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Abstract 

The Boltzmann equation, including density gradients, is solved for the electron 
distribution function in the Townsend-Huxley experiment. Elastic and inelastic 
collisions with constant cross sections are assumed to occur, the inelastic energy 
loss per collision being small compared with the mean energy. The inelastic energy 
loss and the electron mean energy are calculated and tabulated over a range of 
values of EIP. 

I. INTRODUCTION 

The transport equation for electrons in steady state interaction with a neutral 
gas, at low pressure, in a uniform field has been described and analysed previously, 
assuming elastic collisions, by Francey (1969a, 1969b). A similar analysis is used here 
to find the electron distribution function when some inelastic collision processes 
are included. 

The equation of change for the spherically symmetric part io of the velocity 
distribution function may be written (Holstein 1946) 

+ 2m ~{u2(fo+ 2kT 8io)} + ~ ((U+Uh) iO(U+Uh) _ Uio(u)) 
MAe 8u m 8u h Ah(u+uh) Ah(u) 

+ut (8io) = _ut s. (1) 
8t ion 

In this equation U is the square of the electron post-collision velocity, m is the 
electronic mass, M is the molecular mass, a is the magnitude of the acceleration 
due to the electric field which is in the Z direction, Ae and Ah are mean free paths for 
elastic and inelastic collisions respectively, h denotes a particular level of molecular 
excitation, k is Boltzmann's constant, and T is the gas temperature. The quantity 
S is a source of electrons which maintains the distribution in a steady state. The last 
term on the left-hand side of (1) refers to ionization of molecules by electron impact; 
such ionization is assumed to occur infrequently here so that this term can henceforth 
be neglected. 

Equation (1) can be further simplified by considering the case where the 
energy lost in inelastic collisions is small compared with the electron energy, that is, 
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Uk ~ u. In this case the term which is summed over h reduces to 

where 

and 

Now, assuming cylindrical symmetry about the electric field direction and using 
the dimensionless variables 

( 6m )t 
Y = MA~ Z, ( 6m )t R= --2 p, 

MAe 

mu E 

W = 2kT = kT' 

p, Z being cylindrical polar coordinates and E the electron energy, equation (1) becomes 

where 

8% + ~~(R (10) +2Bt 8% + Bt 810 
8y2 R oR oR ow oy w oy 

+(B+w) 021g +(!i+w+2+b) 010 +210 = _ MSAe , (2) 
ow w ow 2(mE)t 

2 2 
B- ma MAe 

- 6(kT)2 , 
b = 111Ein 

2mkT' 

II. RESULTS 

(a) Distribution Function 

When ,I.e and Ak are taken to be constants, i.e. independent of electron energy, 
equation (2) can be solved in two stages. The first stage is to eliminate two of the 
terms involving the energy variable w by considering B ~ u and B/u ~ u. The 
resulting equation can be separated and solved by the method described by Francey 
(1969b). This solution is valid over a restricted part of the electron energy range but 
contains the space variation of 10 in full. The second stage is to omit the space 
variation of 10 from (2) and solve for the complete energy distribution. 

The solution resulting from the first stage is given by 

where 

(4) 

and EO is the energy of the source electrons. This distribution is Maxwellian and 
gives, for the ratio of the diffusion coefficient D to the drift velocity W, when maZ 
is taken to be large compared with E- EO, 

D/W = kT/ma. 
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Equation (3) also reduces to the corresponding solution for elastic collisions only 
when b is set equal to zero. 

The solution for the second stage is 

( Jwdw J dw ) 
fo = exp - B+w -b B+w . (5) 

For large values of B, corresponding to large values of E/P (electric field strength 
to gas pressure), equation (5) reduces to 

fo = exp{-B+(B-b)1nB -bwB-l +tbw2B-2 -tw2B-l}. (6) 

By taking equations (3) and (6) together and considering maZ?> E-EO, the full 
solution for large E /P becomes 

Q ((2+b)map2 2maZ 
fo = maZ exp - 4kTBZ + (2+b)kT -B+(B-b)lnB 

(7) 

(b) Transport Ooefficients 

The transport coefficients D and W can be evaluated using (7) in the following 
manner. The electron number density is found from 

n = J fodv, 

the integration being carried out over all velocity space, with fo going to zero at the 
limits. The electron flux in the Z direction is found from 

Tz = J ft(vz) cos Bvz dv 

where 

ft = -'\e 8fo/8Z -(a'\e/v)8fo/8v 

and B is the angle between v and the Z direction. By equating coefficients in the 
equation 

Tz = Wn-D8n/8Z, 

D and Ware found to be given by 

1,\ -I.-I _1,\ .1.-I.-1( t -I.-i) 
1.73D - 2 e'f' 4" e'f''f' 'IT 'f' 

- 0· 62 r 3/4 -0' 45 tjJr5/4 , 
(8) 

where 

9m2 ( 1 b) 
<P = 4 2B(kT)2 - 2(kTB)2 , 
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These expressions reduce to those found for elastic collisions when b is set equal to 
zero. The first Townsend energy coefficient K1 is related to the ratio D/W through 

K1 = (eE/kT)D/W (9) 

By using the expressions (8) for D and Wand the numerical values 
m = 9·11 X 10-31 kg, M = 3·34x 10-27 kg, T = 293 K, and Ae = 4·04x 1O-2/P m 
(cross section for elastic collisions = 10-19 m2), K1 can be determined as a function 

TABLE 1 

COMPARISON OF CALCULATED ELECTRON ENERGIES IN HYDROGEN WITH EXPERIMENTAL VALUES 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

EIP EIN 
Measured Ein Ee (eV) E(eV) E(eV) Measured E (e V)t 

K, (eV) from from from TB G L (V cm- l torr-') (Td) 
(293 K)* (293 K) (12) (14) (15) (288K) (77 K) (273 K) 

0·07 0·21 1·57 0·000036 0·05 0·06 0·05 
0·10 0·3 1·82 0·000047 0'08 0'09 0·06 0·05 
0·20 0·6 2'64 0·00008 0'16 0'12 0'09 0'07 
0·5 1·5 5·3 0·00018 0'39 0·29 0·17 
0·8 2·4 7·8 0·00030 0·62 0'44 0'25 
1'0 3·0 9·2 0·00036 0'78 0·56 0·30 0·27 
2·0 6·0 14'8 0·00074 1·56 1·11 0'48 0'44 
3'0 9·0 19·12 0'00116 2'34 1·59 0·62 0·70 
4·0 12 22'8 0·00158 3'12 1'82 0·74 0'68 
5'0 15 26·2 0·00199 3'90 2·51 0·85 0'96 
6'0 18 29·3 0·00240 4'68 3·00 0·95 0·90 
7·0 21 32'4 0·00296 5·46 3'50 1'05 
8·0 24 35·5 0·00324 6·24 3·92 1·15 
9·0 27 38'9 0·00368 7'02 4·41 1·26 

10 30 42·0 0'00410 7'80 5·00 1·36 1·62 1'36 
15 45 62·2 0·00614 11·70 7·59 2'02 
20 60 82 0'00822 15'60 9·31 2·66 2'90 3·24 
25 75 95 0·01038 19'50 10'91 3·08 
30 90 105 0·01259 23'40 14'64 3·40 3·90 
35 105 113 0·01472 27'30 16·58 3·66 
40 120 122 0·0170 31'20 18'85 3'95 4·63 6·04 
45 135 129 0·0192 35'10 21·15 4·18 
50 150 137 0·0215 39'0 22·58 4'44 
55 165 143 0'0238 42·9 25'45 4·63 
60 180 150 0·0260 46'8 29·00 4·86 7·74 
65 195 156 0'0281 50'7 29·75 5'05 
70 210 162 0·0306 54·6 30·91 5·25 
75 235 170 0·0328 58·5 34·20 5·51 
80 240 175 0'0349 62'4 37·60 5·67 9·23 

• Experimental values of K, from R. w. Crompton (personal communication). 
t Experimental values from: TB, Townsend and Bailey (1921); G, Gibson (1970); L, Lucas (1970). 

of E /P and the inelastic parameter Ein. Thus 

K1 = 23 ·6(E/P)+(19· 7 X 1021 Ein -20·5 X 1044 Ern -22·4 X 1O-3)/(E/P) 

+0·54-16·4x 1022 "in. (10) 

Values of K1 for a wide range of EIP have been determined experimentally 
and these values can be used to find Ein from equation (10). The data used here and 
the resulting calculated values of Ein for hydrogen at 293 K are shown in Table 1. 
It may be seen from this table that Ein varies linearly with E/P. 
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(c) Electron Mean Energy 

The mean energy of the electron swarm is 

845 

Approximate methods may be used to evaluate the integrals, and a first approxi
mation to e is given by 

(11) 

By retaining only the leading terms in both the numerator and denominator of (11) 
and setting b = 0, there results for elastic collisions 

(12) 

This is precisely the result for elastic collisions and constant cross section given by 
Druyvesteyn and Penning (1940) and it leads to ee = 0·78 E IP, where e is in electron
volts and EIP in Vcm-l torr-I. By comparing the result (ll) with the expressions 
(S) for D and W above, there results as a first approximation including inelastic 
collisions 

DIlL = 0·7Sele. (13) 

This result may be compared with the constant collisional frequency result for elastic 
collisions (Allis 1956) 

DIlL = 0· 67e/e. 

A better approximation to the mean energy is given by 

10-12(7 ·77 -7 ,SS.firt +2·9.fi24> -1 -0· 33.fi3r 3/2 -0·06.fi4r 2) 
e = 1.234>! -0.91.fi+0.15.fi2rt +0.04.fi3rl -0.Ol.fi4r 3/2 (14) 

with 

and 

where e is again given in electron-volts and EIP in V cm-ltorr-l and "in is in joules. 
Equation (14) enables calculation of mean energies in the presence of inelastic 
collisions within the present approximations. Measured values of Kl are used to 
evaluate "in and hence e is calculated at each value of EIP. The results are shown 
together in Table 1. Using measured values of Kl , column 7 gives the mean energy 
as calculated from (9) and (13), that is, 

(15) 
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while columns 8, 9, and 10 give experimental values of the mean energy in hydrogen 
as measured by Townsend and Bailey (1921), Gibson (1970), and Lucas (1970) 
respectively. 

III. DISCUSSION 

Column 4 of Table 1 shows values of Ein calculated from measured values of 
Kl in hydrogen at 293 K. This is not a satisfactory method of calculating Ein but 
direct calculations from cross section data are hampered by lack of such data. Very 
rough calculations appear to show that the tabulated results are of the correct 
order. 

In column 5 are shown mean energies which would arise if all collisions were 
elastic. These do not arise from measured values of K 1. In fact for elastic collisions 
the theory shows that Kl = 23'6EjP and Townsend factors very much greater 
than those shown in column 3 would have been measured. 

The mean energies in column 6 show the effect of inelastic collisions in reducing 
the mean energy of the electrons. The mean energies given here are still much higher 
than those shown in column 7 so that it may be that the effect of inelastic collisions 
is not being sufficiently weighted in this approximation. It is of interest to note 
that the values in column 7 agree quite well with those published by Townsend 
and Bailey (1921) and Gibson (1970). 

Further calculations need to be done and other approximations tried to establish 
the value of these results. Such work is proceeding. 
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