), and (3) to apply only at energies high enough to 
satifyequation (4) for the wavelength of the projectile in the centre-of-mass system. 
Thus it is possible to estimate b from the energy at which the sum rules (1), (2), and 
(3) fail. At wavelengths larger than 4b we expect the hadron scattering cross section 
to be determined by the properties of the outer regions of the hadron, as calculated 
using such models as the peripheral model (Jackson 1965): 

Assuming that the internal velocity of the quarks inside each hadron is small 
compared with the relative velocity of the two hadrons, identical kinematical condi
tions are provided if the different cross sections are compared at the same centre-of
mass energy for the quark-quark or quark-antiquark system. However, in relating 
the total centre-of-mass energy of the hadrons to the total centre-of-mass energy of 
the constituent quarks the mass of the quark is an independent variable and this 
mass may be interpreted as either the bare quark mass (James and Watson 1967) 
or an effective quark mass (Kokkedee and Van Hove 1966). In the former case the 
sum rules are graphed as functions of the relative velocity of the two hadrons; this 
is easily accomplished since the laboratory energy E lab of the projectile divided by its 
rest mass m is dependent only on the projectile's velocity in the laboratory frame; 
or in the latter case the sum rules are graphed as functions of the laboratory momentum 
Plab of the projectile since, in the spirit of additivity, the hadronic momentum is 
assumed to be the sum of the momenta of the constituent quarks. For sum rules 
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involving both meson-baryon and baryon-baryon total cross sections we must 
compare them at laboratory momentum in the ratio 2 : 3 (Kokkedee and Van Hove 
1966). 

In Figure 1 the Johnson-Treiman (1965) relations 

Ha{K+p)-a{K-p)} = a{rr+p)-a{rr-p) = a{K+n)-a{K-n) (5) 

are shown as functions of (a) Plab and (b) E lab /mC2. The data used in this paper are 
taken from Lindenbaum et al. (1961), Diddens et al. (1963), Citron et al. (1964), 
Galbraith et al. (1965), Foley et al. (1967), and Allaby et al. (1969). Figure 1 shows 

-4 

-3 

1-2 

:g 

.~ 
-4 

~ 
U 

-3 

-2 

~~:::~c" KP 
(a) fIP 

10 15 20 

P1ab (GeV/cl 
,--\ 

fIP 
KN 

(b) KP 

10 20 30 40 

E1ab/mc 2 

Fig. l.-Jolmson-Treiman 
relations (equations (5)) plotted 
against (a) P1ab and (b) E 1ab/mc2 : 

KP = Ha{K+p)-a{K-p)} 

lIP = a{ 7T+p) - a{ 7T-p) 

KN = a{K+n)-a{K-n) 

that this comparison does not resolve the question whether cross sections should be 
compared at the same Plab or the same E lab /mC2. Other sum rules involving only 
meson-baryon total cross sections, namely (Lipkin and Scheck 1966) the symmetric 
sum rule 

and the antisymmetric sum rule 

a{K+p)-a{K-p)-{a{K+n)-a{K-n)} = a{rr+p)-a{rr-p) , 

have been examined but they do not resolve the question either. In Figure 2 (see 
also James and Watson 1967) sum rule (2) is plotted for the same abscissae as in 
Figure 1 except that the meson-baryon and baryon-baryon total cross sections are 
compared at Plab in the ratio of 2 : 3. Figure 2 indicates that E lab/mC2 should be used 
to compare sum rules, and this conclusion is supported by the results of sum rule 
(3) also. This comparison implies that the bare quark mass should be used as the mass 
variable in relating the total centre-of-mass energy of the hadrons to the total centre
of-mass energy of the constituent quarks. 
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In Figure 3 the sum role (1) is plotted as a function of Elab/mc2; this relation 
was selected because accurate experimental data are available. By extrapolation 
sum rule (1) appears to hold for 

E/mc2 ~ 45 

corresporiding to a laboratory momentum;::: 6 GeV/c for the pion. The analysis of 
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In (a) the meson-baryon and baryon-baryon 
cross sections are compared at Plab in the 
ratio 2: 3. In (b) all cross sections are com-
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BB = a(pp)+a(pp), 

... 

40 

MB = !{a(1T+p)+a(1T-p)}+Ha(K+p)+a(K-p)} 

-Ha(K+n)+ a(K-n)}, 

shown in (a) with the ratio BB/MB plotted 
in (b). The dashed lines are extrapolations. 

James and Watson (1967) shows that sum roles (2) and (3) are consistent with experi
ment for pion laboratory momenta ;::: 6 GeV/c. Then equation (4) yields a lower 
limit of 0·2 fm for the range of the quark-quark interaction. 

Further information about the quark interaction is available from the electro
magnetic form factors of the nucleon (Ishida, Konno, and Shimodaira 1966). If the 
nucleon consists of a core of three quarks acting as a source for a meson cloud, the 
nucleon form factor is 

where ~(k2) is the form factor of the meson cloud about a point source, Gc(k2) is the 
form factor of the core, and k2 is the square of the 4-momeritum transfer. The form 
factor of the meson cloud about the core is taken from dispersion theory (Gasiorowicz 
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1966); for the proton the electric form factor of the meson cloud is 

222 
.'>2 (k2) _ 0 mp 0 m", 0 m", 
"3p - P -2--2 + '" -2--2 + ", -2--2 

mp+k m",+k m",+k 
and for the neutron 

2 2 2 
~a (k2) _ 0 mp 0 m", 0 m", 
"3n - - P-2--2 + '" 2 2 + "'-2--2' 

mp+k m",+k m",+k 

where 0 P' 0"" and 0", are constants. Taking the electric form factor of the neutron as 

G:(k2) = 0 

and neglecting the mass difference between the p and the w mesons, the electric form 
factor relevant to the proton is 

E 2 tm~ tm~ 
'§p(k) = -2--2 + -2--2' 

mp+k m",+k 

The experimental nucleon form factor agrees (see e.g. Islam and Vasavada 
with the dipole fit for 0 < k2 < 25 (GeV/c)2, 

( k2 )-2 
G:(k2

) = 1+ 0.71 (GeV/c)2 
Using 

<r2) = -6dG(k2)/dk2 at k2 = 0, 

(6) 

1969) 

(7) 

the root-mean-square radius of the core obtained from equations (6) and (7) is 

(8) 

Since other processes may contribute to the size of the nucleon, equation (8) is an 
upper limit to the size of the core. 

For a flat-bottomed well <R2)! is approximately half the range of the potential. 
From the scattering sum rules we find a lower limit of 0 ·2 fm for the range of the 
quark-quark interaction, which implies 

From the nucleon form factors 

Consequently the root-mean-square separation distance of the quarks in the core is 
bound by 

III. DYNAMICAL DESCRIPTION 

To obtain further information about quarks by fitting the observed masses of 
the hadrons, it is necessary to calculate energy levels according to the quark model. 
While this should be done by solving the relativistic two-body and three-body 
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problems, it seems better first to extract as much information about quarks as possible 
by simpler means. We use an independent quark model of both mesons and baryons, 
and consider only states which differ from the ground state by a change in quantum 
numbers of one quark. The quark wavefunction rpnl} is an eigenfunction of the Dirac 
equation 

(9) 

'where m is the reduced mass of the quark; the spherically symmetric potential V 
is taken to have the same form (although not necessarily the same strength) for both 
baryons and mesons. The discrete eigenvalues of (9) are bounded as (Rose 1961) 

-mc2 < E nl} < +mc2 • 

TABLE 1 

j-j STATES DECOUPLED INTO L-S STATES 

j-j State 

S.,P. 

JPC of Equivalent L-S States 

10-+> or 11--) 

10++) or v'iI1++)-v'111+-> 

12++> or v'lll++>+v'tll+-> 

We interpret the state with the lowest possible eigenvalue E nlj = -mc2 as a hadron 
of zero mass, so that the mass of a hadron corresponding to a bound state at energy 
E nl} will be taken as 

(10) 

For comparison, the Schrodinger equation was used with the same potential V, 
and we selected the zero of Mc2 at 2mc2 below the lower bound of the energy con
tinuum to correspond to the relativistic treatment. Disagreement between the results 
of the Schrodinger equation and the Dirac equation would show that the motion of 
a quark inside a hadron is not nonrelativistic. 

In a model of elementary particles in which we describe the low lying hadrons 
by ground state wavefunctions and the higher hadronic multiplets as angular 
momentum excitations of these ground states, we are faced with the problem of the 
relationship between the bound states of the model and the observed hadrons. 
Experimentally the baryons are known to have half-integer total angular momentum 
and good parity. The mesons have integer total angular momentum and good 
parity and charge parity. L-S coupling of three spin t quarks to form a baryon, 
and a quark and an antiquark to form a meson, have the experimentally required 
properties. However, if we wish to use the Dirac equation (9) to describe these 
hadrons then j-j coupling is appropriate. 

For j-j coupling of a quark and antiquark to form a meson the parity and 
charge parity of a j-j state is most readily found by decoupling it into L-S states. 
In Table 1 the resultant j-j states of an s! quark (or antiquark) and another anti
quark (or quark) is given with the decomposition of these states into L-S states. 
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Taking the splitting of the j-j states to form JP states as proportional to h .h the 
energy of the j-j state can be written as the weighted average of the JP states it 
forms. For example, for the Y = 0, I = 1 mesons the mass of the 1st state is 

For either assignment of the compound states, to fit the J P = 0+, 1 +, 1-, and 2+ 
mesons requires that 

600 MeV(c2 :s M(lst ) :s 800 MeV(c2, 

400 MeV(c2 :s M(IPt)-M(lst ) :s 450 MeV(c2, 

580 MeV(c2 :s M(lp3/2)-M(ls1) :s 680 MeV(c2. 

Using a model of the baryons in which we assume two quarks are coupled to 
zero total spin, and assuming that the low lying baryons are angular momentum 
excitations of the third quark, indicates that the sl state should describe the t+ 
octet, the Pi state the t- octet, and the P3/2 state the !- octet. 

This extends the bound state energy ranges to 

600 MeV(c2 :s M(ls!) :s 1320 MeV(c2, 

470 MeV(c2 :s M(lp3/2)-M(ls1) :s 680 MeV(c2. 

We require that the eigenvalues of (9) satisfy (11). 

IV. NUMERICAL PROCEDURE 

(l1a) 

(lIb) 

(l1c) 

For five forms of the potential V: (1) square well; (2) cut-off harmonic 
oscillator, namely, 

V(r) = -A(I-r2(f3), r :S:.; f3, 

=0, r > f3; 

(3) Woods-Saxon potential (roughly intermediate between forms (1) and (2)), namely, 

V(r) = -B[I+exp{13'2(r-ro)(ro}]-1; 

(4) Gaussian potential; and (5) exponential potential; eigenvalues of (9) were found 
numerically by a trial-and-error procedure. For a spherically symmetric potential 
the solution of (9) is (Rose 1961) 

"'nlj = (g(r) X~k), 
if(r) X~k 

where xtiok are two component spinors and f and g (the radial wavefunctions) are the 
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solutions of 

(12) 

where {tl = rg, {t2 = rj, x = rmejh, 10 = Ejme2, and v = Vjme2• Equations (12) 
were numerically integrated "out" from x = 0 to an arbitrary matching point x = a 
and "in" from a point where the potential was assumed to be zero to x = a. The 
difference between the "out" and "in" solutions were used to alter 10 until this 
difference was zero. This was accomplished using the result (see Appendix) 

which states that, between its discontinuities, 

is a monotonically decreasing function of 10. This allows 10 to be increased or decreased 
depending on whether D was positive or negative in the previous trial solution. 
The number of nodes in the eigenfunction determines if the eigenvalue is the lowest 
one. 

V. MAss OF THE QUARK 

The strength of the potential in (9) was adjusted to fit the 1st eigenvalue to the 
values of M(ls.} given in (11). In Figure 4 the energy spacings E(lp3/2}-E(ls.} 
and E(lP.}-E(lst } are shown as functions of m for a fixed value of the root-mean
square radius of the Is, state, <R2>! = 0·2 fm. For <R2>~ ~ Mjme we found that 
E(lp3/2}-E(lst } and E(lP.}-E(lst} were almost independent of M(ls.) for M(lst ) 
as in (11). For m <: 3 GeVje2 all potentials gave essentially the same energy spacing. 
For m ;S 3 GeVje2 the variation of the energy spacing for different potentials was 
less than the variation for different M(lst ). In Figure 4, curve A represents the 
maximum and curve B the minimum for the various potentials with M(ls!) as in (11). 
As <R2>" is increased the energy spacing decreases so that for <R2>! = 1·0 fm the 
maximum of E(lp3/2)-E(lst ) is ,...." 100 MeV for M(ls.) as in (11). To fit the 
JP = 0+, 1+, 1-, and 2+ mesons and the t+, t-, and !- baryons as set out in (11) 
requires 

<R2>! ;S 0·25 fm. 

Using <R2>! = 0·1 fm, the reduced maSS of the quark is 

8 GeVje2 ;S m;S 15 GeVje2 

and, for <R2>! = 0·25 fm, 

1 GeVje2 ;S m ;S 2 GeV/e2 

if the p-wave, s-wave energy spacing is to be fitted. Consequently the root-mean-
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square separation distance of the quarks in the core is 

O·lfm ~ <R2)1 ~ 0·25fm 

and the quark mass vi( is 

2 GeVlc2 ~ vi( ~ 30 GeVlc2 • 

For these parameter ranges the point at which the strength of the exponential 
potential is lie that at the origin occurs at a radius greater than 1·5 fm, and on 
these grounds the exponential well can be excluded as unrealistic. 

750 
---- Rigid rotor approXimation A 

.8 

500 

250 

(a) (b) 

o 15 30 45 o 15 30 45 

m (GeV/c2) 

Fig. 4.-Energy spacings between the p-wave and s-wave eigenvalues for a fixed root· 
mean-square radius of the s-state wavefunction: (a) Ipl/2-ls1/2 spacing, (b) IpS/2-1s1/2 
spacing. The eigenvalues of the Schriidinger equation are well represented by the rigid 
rotor approximation, while the eigenvalues of the Dirac equation are distinctly different 

for a reduced mass;:; 6 Compton wavelengths (see text for details). 

VI. RIGID ROTOR MODEL 

The nonrelativistic results obtained from the Schrodinger equation are re
produced remarkably well by a rigid rotor approximation. The energy E of rotation 
of a rigid rotor is given by 

E = L2/21 = /i2l(l+l)/21 , -

where L is the total angular momentum and I the moment of inertia of the rotor. 
For a spherically symmetric mass distribution 

1= im<R2) , 

where m is the total mass and <R2) the mean square radius of the mass distribution. 
We could fit the Ip-ls energy spacing with 

E(lp)-E(ls) = 3/i2/2m<R2)lB 

to within", 5% for m ;:::: 1·5/iI<R2)ic2. For m ;:::: 6/iI<R2)lc2 the nonrelativistic 
and relativistic p-wave, s-wave energy spacings are almost identical. Consequently 
the rigid rotor approximation fits the results obtained by solving the Dirac equation 
for m ;:::: 6/iI<R2)lc2. For m ~ 6/iI<R2)ic2 the relativistic results are distinctly 
different from the nonrelativistic results, and hence, for the stated parameter range 
of the quark, relativistic effects are not negligible. 
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VII. CONCLUSIONS 

For quarks whose interaction is described by a non-singular potential energy, 
the hadron spectrum and the scattering relations imply a quark mass J( in the range 

2 GeV/c2 :5 J( :5 30 GeV/c2 

and a root-mean-square separation distance of the quarks in the core given by 

0·1 fm :5 <R2)i :5 0·25 fm. 

Relativistic effects are not negligible for these values of the quark parameters. 
For larger values of the quark mass, the spacing of quark energy levels according to 
the Dirac equation agrees with that of the Schrodinger equation and with the rigid 
rotor model. 
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APPENDIX 

Taking equations (12) for two values of £, namely £' and £1, we get 

(AI) 

(A2) 

and 

(A3) 
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(A4) 

Multiplying (AI) by fL2 i and (A3) by fL2i and substracting gives 

. 
and similarly from (A2) and (A4) we get 

Substracting (A6) from (A5) gives 

(A7) 

Applying the boundary conditions fLl and fL2 tend to zero as x tends to zero or 
infinity, integration of (A7) leads to 

1111 i1 i11j [ ]
out [fa ]out 

fLl fL2 -fLl fL2 x=a = (€ -€ ) 0 (fLl fLl +fL2 fL2 ) dr , 

ij ji ij ij ij [ ] ill [fa ] ill 
fLl fL2 -fLl fL2 x=a = (€ -€ ) 00 (fLl fLl +fL2 fL2 ) dr 

Hence dividing by fLl i fLl j and substracting we get 

([ 
1 1]Out [j 1] ill) fL2 fL2 fL2 /12 
j-i - j-i 
fLl fLl fLl fLl x=a 

L 
Letting €i -+ €1 leads to 

which is the required result. 






