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Ab8tract 

Exact solutions in terms of elementary functions are given for flat, homo· 
geneous and isotropic, relativistic cosmological models which contain two fluids, each 
with an equation of state of the form p = (Vi-1)p where p is the pressure, p is the 
density, Vi (i = 1,2) is a constant, and VI/V2 = (1+2n)/2(I+n) or 2(I+n)/(3+2n), 
n = 0,1,2,... For other forms of VI/V2, the relevant solution is given in terms of a 
hypergeometric function. The cases when one of the V's is equal to 2/3 or 2 are 
analogous to models with a Robertson-Walker metric with k = ± 1 and to anisotropic 
models of the type discussed by Jacobs respectively. All solutions for the two-fluid 
models can be written in terms of elementary functions when VI = 0, which is 
analogous to a cosmological constant. The fact that all two-fluid solutions with 
VI = 2/3 which can be written in teJ.'ms of elementary functions are given means that 
all such one-fluid solutions with k = ± 1 are given. 

1. INTRODUCTION 

Many authors such as Harrison (1967) have published surveys of homogeneous 
and isotropic relativistic cosmological models for which the Robertson-Walker metric 

d82 = dt2-R2(t){dr2/(I-kr2) +r2(d82 +sin2 8dcP2)} 

holds and which contain one relativistic fluid with an equation of state 

p = (v-l)p, v:::;;; 2, 

(1) 

(2) 

p and p being the pressure and density respectively of the fluid and v a constant. 
Other authors such as Vajk (1969) and Hughston and Shepley (1970) have discussed 
models containing n noninteracting fluids with equations of state 

i=I,2, ... n, (3) 

where all the v~ are constant. Some models with interacting fluids have also been 
discussed, for example, by McIntosh (1968b, 1970) and May and McVittie (1970). 
Models with the two fluids of dust (v = 1) and radiation (v = 4/3) have been closely 
examined by Chernin (1966), Jacobs (1967), McIntosh (1968a), and others. 

In the present paper it is assumed that there are n fluids, each satisfying (3), 
and that the fluids do not interact. The conservation equations from Einstein's 
equations when the metric (1) holds then give 

i = 1,2, ... n, (4) 

where the Ot are all constant and K = 87TG (c = 1). 
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Einstein's field equations with a nonzero cosmological constant ,\ give, in the 
case of the metric (1), the differential equations 

and 

·2 2 
3(R +k)/R -,\ = Kp = K ~ Pi 

i 

.. ·2 2 
2R/R +(R +k)/R -,\ = -KP = -K ~ (vi-1)pi, 

i 

(5a) 

(5b) 

where the dot denotes differentiation with respect to t and the summations are over 
i = 1,2, ... n. It has been noted by many authors that the cosmological constant ,\ 
can be written on the middle and right-hand sides of (5a) and (5b) and counted as a 
fluid with 

VA = o. (6) 

Hughston and Shepley (1970) noted that the k/R2 terms of (5) can also be transferred 
and counted as a fluid with 

Vk = 2/3. (7) 
The fluid with 

p =p, V = 2, (8) 

can be termed a scalar fluid or an anisotropic fluid. Scalar fields in theories like those 
of Brans and Dicke (1961) or Hoyle and Narlikar (1963) act on the equations (5) 
like a fluid with this equation of state (see McIntosh 1970). Misner (1968) and 
Hughston and Shepley (1970) noted that so also do the anisotropic effects in the 
models discussed by Misner, Jacobs (1968), and Shikin (1968). 

Thus the main types of fluids encountered in cosmological models are: 

V = 2, scalar or anisotropic fluid (9a) 

V = 4/3, radiation fluid (9b) 

V = 1, dust fluid (9c) 

V = 2/3, curvature fluid (9d) 

v = 0, cosmological constant fluid (ge) 

In the following, the k -=1= 0 and ,\ terms in equations (5) are included in the p 

and P terms so that the equations become 

(lOa) 

.. ·2 2 
2R/R +R /R = K ~ Pi = K ~ (Vi-1)Pi. (lOb) 

i i 
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II. BEHAVIOUR OF v(t) 

Equations (2) and (3) give for n fluids 

so that 

v-I = pip = ~ (vi- 1)pi I ~ Pi 

~ Pi(Vi-V) = ° 
i 

i i 

or VP = ~ ViPi· 
i 

Equations (4) and (12) combine to give 

v = ~ OiViR-3v, I ~ Oi R - 3v,. 
i i 

When this is differentiated with respect to t it follows that 

i<j, 

77 

(11) 

(12) 

(13) 

(14) 

where H as usual denotes RIR. If all the Pi are positive and R is a monotonic 
increasing function of t such that H is positive, v is a monotonic decreasing function 
of t. Thus for an expandingn-fluid model with all the Pi> 0, v changes from the 
highest value of Vi through decreasing values to the lowest value as t increases. Thus, 
for example, if a model has a mixture of the five fluids in (9), it will start by being 
dominated by the scalar fluid, pass through a radiation-dominated stage, and so on. 

If there are two fluids, equation (12) gives 

v = (VIPI+V2P2)/(PI+P2). (15) 
It follows that if 

VI < v\!, (16) 
then 

PI> 0, P2 > 0, for VI<V<V2; (17a) 

PI> 0, P2 < 0, v < VI; (17b) 

PI < 0, P2 > 0, v2 < v. (17c) 

Thus if PI and P2 have opposite signs, for H positive, v is a monotonic increasing 
function. Since, from (lOa), PI + P2 is positive, both PI and P2 cannot be negative. 

In all models with some of the Pi negative, P = ~ Pi is positive and R reaches 
a maximum value when H = 0, P = 0. After this R decreases monotonically and H 
is negative. This happens, for example, in the oscillating models with k = ° or -1 
with Pit < 0, or with k = ±1 and Pit < Pit,C, some critical value of Pit. 

III. TWO-FLUID MODEL WITH BOTH p's POSITIVE 

When a model contains two fluids with both p's positive, equation (lOa) gives 

(18) 
such that 

(19) 
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where to is a constant. This can be evaluated in terms of elementary functions for all 
V2 if Vl = 0, that is, there is a cosmological constant fluid. The integral (19) can be 
rearranged to give an integral representation of a hypergeometric function with 
solution 

(20) 
where 

(21 ) 

This hypergeometric function can be written in terms of elementary functions when
ever b is a positive or negative integer or half-integer. This requirement is satisfied 
for two infinite sequences of ranges of vljv2. Jacobs (1968) for the case of his "hard 
universes" gave solutions for the two infinite sequences of Vl when V2 = 2. Solutions 
when V2 is not necessarily 2 can be written down in forms which are generalizations of 
Jacobs's solutions. 

Where 
b = 1,2,3,4, ... , 

VljV2 = (1+2n)j2(1+n) = t,i,ti, ... , 
n = (2Vl-V2)j2(V2-Vl) = 0,1,2,3, ... , 

the solution (20) can be written as 

t+to = 2(n+.!:L C:{'+> (l+z)t -£ (-It-,d'\-t)! ZA 
::\v2(n+t)! cf+l A=O ,\!' 

where z is given by (21).* 
Where 

Vlj V2 = 2(1+m)j(3+2m) = i,~, ¥,~, ... , 
m = (3Vl-2v2)j2(V2-Vl) = 0,1,2,3, ... , 

the solution (20) can be written as 

t+to = (-1)m(2m+3)! C~+l 
3V2 22m+l{(m+1)!}2 Cr+3/2 

( 
m (_1)A22A(,\I)2 , ) 

X zt(l+z)t l: . ZA -In{z'+(l+z)t} , 
A=O (2'\+1)! 

where z is again given by (21). 

(22a) 

(22b) 

(22c) 

(23) 

(24a) 

(24b) 

(24c) 

(25) 

Negative values of b would arise if vljv2 were taken to be greater than unity. 
The case b = t occurs when 

Vl = 0, (26) 

(Harrison 1967). In all these cases, the requirement that R = ° when t = ° leads 
to to = 0. 

* It is to be noted that in equation (36a) of Jacobs (1968) (n-v+t)! should read (n-v-t)! 
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Equation (22b) includes the following combinations of v's: 

(VI, V2) = (1,2), (5/3,2), (2/3,4/3), (1,4/3), (27) 

and (24b) includes the combinations 

(Vb V2) = (4/3,2), (4/3,5/3), (2/3,1). (28) 

Solutions in these cases are listed separately by Vajk (1969).* For example, for the 
flat space model with dust and radiation, 

(29) 
and (23) gives 

(30) 

This solution has been given by many authors. 
When, for example, V2 = 1, equations (22b) and (24b) yield 

I 3 5 
2' 4' 6'''' 

V2 = 1, (31 ) 
2 4 6 
3' 5' 7' .0. 

When VI = 1, they yield 
2,~,~, ... 

VI = I, (32) 
357 
2' 4' 6' '0' 

Thus t = t(R) can be written in terms of elementary functions in the two-fluid case 
with dust and another fluid having a value of V given by (31) or (32). 

IV. TWO-FLUID MODEL WITH ONE P NEGATIVE 

When one of PI and P2 is negative, say PI, the integral (19) is replaced by 

where 

This has as solution 

where band z are given by (21). 
With VI!V2 given by (22b) this becomes 

2(n+I)! B~+' (1 (1 )t ~ (A-i)! A) t+to= -- - -z ~ ---z , 
3v2(n+i)! B~+1 A~O A! 

* Vajk's solution (B9a) for VI = 5/3, V2 = 2 has (A(T)-b)' on the left-hand side. 
should read (A(T)+b)t. 

(33) 

(34) 

(35) 

(36) 

This 
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and with Vl/V2 given by (24b) it becomes 

When b = t, 

(2m+3)! B;,'+1 
t + to = ---::-''--:--'----::-

3v222m+1{(m+l)!}2 B"t+3/2 

( . t t t ; 22"(A!)2 ,,) 
X arcsmz -z (l-z) ,,"'=0 (2A+l)!z . 

VI = 0, 

In all these cases, to = 0 if R = 0 when t = o. 

V. ONE-FLUID MODEL WITH k = ±1 

(37) 

(38) 

As mentioned in Section I, the k/R2 terms in equations (5) act in those equations 
in the same way as does a fluid with V = 2/3. In this case the 0 1 of equation (4) is 
equal to unity. For a two-fluid model with one of the v's, say Vb equal to 2/3, with 
both PI and P2 positive, and with the metric 

(39) 

t = t(R) can be obtained from either (23) or (25) if Vl/V2 fits into the sequences (22b) 
or (24b) respectively, or else it can be expressed as a hypergeometric function by 
equation (20). Then P2 is known since 

(40) 

Exactly the same expression t(R) gives the one-fluid solution when k = -1 in the 
Robertson-Walker metric (1). In this case p(t) has the same form as p2(t) in 
equation (40). 

Similarly, if VI = 2/3 and PI is negative, t = t(R) from (35), (36), or (37) is the 
same R as that in the one-fluid case with k = +1 in metric (1). In both cases P2 

is given by (40) with O2 = B 2 • 

Similar results can be obtained with PI positive and P2 negative. 
Thus equations (23), (25), (36), and (37) give all the one-fluid solutions which 

can be written in terms of elementary functions when k = ± 1. 

VI. ANISOTROPIC MODELS 

Jacobs (1968), Shikin (1968), and others have studied cosmological models 
with the metric 

(41) 

Where R is the geometric mean of A, B, and W, that is, 

R3 = ABW, (42) 
this can be written as 

(43) 
with 

A=RP, B=RQ, W = R/PQ. (44) 
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Then equations (5a) and (5b) are replaced by 
. . . . . 

3R2jR2 _p2jP2 _Q2jQ2 -PQjPQ = Kp (45a) 
and 

.. . . . 
2RjR +R2jR2 +p2jP2 +Q2jQ2 +PQjPQ = -KP, (45b) 

or 

(46a) 

and .. . 
2RjR +R2jR2 = -K(P+Pa) , (46b) 

where . . 
KPa = KPa = P2jP2 +Q2jQ2 +PQjPQ, Va = 2. . (47) 

Thus, as mentioned in Section I, the effect of the anisotropic functions P and Q on 
the differential equations (5a) and (5b) is the same as that of a fluid with V = 2. Since 

(48) 

pa must be a monotonic decreasing function of t in an expanding universe. This does 
not, however, give information about the individual behaviour of P and Q with 
respect to t. Two of the functions P, Q, and IjPQ may either increase or decrease 
monotonically. There is a pancake (cigar) singularity in the limit as t approaches 
zero if two increase (decrease). The discussion on types of singularities is then a 
discussion on relative behaviour of P and Q. 

When one of the three functions A, B, and W is equal to the geometric mean R, 
say, 

A =R, (49) 
then 

(50) 

The same contribution is also obtained from the scalar Q where 

(51 ) 

in the field equations 

(52) 

as in the scalar tensor theories of Brans and Dicke (1961) and Hoyle and Narlikar 
(1963). 

Thus a one-fluid anisotropic model, a one-fluid scalar tensor model, and a two
fluid model with V2 = 2 all give the same form 

(53) 

where R is given by (20) or (35), i.e. by (23), (25), (36), or (37) if it can be written in 
terms of elementary functions. 

It was shown in Section II that for an expanding universe, v is a monotonic 
decreasing function. Thus, for a two-fluid model with V2 = 2 (the highest possible 
value of v), the model acts like one filled with the V2 = 2 fluid for early t and like 
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one filled with the other fluid for later t. It is then obvious that anisotropic models 
with the metric (41) will tend towards isotropic ones as t increases, as was noted by 
Jacobs (1968). He also noted that his "Zel'dovich universe", i.e. an anisotropic 
model with a v = 2 fluid, remains anisotropic. This is obvious since it acts like a 
one-fluid model with v = 2. The solution is thus R oc t!. 

VII. CONCLUSIONS 

Although all the solutions for models with two noninteracting fluids where the 
fluids have the most common values of v as given by (9) are in the literature, the two 
general solutions (23) and (25) where both Pi and P2 are positive include all these 
solutions and many others as well. It is not expected that many of the combinations 
of v's where the solutions are new will be needed very often, but the general solutions 
will be useful in obtaining general properties as well as in simplifying the present 
solutions. Similarly it is not expected that the new solutions with one of Pi 
and P2 negative will be often used except for cases with Vi = 0 (,\ < 0) and 
Vi = 2/3 (k = +1). 
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