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Ab8tract 
The multidimensional equation of transfer for spectral line radiation under a 

general redistribution law is studied. It is shown that the equation may be rewritten 
as a system of equations of the "Feautrier" form, which are known to be exceedingly 
stable and efficient under numerical reduction. It is also shown that the inclusion of 
a multidimensional differential macroscopic velocity field does not alter the functional 
form of the equations obtained and therefore may also be treated by the general 
Feautrier technique. 

1. INTRODUCTION 

In Part I of this series (Cannon 1971a) the family of transfer equations describing 
single anisotropic scattering, with and without polarization, was shown to belong to 
a class of second-order differential equations with two-point boundary conditions. 
The equations so obtained are of the well-known "Feautrier" type (Feautrier 1964) 
where the new unknown to be determined is the average of the radiation field in the 
upward and downward directions. The advantage gained by such a representation is 
twofold. First, the directional radiation field, which is necessarily an increasing 
function of position (depth) away from the boundary of the atmosphere, results in 
increasingly severe instabilities with depth under numerical reduction if the original 
first-order differential form of the transfer equation is used. The Feautrier technique, 
by the very nature of the equations to be solved, obviously overcomes this difficulty. 
The second-order differential Feautrier equations have explicit constraints not only 
at the surface of the atmosphere but, in the case of a semi-infinite medium, at some 
specified depth away from the boundary, and this latter condition ensures numerical 
stability of the solution throughout. Secondly, these equations are readily reduced, 
using well-known difference techniques, to a form suitable for numerical solution. 
In fact, an exponentially increasing depth grid may be chosen (see e.g. Auer 1967; 
Cuny 1967) which therefore significantly increases the efficiency of the method 
relative to those using the original form of the transfer equation. 

The Feautrier technique has been used extensively in the study of simple 
problems occurring in spectral line transfer theory. One-dimensional media have 
been studied, for example, by Cuny (1967) and Auer and Mihalas (1969) under the 
restrictive assumption of complete redistribution in the rest frame of the atom. 
Multidimensional situations have been considered by Cannon (1970a, 1970b, 1971b) 
and macroscopic differential velocity field calculations have been given by Rees 
(1970), Cannon (1971c), and Cannon and Rees (1971) all under the same assumption. 
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The derived Feautrier system of equations for these cases relies to a very large extent, 
however, on the simple form of the redistribution function for complete redistribution, 
and it is not obvious that the technique may be generalized further to study more 
complicated (and more physically realistic) line formation problems. Other methods 
have been used in the study of the above-mentioned problems but, because of 
numerical difficulties, such methods have only been further generalized to determine 
solutions for very simple departures from complete redistribution (Hearn 1963, 
1964; Hummer 1969). It is for this reason that the applicability of the Feautrier 
technique, with all its inherent numerical advantages, is examined in this paper for 
a general redistribution law. 

In order to apply the technique it is essential that the equation of transfer be 
defined as an explicit functional of the redistribution function, and this then 
necessitates the derivation of the "exact" line transfer equation from a consideration 
of the fundamental microscopic processes involved. This is given in Section II. The 
resulting equation, although highly nonlinear in the radiation field, may be reduced 
to the Feautrier system (Section III). However, the nonlinearity suggests that the 
computation of its solutions, even using the Feautrier technique, could be prohibitive. 
Thus an alternative specification of the transfer equation which is more amenable 
to numerical solution, and which is quite frequently discussed in the literature, is 
given in Section IV. Problems involving nonzero multidimensional macroscopic 
differential velocity fields are considered in Section V. 

II. EQUATION OF TRANSFER 

The equation of transfer for spectral line radiation in an atmosphere exhibiting 
zero mass motion may be written in the form 

(1) 
where 

KV(r,O) = (hvoj47T){NL(r)BLUCPv(r, 0) -Nu(r)BuL¢;v(r,O)} (2) 
and 

(3) 

We have assumed, for clarity in exposition only, a model two-level atom with no 
continuum. These are not restrictive assumptions as a relaxation of them may be 
incorporated into the analysis in the usual manner. In equations (1)-(3), Iv(r, O) 
is the specific intensity of the radiation field at position r in a direction 0 and at a 
frequency v measured from the line centre frequency Vo. The popUlations of the 
upper and lower levels which give rise to the radiation field in question are Nu(r) 
and NL(r) respectively, while B LU, BUL, and A UL are the Einstein rate coefficients 
for absorption, stimulated emission, and spontaneous emission respectively and 
cpv(r,O), ¢;v(r,O), and jv(r, 0) are the corresponding probabilities (profiles) of that 
event occurring. The latter probabilities are, of course, normalized to unity. 

To proceed further, we require the ratio NLjNu and the form of the respective 
profiles. Oxenius (1965) has discussed these quantities in some detail and, since 
these results are pertinent to the present analysis, a summary of his work is given 
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here. Hummer (1969) has also treated the problem in some detail, but studies an 
approximate form for the opacity Kp(r, 0). This alternative formulation is considered 
in Section IV. 

First, let q(y) be the probability per unit solid angle and frequency interval 
of an atom absorbing a photon of frequency y in the rest frame of the atom. The 
normalized absorption profile is therefore given by 

(4) 

where, to first order in .d - vole, 
y = v-.dO.v. (5) 

Here, v is the velocity of the atom in the observer's rest frame and FL(r, 0) is the 
velocity distribution of the de-excited atoms. The function FL(r, 0) is usually taken 
to be Maxwellian and, along with q(y), must be normalized to unity. 

When considering an emission of a photon we assume that elastic collisions 
during the lifetime of the excited state, and the effect of the absorption of photons, 
will not change the velocity of the atom. Thus, neglecting polarization effects, the 
probability of an atom spontaneously emitting a photon of frequency v' ±dv' III 

direction 0' ±dO' after absorbing a photon of frequency v and direction 0 is 

g(O,O')p(y,y')dv'dO' , (6) 
where 

y' = v' -.dO' .v, (7) 

p(y, y') is the probability of a photon of frequency y being re-emitted at frequency 
y', and g(O, 0') is the corresponding angular probability. Both p(y, y') and g(O, 0') 
are normalized to unity. It is important to note that g(O,O') may be written as 
g(O. 0'), that is, g(O, 0') is a function only of the angle between 0 and 0'. 

Thus, using a slight variation of Hummer's (1962) notation, we have 

Rv(v,O;v',O') = g(O, 0') q(y)p(y, y')/47T , (8) 

R(r;v,O;v',O') = J FL(r, 0) Rv(v, O;v', 0') d3v, (9) 

where R(r; v, 0; v', 0') dvdO dv' dO' is the total probability of an atom absorbing 
a photon of frequency v±dv and direction O±dO and spontaneously re-emitting a 
photon of frequency v' ±dv' and direction 0' ±dO'; R(r; v, 0; v', 0') and 
Rv(v, n; v', 0') are both normalized to unity. Thus an alternative form of the 
absorption coefficient given by equation (4) is 

4>v(r,O) = 47T J, fn' R(r; v, 0; v', 0') dv' dO', 
Pc c 

(lO) 

where the above integrals are taken over the complete range of v' and 0' specified 
by v~ and O~ respectively. 
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Following Oxenius (1965), we may further define a function X(r, v; n, v), normal
ized to unity and analogous to q(y), such that 

o/v(r, n) = f Fu(r, v) X(r, v; n, v) d3v, (11) 

where Fu(r, v) is the velocity distribution of the excited state. This is also usually 
taken to be Maxwellian. Oxenius shows that X(r, v; n, v) is given by 

BLU f, f n' Iv,(r, n') Rv(v', Q'; v, n) dv'dn' +CLUq(y) 
X(r,v;n,v) = Vc c (12) 

~~u r: f n: Iv,(r, n') q(y') dv'dn' +CL u 

where the collisional rate of excitation CLU is directly proportional to the electron 
density, the cross section for electron collision, and a factor involving the electron 
temperature (see e.g. Jefferies 1968). The first term in the numerator corresponds to 
the emission of photons following the excitation of atoms by a previous absorption 
of photons. The second term corresponds to collisional excitation. The denominator 
is essentially the normalization factor. 

Before proceeding further, we first replace the rather cumbersome expressions 
for the profiles c/>v(r, n) and o/v(r, n) by the following more convenient functionals in r, 
n, and v. Equation (10) may be written as 

(13) 

= FrjJ(r,n,v), n Ene, v EVe, (14) 

while similarly, from equations (ll) and (12), 

o/v(r, n) = F 1/f(r, n, v) (15) 

= F1/f(r:fn: dv'dn' Iv,(r,n')Rv(v',n';v,n); 

r: f n: dv'dn' Iv,(r, n') q(y'); q(y)) , n E n e , v E Ve· 

The functionals F rjJ and F 1/f have been introduced only for clarity in exposition, as 
will be obvious in Section III. Their functional form is given explicitly by equation 
(13) for F rjJ and by equations (11) and (12) for F 1/f' whereas their arguments are given 
implicitly by equations (14) and (15). 

We are now in a position to determine the ratio NL/Nu . The equation of 
statistical equilibrium for a two-level atom is (see e.g. Thomas 1957) 
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At this stage in the analysis it is usual in the literature to make various 
simplifying assumptions concerning the profiles 4>v(r, n) and !fv(r, n). For example, 
equating the two profiles with jv(r, n) at all r, with n E ne and v EVe, enables the 
source function Sv(r, n) given by equation (3) to be written in the well-known linear 
form 

Sv(r, n) = S(r) = (I-E) re I ne 4>v(r, n) J(r) dvdn +EBvo(Te), (17) 

where 

J(r) = Lr In 1v(r,n)dvdn, 
e e 

(18) 

E is essentially the ratio of collisional to radiative de-excitation, and Bv (Te) is the 
o 

Planck function at the electron temperature Te. Equation (17) gives the form of 
the "frequency-independent" source function used extensively by many authors 
under the assumption of complete redistribution. The corresponding equation of 
transfer has been solved by many different methods, two of which have been 
modified to treat rather idealized departures from complete redistribution (Hearn 
1963,1964; Hummer 1969). The Feautrier technique, however, has not, as yet, been 
further generalized to solve problems involving more complicated source functions 
than that given by equation (17) above. 

In this paper we wish to retain the generality of 4>v(r, n) and !fv(r, n) given by 
equations (14) and (15), and thence to investigate the possible applicability of the 
Feautrier technique in the most general case. To do this it is again convenient to 
use the functional notation so that the ratio NL/Nu can be written in the form 

NL/Nu = F(r) 

= 11(re ine dvdn1v(r,n)F¢(r,n,v); reine dvdn1v(r,n)FvAr,n,v)). 

(19) 

The equation of transfer (equation (1)), along with equations (2), (3), (14), (15), and 
(19), then becomes 

( 1 ) (F vAr, n, v) ) 
n. K(r) V 1v(r,n) = - 1-F¢(r,n,v)F(r) 

(
I ( n) _ 2hv~/c2 ) 

X v r, F",(r,n,v) F(r) BLU -1 F¢(r,n,v) , 
F 1jf(r, n, v) BUL 

(20) 
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for 0 E Oe and v EVe. In equation (20) 

K(r) = (hvo/47T)NL(r) (21) 

and we have taken 
jv(r, O) - !fv(r, 0), o E Oe, v EVe, (22) 

for all r. This latter identity has been proved by Oxenius (1965). We have also used 
the well-known relationship A UL/BuL = 2hvg/c2• The equation of transfer given by 
(20) is now in the required form. 

III. FEAUTRIER FORMULATION 

The Feautrier technique requires the radiation field to be divided into the 
positive and negative components of O. Following this procedure therefore equation 
(20) becomes 

±(O.! \7)lv(r, ±O) = -(1- F"Ar, ±O,v) ) 
K F ,p(r, ±O, v) F(r) 

( . (2hvg/c2)F "Ar, ±O, v) ) 
X 1v(r, ±O)-F,p(r, ±O,v)F(r)BLU/BuL-F",(r, ±O,v) F,p(r,±O,v), (23) 

for all v E Ve and 0 E Oh, where 0 is now taken over the positive half-range Oh. 

To proceed further, certain symmetry conditions pertaining to the redistribution 
functionals F,p and F", need to be derived. From equations (8) and (13) we obtain 

F,p(r,O,v) = f.: In: dv'dO' I d3vFL(r,v) 

xg(O .0') q(v -LIO .v)p(v -LIO .v, v' -LlO' .v), (24) 
so that 

F,p(r, -0, v) = f.: In: dv'dO' I d3v FL(r, v) 

xg( -O.O')q(v +LlO.v)p(v+LlO.v, v' -LlO' .v). 
(25) 

We now assume the velocity distribution given by FL(r,v) to be Maxwellian 
in form, i.e. 

FL(r, v) ex:: exp{ -.8(r) v .v}, (26) 

where .8(r) is an explicit function of r only. Obviously then 

(27) 

and thus a change of variable from 0' to -0' and v to -v in equation (25) yields 

F ,p(r, -0, v) - F ,p(r, 0, v), (28) 

This result also follows from equation (4). 
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The functional F lfr(r, n, v) does not satisfy the same type of symmetry relation
ship because of the appearance of the radiation field Iv(r, n). This may be more 
easily seen by combining equations (11), (12), and (15) to give 

Flfr(r,n,v) = I Fu(r,v)X(r,v;n,v) d3v, (29) 

where 

x(r,v;n,v) = (B~u f, f n' dv' dn' Iv,(r,n')g(n.n')q(v' -LIn' .v) 
lie J ~ c 

Xp(v' -LIn' .v, v -LIn .v) +OLUq(V -LIn .v)) 

Thus, proceeding in the same manner as described above for F I/>(r, n, v), equation (30) 
gives 

X(r, -v; -n,v) = (B~u {: In: dv'dn' Iv,(r, -n')g(n.n')q(v' -LIn' .v) 

xp(v' -LIn' .v, v -LIn .v) +OLU~(V -LIn .v)) 

The integrand of the first term appearing in the denominator in equation (31) 
has been written in the form shown, rather than Iv,(r, -n')q(v' -LIn' .v), because 
of the required mathematical operations on the function X(r,v; n, v) to follow. This 
term may be written in a more convenient form if we assume symmetry of the 
scattering process in the rest frame of the atom about line centre, i.e. 

g(-y)p(-y, -y') = g(y)p(y,y') (32a) 
and, in particular, 

g( -y) = g(y) . (32b) 

The above assumption is valid for all broadening mechanisms except that due to 
statistical broadening (see e.g. Kuhn 1962). However, although it therefore appears 
that the above symmetry relationship is a restriction of the Feautrier technique when 
applied to the "exact" line transfer equation, departures from symmetry, if they 
exist at all, will be very small and thus the application of the Feautrier technique 
should still be valid. 

It is not difficult to show that equations (32) imply 

v EVe, n Ene, (33) 

so that, using the functional notation again, 
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FI{f(r, -a, v) = FI{f(f, fa' dv'd.o.' Iv'(r, -a')Rv(v',.o.';v,a); 
Vc J l c 

for all a E ah and v EVe. 

(34) 

We are now in a position to study the transfer equations given by (23). These 
equations are obviously highly nonlinear in the unknown Iv(r, a), and progress can 
only be made by recognizing certain features of the physics involved. Thus, to make 
the problem numerically tractable we assume that stimulated emission is small when 
compared with the absorption and spontaneous emission processes. This is a good 
approximation for many problems of astrophysical interest and is frequently made 
throughout the pertinent literature. Therefore we take 

F I{f(r, ±.o., v)fF ",(r, ±.o., v)F(r) ~ 1 , 
so that 

{F I{f(r,.o., v)-F I{f(r, -a, v)}fF ",(r, ±a, v)F(r) ~ o. 

(35) 

(36) 

A comparison of equations (15) and (34) shows that equation (36) is exact for 
isotropic Iv(r, .0.). Note that we have not neglected stimulated emission but rather 
have essentially taken the difference betweenF I{f(r, a, v) andF I{f(r, -a, v), for a E ah, 
to be small compared with the product F ",(r, a, v)F(r). Equation (36) may therefore 
be written in the form 

where 

FI{f(r,a,v) FI{f(r, -a,v) ~I{f(r,a,v) 
F",(r,a,v)F(r) ~ F",(r, -a,v)F(r) ~ F",(r,a,v)F(r) ' 

(37) 

(38) 

Thus, defining the two functions l1>(r, a, v) and P(r, a, v) by 

(39) 
and 

(40) 

for all a E ah and v EVe, equation (23), along with equations (28) and (37), gives 

(a.~v)l1>(r,a,v) = -(1- F::,~,~;~(r»)p(r,a,v)F",(r,a,v) (41) 

and 

( 1) _ ( ~I{f(r,a,v») a.;v P(r,a,v) - - 1-F",(r,a,v)F(r) 

m( on )_ (2hvo/c)F I{f(r, a, v) F ( on ) ( 
3 2 - ) 

X ~ r,~~,v '" r,~~,v 
F ",(r, a, v) F(r) BL U/BUL -1' I{f(r, a, v) 

(42) 
for all a E ah and v EVe. 
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Equations (41) and (42) form the basic set of Feautrier equations. They are, 
however, more readily recognizable in their second· order form. Before deriving this 
form, we first simplify the above expressions. For example, equations (15) and (34) 
give after rearrangement 

F>jr(r,n,v) =F>jr(f, In' dv' dn'q:>(r,n',v'){Rv(v',n';v,n)+Rv(v',-n';v,n)}; 
Vc h 

2 I, In' dv'dn' q:>(r, 0.', v') q(y'); q(y)) . 
v.; h 

(43) 

The function F(r) specified by equation (19) may also be written, although in a 
somewhat more complicated form, as an explicit functional of q:>(r, n,v) and P(r, 0., v). 
However, under the approximation giving rise to equations (36) and (37), we find 
the simpler relationship 

.E'(r) = F(2J In dvdnq:>(r,n,v)F¢(r,n,v); 
Vc h 

(44) 

Equations (43) and (44) show that ]Ii >jr(r, 0., v) and F(r) may be written as 
explicit functionals of only q:>(r, 0., v) such that, writing 

. _ ( F>jr(r,n,v))F ( n ) 
Ql(r, 0., v, q:» - K(r) 1- F ¢(r, 0., v) F(r) ¢ r, ;:'l., v (45) 

and 

(46) 

for all 0. E nh and v EVe, equations (41) and (42) may be written as 

(n.{Ql(r,n,v;q:>)}-lV)q:>(r,n,v) = -p(r,n,v) (47) 

and 
(n.{Ql(r,n,v;q:>)}-lV)p(r,n,v) = -q:>(r,n,V)+Q2(r,n,V;q:». (48) 

These may then be transformed into the well-known second-order Feautrier equation 
in q:>(r, 0., v) 

(0.. Q11 V)(n. Q11 V)q:>(r, 0., v) = q:>(r, 0., v) -Q2(r, 0., v; q:» (49) 

for all 0. E nh and v EVe. Equations of this form have been discussed in detail in 
Part I, and are considered further in the following section. 

Finally, the boundary constraints are given by equations (47) and (48) in the 
usual manner together with the relationships at the boundary rs: 

(50) 

and 
(51) 
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for all G E G h and v EVe. The problem can then be solved numerically when 
1v(r~1), -G) is specified at the surface r~l) and, for example, 1v(r~2), G) is specified 
sufficiently deep within a semi-infinite atmosphere. 

To proceed further, one can (1) solve equation (49) in its nonlinear form (this 
has not, as yet, been attempted by the Feautrier or any other method), or (2) make 
the usual assumptions and approximations to reduce the equation to a linear form, 
or (3) consider an alternative form of the transfer equation which still exhibits all 
the pertinent physical microscopic processes. In the next section we consider the 
third suggestion in detail. 

IV. ALTERNATIVE FORM OF EQUATION OF TRANSFER 

In the preceding two sections we have derived the "exact" equation of transfer 
for spectral line radiation and have thence developed the corresponding second-order 
Feautrier system of equations. All these equations are found to be highly nonlinear 
in the required unknown which thus suggests that the computation of their solutions 
could be rather prohibitive. It should be emphasized, however, that the nonlinearity 
is not due to the application of the Feautrier technique since such nonlinearity is 
inherent in the exact line transfer equation and would need to be overcome by all 
methods applied to the problem. Therefore, in this section we wish to consider an 
alternative form of the line transfer equation which does not exhibit the above
mentioned nonlinearities. This form has been discussed in some detail by Hummer 
(1969) and a very brief summary is given here. 

The fundamental assumption requires stimulated emission to be treated as 
negative absorption. This necessitates the equality of the profiles for stimulated 
emission and absorption, i.e. 

1>v(r, G) - "'v(r, G) (52) 

for all r, G E G e, and v EVe. Thus, in much the same manner as described in Section II 
(but without the identity given by equation (22)), the required transfer equation may 
be written in the form 

(G. V)lv(r, G) = -Kv(r, G){lv(r, G) -Sv(r, Gn, (53) 

with 
KV(r, G) = (hvo/47T){NL(r) BLU -Nu(r) BUL}1>v(r, G) (54) 

and 

Sv(r, G) = ~:~!,~Ei f.: f n: 1v'(r, G /) R(r; v', G'; v, G) dv'dG' +EBvo(Te) , (55) 

where 
E = CUL/[CUL+AUL{I-exp(-hvo/kTen-l]. (56) 

All the terms appearing in equations (54) and (55) have the same meaning as specified 
in Sections II and III. Equations (53), (54), and (55) are exact under the assumption 
given by equation (52). The salient feature of these equations is the linearity of the 
source function in 1v(r, G). The resulting equation of transfer, however, is not linear 
due to the appearance of 1v(r, G), occurring via the ratio Nu/NL, in Kv(r,G). This 
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difficulty may be overcome by defining 

(57) 
where 

K(r) = (hvo/47T)(N LBLU - N u B UL ) . (58) 

Equation (53) is then solved as a function of K(r). 
We are now in a position to derive the Feautrier system of equations in terms 

of the new unknowns l1>(r, n, v) and lJ:'(r, n, v) specified by equations (39) and (40) 
respectively. Thus, dividing the radiation field into its positive and negative 
components of n, we find 

± (n. K~r) V)Iv(r, ±n) = -4>v(r, ±n) Iv(r, ±n) 

+47T(1-€) f, In' Iv,(r,n')R(r;v',n'; v, ±n) dv'dn' 
vc c 

(59) 

for all n E n h and v EVe. Subtracting and adding these equations, and using the 
symmetry of 4>v(r, n) specified by equation (28), we find 

(n. ~ V) l1>(r, n, v) = -4>v(r, n) lJ:'(r, n, v) 

+27T(1-E) I, In' Iv,(r, n'){R(r; v', n'; v, n) 
vc c 

-R(r; v', n'; v, -n)} dv' dn' (60) 
and 

(n.~v)lJ:'(r,n,v) = -4>v(r,n)l1>(r,n,v) 

+27T(1-E) f: In: Iv,(r, n'){R(r; v', n'; v, n) 

+R(r; v', n'; v, -n)} dv' dn' 
(61) 

for all n E nh and v EVe. 

The integral terms appearing in equations (60) and (61) may be simplified using 
certain general symmetry conditions satisfied by the redistribution function. Equations 
(8) and (9) show that 

R(r;v',n';v,n) = L I FL(r,v)g(n.n')q(v' -LIn' .v) 

xp(v' -LIn' .v, v -LIn .v) d3v. (62) 

Obviously, if we have a symmetry condition on FL(r, v) of the form given by equation 
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(27), then 
R(r;v', -n';v, -n) - R(r;v',n';v,n) (63) 

and 
R(r; v', ±n'; v, =j=n) - R(r; v', =j=n'; v, ±n) (64) 

for all n E n c' n' E n~, v E vc, and v' E v~. Equations (60) and (61) after rearrangement 
then become 

(n.~v)qi(r,n,v) = -cfov(r,n)lfI(r,n,v) 

+(I-E)cfov(r, n) f, f g' lfI(r, n', v')Qi(r; v', n'; v, n) dv'dn' 
Vc h 

(65) 

and 

(n .~ V) lfI(r, n, v) = -cfov(r, n) qi(r, n, v) 

+(I-E)cfov(r, n) f, f g' qi(r, n', v')Qt(r; v', n'; v, n) dv'dn' 
Vc h 

(66) 
where 

Qt(r;v',n';v,n) = cfov(;~n)(R(r;v',n';V,n)±R(r;V',n';v, -n)) (67) 

for all n E n h, v E vc' n' E nft, and v' E v~. 
Equations (65) and (66) are now linear in the required unknowns qi(r, n, v) and 

lfI(r, n, v). Clearly, they may be reduced to the form 

(n. Kcfov(~, n) V) (n. Kcfov(~~n) V )qi(r, n, v) 

qi n 87T(I-E)f J qi n"R' 'n'. n)d'dn ' = (r,:.~,v)-cfo( .Q) , , (r,:./:,v) (r,v,u,v,:'1: V:'I: 
v f, Vc n h 

-Q(r, n, v; lfI) , (68) 
where 

Q(r, n, v; lfI) = EBvo(Te) + (n. Kcfov(~, n) V) 

X ((I-E) r: f g~ lfI(r, n', v') Qi(r; v', n'; v, n) dv'dn') (69) 

for all n E nh and v E vc. A similar equation may be obtained in lfI(r, n, v). 
These second-order differential equations are analogous to the ordinary Feautrier 

equations, and differ only in that they exhibit coupling terms in qi and lfI. However, 
this apparent difficulty may be easily overcome. The coupling terms are linear in 
qi and lfI and this, together with the use of the finite difference approach, enables 
a system of linear matrix equations in qi and lfI to be specified. The resulting expres
sions are then readily uncoupled (see Cannon 1970a) and thence the solution proceeds 
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in exactly the same manner as in the ordinary situation (Feautrier 1964) using the 
boundary conditions given by equations (65) and (66) together with equations (50) 
and (51). This point has been discussed in detail in Part I. 

It has been shown by Fox (1957) and Wachspress (1960), and stressed by 
Cuny (1967), that expressions of the form given by equation (68), for example, are 
stable under numerical reduction using the above technique provided that 

at all r. This will ensure that the diagonal elements of the matrices obtained are 
dominant, and therefore that the required matrix inversions are stable. The 
"approximately equal to" sign in expression (70) allows for the possibility of the 
left-hand side being slightly greater than unity for some values of v and O. An 
inspection of equations (10) and (56) (noting also that R(r;v',a';v,a) is integrated 
over only the positive half-space ait) shows that expression (70) indeed holds, and 
thus the Feautrier equations obtained using the alternative form of the transfer 
equation satisfy the required stability criteria. The coupling terms do not affect the 
stability of the resulting equations. 

A simpler form of the above equations may be derived by dividing the required 
redistribution function into its even and odd components of a. This is done in the 
Appendix. In fact, it can be shown that the coupling terms disappear altogether in 
the one-dimensional situation if the redistribution function is independent of 
position r. 

Further simple forms of equation (68) may be obtained under certain physical 
idealizations. For example, Hummer (1962) has shown that, for (1) zero natural line 
width and (2) radiation and collisional damping with complete redistribution in the 
rest frame of the atom, the symmetry condition 

R(r; -v', -a';v,a) _ R(r;v',a';v,a) (71) 

for all a' E a~, v' E v~, n. E ac' and v E Vc is automatically satisfied. This implies 
symmetry in the scattering process about line centre in the rest frame of the atom, so 
that, using equation (71), the integral term involving Qil in equation (65) disappears. 
The resulting equation in CP(r, a, v) is then of the standard form 

(0. Kcfov(~, a) v) (a. Kcfov(~, a) v)cp(r, a, v) 

= CP(r,a, v)- ~:~!,~€i {: fn~ CP(r,a', v') R(r; v', a'; v,a) dv'da' 

(72) 

The determination of CP(r, a, v) in this particular case would completely determine 
the radiation field, that is, P(r, a, v) would not need to be evaluated. 
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V. INOLUSION OF VELOCITY FIELD 

The previous sections have been concerned with the equation of transfer for 
spectral line radiation in an atmosphere exhibiting zero mass motion. Here we 
wish to further generalize the Feautrier technique given not only a general redistribu
tion law but a general multidimensional macroscopic differential velocity field. The 
method described applies to both the "exact" transfer equation discussed in Sections 
II and III and the alternative form given in Section IV. For clarity in exposition, 
however, and because of computational convenience, we consider only the alternative 
form. Identical arguments can be used to derive the Feautrier system in the so-called 
exact case. 

It is not difficult to show that the required equation of transfer then has the 
form (see e.g. Hummer 1968) 

(n. K~r) V)Iv(r,n) = -</>v(r,n)Iv(r,n) 

+47T(1-E) f, In' Iv,(r,n') R(r; v', n';v,n) dv'dn' 
Ve e 

(73) 

for all n E ne and v EVe, where 

v v- LIn. V(r) , v' _ v'- LIn'. V(r) , (74) 

and V(r) is a general macroscopic velocity field as a function of position r. In 
equation (73) 

</>v(r,n) = 47T {: In: dv' dn' I d3v FL(r,v)Rv(v,n;v',n') (75) 

= {: In: dv' dn' I d3v FL(r, v )g(n. n') q(v- LIn. (v+ V)) 

xp(v- LIn. (v+ V); v' - LIn' . (v+ V)), 

= </>(r,n,v, V), n Ene, v EVe, (76) 

where we have used equations (8), (9), and (10). We can obviously write 

</>(r, -n, -v, V) = {: In: dv' dn' I d3v FL(r,v)g( -n.n')q( -v+ LIn. (v+ V)) 

xp( -v+ LIn. (v+ V), v'-Lln'. (v+ V)). 
(77) 

To proceed further we assume that the scattering process is symmetric about 
line centre in the rest frame of the atom, i.e. 

q( -y) p( -y, -y') = q(y) p(y, y') , (78) 
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so that, with the usual symmetry condition on the Maxwellian distribution FL(r,v), 
equation (77) gives 

cfo(r, -a, -v, V) - cfo(r, 0, v, V) , o E Oe, v EVe. (79) 

Similarly, we have 

cfo(r, ±O, =fv, V) = cfo(r, =fO, ±v, V), o E Oe, v EVe. (80) 

Returning our attention to equation (73), if the radiation field is divided into 
positive and negative components of 0, we find 

± (0. K~r) V)hp(r, ±O) = -cfo(r, ±a, ±v, V) I±p(r, ±O) 

+47r(I-€) f ' In' Ip,(r, 0') R(r; ii', 0'; ±ii, ±a) dv'dO' 
Pc c 

(81) 

for all 0 E Oh and v EVe. It is important to note that, although 0 has now been 
restricted to the positive half-space Oh, v still ranges over the complete line profile 
of frequency Ve. 

and 

Thus, defining the new unknowns $ and ':P by 

$(r, 0, v) = t{Ip(r,O) +Lv(r, -an 
':P(r, 0, v) = t{Ip(r, 0) -Lp(r, -O)} 

(82) 

(83) 

for all a E Oh and v EVe, equation (81), together with equations (79) and (80), yields 

(O.~v)!p(r,o,v) = -cfo(r, 0, v, V)P(r,O,v) 

+27T(1-€) f ' In' Ip,(r, a'){R(r; ii', 0'; ii,:a) 
Pc c 

-R(r; ii', 0'; -ii, -O)} dv'dO' (84) 
and 

(O.~v)p(r,o,v) = -cfo(r,O,v, V)!P(r,O,v) 

+27T(1-€) f "fn' Ip,(r, O'){R(r; ii', 0'; ii, a) 
Pc c 

+R(r; ii', 0'; -ii, -O)} dv'da' 

(85) 

for all 0 E Oh and v EVe. 
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The integrals appearing in equations (84) and (85) may be simplified using the 
general symmetry conditions satisfied by the redistribution function and given by 
equations (63) and (64). The resulting equations become, after a rather lengthy 
rearrangement, 

(fl.~ V) <P(r, n, v) = -cp(r, n, v, V) P(r, n, v) 

+(I-E)cp(r,n, v, V) f, In' P(r,n', v') Q3(r; v',n'; v,n) dv'dn' 
Vc h 

(86) 

and 

(n.~v)p(r,n,v) = -cp(r,n,v, V)<P(r,n,v) 

+(I-E)cp(r, n, v, V) f, I ' <P(r, n', v') Qt(r; v', n'; v, n) dv'dn' (87) 
Vc n h 

where 

Qf(r; v', n'; v,n) = cp(r,~~v, V)(R(r; v' -n'. (v+ V),n'; v-LIn. (v+ V),n) 

±R(r; v' -n' . (v+ V), n'; -v+Lln. (v+ V), -n)) , (88) 

for all n' E nb., v' E v~, n E nh, and v EVe. 

Equations (86), (87), and (88) are identical in structure to equations (65), (66), 
and (67) respectively, which are for the case of zero mass motion. One may therefore 
proceed to develop the Feautrier system of second-order differential equations in 
exactly the same manner as indicated in Section IV. In fact, a computer program 
written to solve the transfer equation for zero mass motion may be readily modified 
to consider the velocity-dependent case by redefining the ([J and 'I' in the form (Jj 

and 'I' and replacing Q~ by Q~. This has been done, for example, for the case of 
complete redistribution in a two-dimensional atmosphere by Cannon and Rees (1971) 
using the technique developed by Cannon (1970a) for stationary media. The stability 
criteria (expression (70)) are still satisfied in the velocity-dependent problem. 

VI. CONCLUSIONS 

It has been shown that the equation of transfer for spectral line radiation given 
a general redistribution law may be written as a Feautrier system of second-order 
differential equations with two-point boundary conditions. These equations are 
highly nonlinear in the unknown to be determined. However, as this nonlinearity 
is not dependent upon the actual Feautrier technique but rather is inherent in the 
exact specification of the line transfer problem, a well-known "alternative" form of 
the transfer equation more amenable to numerical solution has been studied. It has 
been shown that this equation may also be solved by the Feautrier technique. The 
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resulting second-order differential equations are linear in the required unknown and 
satisfy the necessary stability criteria, and thus are exceedingly stable and efficient 
when solved numerically. 

Multidimensional macroscopic differential velocity fields have also been included 
in the analysis. The equations so obtained using the Feautrier technique have an 
identical functional form with that mentioned above for the stationary situation, 
and thus may be solved by the same well-developed numerical methods. 
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APPENDIX 

Equation (68) in Section IV may be derived in a simpler form. This is done by 
separating the general redistribution function into its even and odd components of 
a, that is, 

R(r; v',a';v, 0) = R(l)(r; v',a';v, 0) +R(2)(r;v', a'; v,a), (AI) 
where 

R(l)(r;v',a';v, -a) = R(l)(r;v',a';v,a) (A2) 
and 

R(2)(r;v',a';v, -0) = -R(2)(r;v', a';v,a) (A3) 

for all a' E a~, v' E v~, a E ac' and v E Vc. The new redistribution functions R(l) and 
R(2) both satisfy the symmetry conditions given by equations (63) and (64). 

In a multidimensional situation we may proceed to solve the problem by 
rewriting equations (53), (54), and (55) in the form 
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( 1 )1(k) (k) O,~V ,,(r,O) = -cp"(r,O)I,, (r,O) 

+4rr(1-€) I, In' 1",(r,O')R(k)(r;v',O';v,O) dv'dO' 
"c c 

where 
(A4) 

(A5) 

Thus, proceeding as in Sections III and IV, equation (A4) may be reduced to 

( 1) (1) .J. 1TI(1) O,~V ([J (r,O,v) = -'f',,(r,O) r (r,O,v), (A6) 

( 1) (1)· (1) 
O,~V tp (r,O,v) = -cp,,(r,O)([J (r,O,v) 

+S7T(l-€) I ' In' ([J(r, 0', v') R(l)(r; v', 0'; v,O) dv'dO' 
"c c 

(A7) 

( 1)(2) (2) 0, ~ V ([J (r, 0, v) = -cp,,(r, 0) tp (r, 0, v) 

+S7T(l-€) I, In' tp(r,0',v')R(2)(r;v',0';v,0) dv'dO', 
"c c (AS) 

and 

( 1) m(2) (2) 
O,~V ':r- (r,O,v) = -cp,,(r,O)([J (r,O,v), 

where, with obvious notation, 

([J(r, 0, v) = ([J(l)(r, 0, v) +([J(2)(r, 0, v) 

and 
tp(r, 0, v) = tp(l)(r, 0, v) + 91(2)(r, 0, v) 

(A9) 

(AlO) 

(All) 

for all 0 E Oh and v EVe, and where we have used the general redistribution symmetry 
relationships given by equations (63) and (64). 

The above equations then reduce to two coupled equations in ([J(1) and tp(2) of 
the form 

( 1 ) ( 1 ) (1) O'KcpV O'KcpV ([J (r,O,v) 

- (1) 87r(1-€) I I (1).'" 
- ([J (r,O,v) - cp,,(r,O) ": n~ R (r,v ,0 ,v,O) 

X {([J(l)(r 0' v') - (0, 1 v) tp(2)(r 0' v')} dv'dO' 
" Kcp",(r,O') " 

(A12) 
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and 

(0. K~ V) (0. K~ V )1['(2){r, a, v) 

- (2) 87T{1-e) f f (2).". 
- I[' (r,a,v)- cp (0) , I'l' R (r,v ,0 ,v,a) 

v r, Vc lI."b 

x {1['(2l(r a' v') - (a. 1 V)(p(l){r a' v')} dv'da' (A13) 
" Kcpv,(r,O') " 

for all a E Oh and v EVe. 

Equations (A12) and (A13) are now of a coupled form much simpler than that 
given by equation (68) in Section IV. The numerical technique described briefly in 
Section IV may be applied to the above equations without loss in generality. The 
solution is completed by determining (P(2) and 1['(1) from equations (A9) and (A6) 
respectively. 
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