$\bar{p} d$ TOPOLOGICAL CROSS SECTIONS IN THE MOMENTUM RANGE $50-920 \mathrm{MeV} / c$

By R. D. Burrows,* D. E. Caro,* E. Gold,* A. G. Klein,* C. E. MacDowell,* J. L. Olney,* G. I. Opat,* J. Starr,* J. W. G. Wignall,* and D. C. Peaslee \dagger

[Manuscript received July 29, 1970]
Abstract
The total and topological cross sections are presented for events seen in the interaction of $50-920 \mathrm{MeV} / \mathrm{c}$ antiprotons with deuterium in the BNL 30 in . bubble chamber.

Experimental Details

In this paper we report on $\overline{\mathrm{p}}$ d topological cross sections in the momentum range $50-920 \mathrm{MeV} / c$. The data were obtained from 10 runs at different beam momenta using the BNL 30 in . bubble chamber. The beam details are given by Caro and Klein (1969).

In the frames scanned in this study a total of 11000 interactions were observed. Events were sorted into momentum bins approximately $50 \mathrm{MeV} / c$ wide by using a template consisting of beam streamlines crossed by isomomentum lines that were separated by equal track length intervals. The central momentum uncertainty in each bin is estimated to be $\pm 15 \mathrm{MeV} / c$. Two independent scans were made and discrepancies were resolved by a third physicist scan. The overall scan efficiency is estimated to be better than 99%.

Results

Total $\bar{p} d$ cross sections σ have been calculated using the expression

$$
\sigma=(m / \rho x) \ln \left(I_{0} / I\right),
$$

where ρ is the deuterium density, m the mass of the deuteron, x the distance between the isomomentum lines defining a bin, I_{0} the number of \bar{p} tracks entering a bin, and I the number of beam tracks leaving the bin without interacting. Table 1 displays the resulting topological cross sections and the calculated total $\overline{\mathrm{p}} \mathrm{d}$ cross section. In calculating the latter an allowance must be made for a 4° scan cutoff in the projected angle for scattering events. The correction for scattered tracks with large

* School of Physics, University of Melbourne, Parkville, Vic. 3052.
\dagger Research School of Physical Sciences, Australian National University, P.O. Box 4, Canberra, A.C.T. 2600.
dip angles is estimated to be of order 25 mb from angular distributions obtained by measuring elastic scattering events. A further correction for lost forward scattering events is estimated by using the optical theorem to be of order 2 mb .

The total $\overline{\mathrm{p}}$ d cross section data reported here together with the trend of previous data at higher momenta (Galbraith et al. 1965; Abrams et al. 1967; Allaby et al. 1969) are plotted in Figure 1 against the reciprocal of the antiproton momentum in the $\overline{\mathrm{p}} \mathrm{N}$ c.m.s. system. The plot indicates that the total cross section is almost linear in this quantity in the range $0 \cdot 35-50 \mathrm{GeV} / c$. For comparison we have plotted the $\sigma_{\text {tot }}(\overline{\mathrm{p}} \mathrm{p})$ data (Galbraith et al. 1965; Amaldi et al. 1966; Abrams et al. 1967; Allaby et al. 1969) on the same figure.

Table 1
OBSERVED TOPOLOGICAL AND TOTAL CROSS SECTIONS
$\sigma_{n}, \sigma_{n \mathrm{~s}}$ denote cross sections for topologies with n fast charged outgoing tracks and s denotes the presence of a positive "stub" of length $\leqslant 5 \mathrm{~cm} . \quad \sigma_{1}$ and $\sigma_{1 \mathrm{~s}}$ contain $5-15 \%$ of one fast prong annihilation whilst σ_{2} contains $\sim 20 \%$ of two fast prong annihilation; the remainder of these are made up of $\overline{\mathrm{p}} \mathrm{d}, \overline{\mathrm{p}} \mathrm{p}$, and $\overline{\mathrm{p}} \mathrm{n}$ elastic scattering (in the spirit of the impulse approximation)

Momentum (MeV / c)	$\sigma_{1}+\sigma_{1 \mathrm{~s}}$	σ_{2}	$\sigma_{3}+\sigma_{3 S}$	Cross Sections (mb)			σ_{0}	Other	Total	Scattering Correction	Corrected $\sigma_{\text {tot }}$ (mb)
				$\sigma_{4}{ }^{\text {. }}$	$\sigma_{5}+\sigma_{5 S}$	σ_{6}					
$\sim 50^{*}$	180	478	429	600	180	74	57	37	2040	27	2067 ± 90
335*	109	64	48	82	18	14	13	13	365	25	390 ± 15
404	108	50	43	63	14	8	14	5	306	28	334 ± 12
450	100	47	43	52	13	8	19	4	289	27	316 ± 7
504	88	44	37	57	14	8	15	4	269	26	295 ± 7
560	78	44	31	51	11	8	15	5	246	25	271 ± 6
605	79	42	33	49	14	7	10	5	241	28	269 ± 7
650	78	38	29	52	12	5	10	3	228	30	258 ± 8
705	65	37	29	39	12	6	10	2	203	27	230 ± 10
762	71	35	27	48	12	7	10	9	222	31	253 ± 10
813	62	32	29	37	9	4	8	8	190	28	218 ± 11
866	54	33	28	35	7	5	8	6	181	27	208 ± 10
920	49	35	28	40	12	5	7	2	184	26	210 ± 9

[^0]We do not attempt to display separate $\bar{p} p$ and $\bar{p} n$ elastic and inelastic cross sections since the extraction of these from $\overline{\mathrm{p}} \mathrm{d}$ data is unreliable at low momentum.

Figure 2 displays the cross section difference $\sigma_{\text {odd }}-\sigma_{\text {even }}$, where

$$
\begin{equation*}
\sigma_{\mathrm{odd}}=\sigma_{1}+\sigma_{1 \mathrm{~s}}+\sigma_{3}+\sigma_{3 \mathrm{~s}}+\sigma_{5}+\sigma_{5 \mathrm{~s}} \tag{la}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{\text {even }}=\sigma_{0}+\sigma_{2}+\sigma_{4}+\sigma_{6} . \tag{lb}
\end{equation*}
$$

If we assume that (1) $\sigma_{\text {odd }}$ contains most of the $\overline{\mathrm{p}} \mathrm{n}$ interactions and $\sigma_{\text {even }}$ the $\overline{\mathrm{p}} \mathrm{p}$ interactions and (2) the mesonic resonances reported by Cline et al. (1968; personal communication) at 1925 and 1945 MeV exist, then the deviations of our points in Figure 2 at 450 and $560 \mathrm{MeV} / c$ from a smooth curve tend to indicate that the 1925 MeV resonance is $I=1$, and the 1945 MeV resonance is $I=0$.

Detailed measurements of the elastic scattering processes in deuterium and of the annihilation channels leading to three seen pions are in progress. A study is also
being made of the interaction $\overline{\mathrm{p}} \mathrm{d} \rightarrow \Lambda \mathrm{K}(n \pi)$ for which some 50 examples have so far been obtained.

Fig. 2.-Cross section difference $\sigma_{\text {odd }}-\sigma_{\text {even }}$ versus reciprocal $\overline{\mathrm{p}} \mathrm{N}$ c.m.s. momentum P, where $\sigma_{\text {odd }}$ and $\sigma_{\text {even }}$ are defined by equations (1). Several momenturn bins have been lumped to improve statistics. The arrows indicate the positions of the resonances reported by Cline et al. (1968).

Acknowledgments

Fig. 1.-Total $\overline{\mathrm{p}} d$ cross section versus reciprocal $\overline{\mathrm{p}} \mathrm{N}$ c.m.s. momentum P. Also shown is the total $\overline{\mathrm{p}} \mathrm{p}$ cross section. To facilitate comparison of the graphs the antiproton-nucleon centre of mass momentum has been employed. The $\overline{\mathrm{p}}$ laboratory momentum is shown on the top abscissa.

We are grateful to Brookhaven National Laboratory for allowing us the use of their facilities. In particular we acknowledge the assistance and advice received from members of the BNL Physics Department, AGS group, and the operating crew of the 30 in . bubble chamber. The work described was supported by the Australian Research Grants Committee.

References

Abrams, R. J., et al. (1967).—Phys. Rev. Lett. 18, 1209.
Allaby, J. V., et al. (1969).-Phys. Lett. B 30, 500.
Amaldi, U., Jr., et al. (1966).-Nuovo Cim. 46, 171.
Caro, D. E., and Klein, A. G. (1969).-School of Physics, University of Melbourne, Internal Rep. No. UM-P-69/3.
Cline, D., English, J., Reeder, D. D., Terrell, R., and Twitty, J. (1968).-Phys. Rev. Lett. 21, 1268.
Galbraith, W., et al. (1965).-Phys. Rev. B 138, 913.

[^0]: * The momenta associated with the two lowest momentum bins are extremely uncertain because of the rapid variation of cross section and range for very low momenta. The errors represent counting statistics only.

