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Abstract 

The calculation of the half-shell two-nucleon t-matrix from the wavefunction 
duo to the Hamada-Johnston potential in the presence of the Coulomb interaction 
is described. The contribution from the long range nature of the Coulomb interaction 
is included and its effect on the half-shell t-matrix is indicated. 

I. INTRODUCTION 

As the two-nucleon interaction is required off the energy shell in calculations 
for a many-nucleon system, a great deal of effort has been devoted to the study of 
the off-shell behaviour of the t-matrix. The experimental constraints on the elastic 
t-matrix do not uniquely specify the potential and it is possible to construct t-matrices 
with different off-shell behaviour. The sensitivity of many-body calculations to the 
off-shell structure of the two-body t-matrix half off the energy shell, referred to as 
the half-shell t-matrix, has recently emerged as a more fundamental quantity 
(Baranger et al. 1969), as the fully off-shell t-matrix may be calculated from it. The 
half-shell t-matrix occurs often in nuclear physics, as, for example, in nucleon-nucleon 
bremsstrahlung (Sobel 1965), the plane wave impulse approximation in knock-out 
reactions, and quasi-free scattering (Redish, Stephenson, and Lerner 1970). Informa
tion concerning the wavefunction as well as the elastic phase shifts are contained in 
the half-shell t-matrix, and hence it may be parameterized in terms of the short range 
behaviour of the wavefunction (Picker, Redish, and Stephenson 1971). 

Off-shell behaviour has usually been considered in the absence of the Coulomb 
interaction which is not restricted to a finite number of partial waves. However, the 
Coulomb scattering amplitude makes a large contribution to the p-p scattering 
amplitude especially at small angles, and in this paper the nature of the Coulomb 
contribution to the p-p t-matrix is considered in a typical off-shell situation, i.e. 
the half-shell t-matrix. The form of the half-shell t-matrix due to a realistic local 
potential, the Hamada-Johnston (1962) potential, is given for a general partial 
wave and in the presence of the Coulomb interaction. The total t-matrix is separated 
into the "nuclear" term and the pure Coulomb half-shell t-matrix. The latter term 
does not allow accurate results to be obtained from a finite partial wave expansion 
and an approximation formula is used. 

The results of the calculation enable an estimation of the consequences of either 
omitting the Coulomb contribution from the half-shell t-matrix altogether or of 
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including the Coulomb potential in just those partial waves for which the nuclear 
force is effective. It is found that Coulomb interference is large and constructive 
around the near on-shell region for small scattering angles and that it results in a 
reduction of a few per cent elsewhere. 

II. HALF-SHELL t-MATRIX 

In this section we consider the calculation of the half-shell t-matrix due to a 
realistic local potential when the Coulomb interaction is present. The present work is 
restricted to the isospin T = 1 two-nucleon system, but the results are easily applied 
to the T = 0 system by omitting the Coulomb contribution and making the necessary 
changes to the statistics. Without the Coulomb interaction the final expressions 
reduce to those obtained by Sobel (1965). We wish to emphasize here those aspects 
of the formulation which differ from the latter work due to the Coulomb interaction, 
especially in the coupled states. 

The half-shell t-matrix is related to the wavefunction by (Goldberger and 
Watson 1964) 

<k' I t(k2) I k) = <k' I V I ifi(+)(k, r), (1) 

where ifi<+) is the solution of the Schrodinger equation for the interaction V with 
outgoing boundary conditions. When V includes the Coulomb potential, a partial 
wave expansion of (1) will omit important long range contributions. To overcome 
this difficulty we separate the matrix element in a way which is exact only on-shell. 
From the theory of scattering by two potentials (Goldberger and Watson 1964) 

<k'i Vc+ Vnlifi<+)(k,r) = <cfoh-) I VnI ifi<+» + <cfot) I Vclk) 

= <cfoh-) I V n I ifi<+»+<k I T dk'2) I k'), (2) 

where cfoh-) is the solution of the Coulomb Schrodinger equation with ingoing boundary 
conditions. The first term in (2), the "nuclear" term, can be expanded in partial 
waves while an approximate method is used for the second term, which is the half
shell Coulomb t-matrix. 

Since wewish to consider realistic local potentials containing tensor interaction, 
the total Hamiltonian commutes only with 8 2, J2, J z, and parity, thus causing orbital 
angular momentum states l = j±1 to be mixed. The wavefunction must be expanded 
in simultaneous eigenfunctions of 8 2, J2, and Jz and the Pauli principle restricts the 
states such that (_I)I+s+T = -1. For T = 1 we have singlet-even and triplet-odd 
states. We use the notation of Ashkin and Wu(1948) here for partial wave expansion 
of the wavefunction due to tensor force scattering. The non-conservation of orbital 
angular momentum is implied by the fact that the radial wavefunction will satisfy 
coupled Schrodinger equations. All angles unless otherwise indicated are referenced 
from the incident momentum k. 

The expansion of the total wavefunction for a spin 8 is 

(3) 
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and the corresponding expansion for the Coulomb wavefunction is 

where in this notation c1::},msmJ are the usual Clebsch-Gordan coefficients and we 
have introduced spin-angle eigenfunctions defined by 

(5) 

Also, F1(y),k'r) is the regular Coulomb wavefunction, y) = [Le2/h2k', and al and Slj 

are the Coulomb and total scattering phase shifts respectively. In order to facilitate 
the angular integration, we use the addition theorem for spherical harmonics (Edmonds 
1960) to express cp~~)(k', r) as a function of i, at the same time introducing the . ~ ~ 

scattering angle 8 = k' • k. With the aid of the expansions (3) and (4) the nuclear 
term in the t-matrix (2) can be expanded, the spin-angle integrations performed, 
and expressions obtained for the t-matrix due to a particular total spin S and with 
initial and final spin projections mi and mf respectively. 

The coupled channels require special treatment. Here we use the Blatt and 
Biedenharn (1952) parameterization in which the S-matrix for the coupled channels 
1 = j ± 1 can be represented by three parameters, the mixing parameter Ej and the 
eigenphases Sf and sq. This is equivalent to constructing a total scattering wave
function with mixtures of 1 = j± 1 states which are eigenstates of the scattering. 
To do this we must modify the expansion of the total wavefunction .j;C+) by setting 

A m} { (I }t1J/m) Am} { ( )1 }t1J/mJ m) .J.m} amj .J.mj 
}-l,i UjA,j r) r -;y j,j-1,l + j+1,i Uj+1,j r r -;y j,1+1,l = rxj 'l'j,(% +/"j 'l'j,p' (6) 

where the A/j} represent the constants in the expansion (3) of .jJ<+). If we take the 
eigenstates cpyt;"P} to be of the form 

(cp;:~) = r -1 (eXP(iS1) V1-1,j(r) 

CPj~p exp(iSf) Vf-1,i(r) 

• '" (% ) (,i-1t1J/ mj ) -exp(lSj) vj+1,i(r) 1 -;y j,j-1,1 

. p P .j+1 m} 
-exp(lSj ) V1+1,j(r) 1 q!Jj,1+1,l 

with the radial eigenfunctions having the asymptotic forms 

{V~-l,j((r))} ,...., { CO~Ej }sin(kr-t1T(j-l)-Y)ln(2kr)+{~~}) , 
Vj-1,j r -sm Ej OJ 

{V~+1,j((r))} ,...., {sin Ej}sin(kr-t7T(j+l)-Y)ln(2kr)+{~~}), 
Vj+1,j r COSEj OJ 

then the constants rx"jJ and {j"jJ will be given by 

( m) ( IXj J cos Ej 

(jj j = -sin Ej 

sin Ej) (a:l,j) , 
cos Ej aj-t!l,j 

where 
mj Ami. I·j±l 

aj±l,j = j±l,} 1 • 

, (7) 

(8a) 

(8b) 

(9) 
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The radial eigenfunctions are obtained by solving the coupled Schrodinger 
equation with two independent sets of boundary conditions at r = 0 (or r = rc 
if the potential has a hard core) and taking a linear combination of the two sets of 
solutions, then requiring that the states l = j±1 have the same total phase shift. 

The matching procedure in the asymptotic region is 

(lOa) 

(lOb) 

and we require that 

This procedure determines £OJ' 8r, and 81, and when the Coulomb interaction is present 
the eigenphases contain the Coulomb phase whereas in the uncoupled states the 
pure Coulomb phase O'z is easily separated out. It is convenient to define the radial 
eigenfunctions uJ~ioi~}(r) as having the asymptotic forms (8) without the coupling 
parameters. The Schrodinger equations for the radial wavefunctions are, for the 
uncoupled states l = j, 

{1i2 (d2 2 l(l+ 1)). } 
2ft dr2 +k - -y - V c(r) uz(r) = Vl(r) ul(r) (11) 

and, for the coupled states 1 = j±l, 

{n2 (d2 2 j(j-l)) } .t "2 2 +k - --2 - - V c(r) Uj-l,]{r) = Vj-l,]{r) uj-l,i(r) + 11 j(r) uj+l,l(r), 
ft dr r (12a) 

{n2 (d2 2 (j+l)(j+2)) } t "2 2 +k - 2 - V c(r) uj+l,l(r) = Vj+l,;(r) uj+l,j(r) + Vj(r) Uj-l,l(r) , 
ft dr r (12b) 

where 

Vz(r) = <l,sjml Vnll,sjm), Vj(r) = <j-l,sjml Vn lj+l,sjm), 

Vj-l,j(r) = <j-l,sjml Vnlj-l,sjm), Vj+1,j(r) = (j+l,sjml Vn Jj+l,sjm). 

We can now describe the final expressions for the half-shell t-matrix obtained 
by using the wavefunction expansions (3) and (4) in equation (2). The t-matrix 
will be a 4 X 4 matrix in spin space. The antisymmetrized matrix element for the 
singlet state is 

IT = 2 ~ (2l+1)tz(k', k; k2) pz(k'. k) +{Tc(8)+Tc(7T-IJ)}, (13) 
evenl 

where Tc(IJ) represents the half-shell Coulomb t-matrix which is discussed below. 
The triplet matrix is complicated by the coupled states and is described for scattering 
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from initial spin projection mi to final spin projection mr by 

where the expressions for the first three terms on the right-hand side are given in the 
Appendix. The partial t-matrix elements have the form, for the uncoupled states 
l =j, 

(15a) 

and, for the coupled states l = j±l, 

(15b) 

where Rj(k', k) and Rj±lJ(k', k) are real functions representing the radial integrals 
which in the coupled states have the forms 

{Ri-I(k> k)} = ('''0 Fj-I(-'l, k'r) [ Vj l,j{r){ui -1,1(r)}+{ tan Ej } vJ(r){u~+l,j(r)}] dr, 
Rf-I(k ,k) J 0 Ui-I,J{r) -cot Ej uj+l,j(r) 

(16a) 

{Ri+l(k>k)} = foo Fj+l('Y),k'r)[Vi+l,j{r){ui+l,j{r)}+{ cotEj }v](r){ui-I,j(r)}] dr. 
Rf+l(k , k) J 0 uf+l,j{r) -tan Ej uf-1,1(r) 

(16b) 

The form of Rj(k', k) is easily obtained as a special case of the above. On the energy 
shell the radial integrals reduce to 

(17) 

and the partial amplitudes take on the usual forms for the nuclear scattering 
amplitudes, 

(ISa) 

(ISb) 

If the local potential contains a hard core (e.g. Hamada-3ohnston potential), care 
must be taken in performing the radial integrals (16) as there is a contribution due to 
the hard core region. We briefly consider now the method of obtaining these con
tributions. 

Those parts of the integrands in (16) enclosed in square brackets are indefinite 
in the hard core region 0 :'( r :'( re. It is to be noted that these parts will be the 
right-hand side expressions in the Schrodinger equations (similar to (12)) satisfied 
by the coupled radial eigenfunctions. Hence the hard core contribution to Ri-I' 



242 1. E. McCARTHY AND P. C. TANDY 

for example, is given by 

R IX n2 fre F k' (d2 k2 j(j-l) V ())" () d 
( i-l)h.e. = 20 J 0 i-I (-I) , r) dr2 + - -r-2- - c r Uj-l,i r r. (19) 

Using the facts that F I(7], k'r) '"" r1+1 as r ---'>- 0 and that Ulj(r) = 0 for r < re, the 
only contribution to the integral in the region 0 :'( r :'( re will be at r = re where 
d 2{uj_l,j(r)}jdr2 has a delta-function singularity. Integrating by parts we obtain 

" n2 F k' (d{ut-l 'i(r))) (R j-l)h.e. ="2 j-l(7], re) dr . 
o ~ 

(20) 

To complete our calculation of the half-shell T = 1 t-matrix with Coulomb' 
corrections we need the half-shell Coulomb t-matrix as indicated in (2). Since we are 
only interested in estimating its contribution, for ease of computation the approxi
mation due to Ford (1964, 1966) has been chosen. From a study of the screened 
Coulomb t-matrix off-shell, he found that, except for a region very close to the energy 
shell, the behaviour of the half-shell Coulomb t-matrix is described by 

'k I T (k,2) I k') R:! _ ~ e2Co( 7]) exp(ioo) (k~ _k'2)i~ +O(R-l ) (21) 
<- c n2 {(k_k')2}1+1~ , 

for I k-k' I ~ R-1 and k' ~ R-l, where 

ao = arg{f(l+i7])}, 

Near to and on the energy shell the contributions from the extremely long range 
of the Coulomb potential are most important for the Coulomb t-matrix. 

In the absence of the Coulomb potential the forms (15) for the partial t-matrix 
elements, resulting from a realistic local potential, have been shown (Sobel 1967) 
to satisfy the requirements of off-shell nnitarity and time-reversal invariance. These 
requirements would be preserved in the full t-matrix if the pure Coulomb contribution 
were not separated out, but, for computational ease and in order to estimate the full 
Coulomb interference with the nuclear part, the approximation method above has 
been chosen. 

Apart from a normalization constant the real functions R/k', k) and Rj±t} (k', k) 
appearing in the t-matrix are the so-called quasi-phase parameters used by many 
authors (e.g. Sobel 1965) to specify the half-shell t-matrix in nucleon-nucleon 
bremsstrahlung. These funqtions can be parameterized in terms of the short range 
behaviour of the wa vefunction and the range of variation in the near off-shell behaviour 
can be estimated (Picker, Redish, and Stephenson 1971). Since we are interested 
here in interference effects between the nuclear and Coulomb contributions, we form 
the square modulus of the scattering amplitude 

(22) 

On the energy shell, the result can be compared \vith the elastic p-p cross section. 
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III. RESULTS AND DISCUSSION 

The behaviour of the Coulomb half-shell t-matrix resulting from the use of 
the approximation (21) is indicated in Figure 1. The square modulus of the anti
symmetrized t-matrix* is plotted for singlet and triplet states at two typical scattering 
angles. The triplet amplitude is zero at 90° scattering (Fig. I(a)) and both the singlet 
and triplet amplitudes remain small for large scattering angles. For small scattering 
angles (Fig. I(b)) a strong peak develops around the on-shell region due to the con
tributions from the long range of the Coulomb interaction. As the scattering angle 
tends to zero the singular nature of the Coulomb amplitude is reproduced in the near 
on-shell region. The on-shell values are obtained from the usual Coulomb scattering 
amplitude (Goldberger and Watson 1964). At higher energies the Coulomb contri
bution is significant only for very small angles and close to the on-shell region. 

Fig. I.-Singlet and triplet contributions 
of ·the half-shell Coulomb t-matrix 
(from the approximation (21)) to the 

(a) 90° and (b) 20° 

scattering cross sections for k = 20 MeV. 
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The calculation of the nuclear part of the half-shell t-matrix can be checked 
by ensuring that the radial integrals reduce to the on-shell forms (17) and that the 
elastic cross section is obtained. The off-shell behaviour of the full t-matrix for the 
Hamada-Johnston potential at 90 0 scattering angle is indicated in Figure 2(a). 
States up to J = 4 have been included at the higher energies. As expected the 
Coulomb contribution is quite small at 90° and is responsible for some destructive 
interference in the low energy off-shell region (Fig. 2(b)). At smaller scattering angles, 
however, the Coulomb contribution interferes constructively with the nuclear term 
and introduces a strong peak at the on-shell point. In Figures 3(a) and 3(b) this 
small-angle Coulomb interference is indicated for 10 and 20 MeV respectively, 'where 
states up to J = 2 have been included. 

The angular distribution of the half-shell cross section near the on-shell region 
for 20 Me V is plotted in Figure 4. It is clear that the singular nature of the scattering 
amplitude at small angles is confined to the near on-shell regions. The elastic ampli
tudes typically have a small region of destructive interference at angles just outside 
the strong constructive region, e.g. at 20° in Figurc 4. The half-shell Coulomb 

* This is the proper description of the quantity plotted in all figures in this paper. 
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t-matrix undergoes a rapid phase change at these angles, and Figure 5 indicates the 
off-shell behaviour of the full scattering amplitude obtained in this region. For 
higher energies the influence of the Ooulomb interaction on the half-shell t-matrix 
is confined to only very small scattering angles. 
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Fig. 3 (left).-Small-angle 
enhancement by the Coulomb 
contribution to the half-shell 
scattering cross section. The 

30 
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(b) k = 20 MeV. 
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In conclusion then the results of the present investigation into the effects of 
the Ooulomb interaction on the half-shell t-matrix may be summarized as follows. 
Except for a region close to the energy shell with small scattering angles, the Ooulomb 
force has little effect, there being a slight destructive interference. The long range 
contributions from the Ooulomb potential result in a strong constrnctive peak at the 
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near on-shell region for small scattering angles_ This latter effect would not be borne 
out in a finite partial wave expansion of the Coulomb contribution_ The approximate 
expression for the half-shell Coulomb t-matrix employed here serves as an indication 
of the nature and magnitude of the error involved in omitting the Coulomb con
tribution from the T = 1 half-shell t-matrix. 
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APPENDIX 

If we take the interaction to be described by a realistic local potential and the 
Coulomb potential and denote the initial and final spin projections by ml and mf 

respectively, then the expressions for the antisymmetrized T = 1 half-shell t-matrix 
after partial wave expansion are as follows. The singlet term is 

IT = 2 ~ {47T(2j+l)}i tj (k',k; k2) y7(8) +{Tc(8)+Tc(7T-8)} , (AI) 
even} 

while the triplet term can be expressed as in equation (14)in Section II, where the 
terms T(I) T(2) and T(3) correspond to the cases l = J" l = 1 J' o· and m f m i ' mf m j ' mf m i ' , , 

l = j±l respectively. These are given by 

where 

+[47r{2U+l)+1}]t C;;l~~J'mf'm, (Ej+1 +Ef+1)yf':l-mi (_l)mi-mr , 

(A4) 

E '" 2 '" (k' k k2) (co,m"mi t Co,mi,m, 2(j+l)+1) j-1 = cos €jt}-l ,; j-1,l,j - an€j j+1,l,j 2(j-l)+1 ' 

E p . 2 tP (k' k k2) (....o,mi,m, t Co,mi,m, 2(j+l)+1) 
}-I = sm €} j-1 ,; "Vj-1,l,j +co €} H1,l,} 2(j-l)+1 ' 

E '" . 2 tOG (k' k k2 ) (co,m"mi t Co,m"m, 2(j-l)+1) HI = sm €j HI , ; , . H1,l,} -co €} j-1,l,} 2(j+l)+1 ' 

E p 2 P (k' k k2 ) (co,m"m, . Co,m"m, 2U-l)+1) HI = cos €}tHl ,; 1+1,1,} +tan€j j-1,l,} 2(j+l)+1 . 




