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Ab8tract 

A generalized theory of radiation pressure forces for arbitrary non.dissipative 
acoustic systems is applied to the calculation of the force and torque exerted on a 
body elastically scattering an incident plane wave. The theory leads to the Westervelt 
and Maidanik formulae for force and torque respectively. Alternative forms for the 
Maidanik formula are generated by application of the generalized optical theorem. 

1. INTRODUCTION 

When sound waves are scattered by an object, steady forces and torques are 
exerted on the object as a manifestation of the radiation pressure. The radiation 
pressure force arising from the scattering of an incident plane wave has been investi
gated theoretically by numerous authors (e.g. ~Westervelt 1951,1957; Olsen, Romberg, 
and Wergeland 1957, 1958; Olsen, Wergeland, and Westervelt 1958), Westervelt's 
formula, or a closely related result, usually being obtained. Correspondingly, the 
torque exerted on the scattering body has been derived by Maidanik (1958). Wester
velt's and Maidanik's results are obtained by integrating respectively the stresses 
and the moments of the stresses of the average momentum flux density tensor of the 
radiation field. The integrations are most conveniently performed over the surface 
of a sphere of large radius using the asymptotic form of the scattered wave, and the 
results are obtained in terms of the scattering amplitude j(8, <p). The methods used 
rely on the fact that, apart from at the boundary of the scatterer, the wave is free, 
so that (for a uniform non-dissipative medium) the stresses are transmitted to the 
scatterer alone and to no other boundary or body. Consequently, the methods are 
normally limited to single scattering in a free field. 

An alternative approach to the general problem of calculating average radiation 
pressure forces and torques is available (Smith 1964, 1965). This formalism leads 
to or, equivalently, can be incorporated in a generalization of the adiabatic theorem 
(Smith 1971). If Fx is the generalized radiation pressure force corresponding to a 
generalized coordinate x, which specifies the configuration of an acoustic system, 

wFx ox = -li f f {p o(v*. n) +(v. n) op*} dA, 
s 

(1) 

where p and v are the complex r.m.s. pressure and velocity of the sound field of time 
dependence exp(iwt), S is a mathematical surface of unit outward normal n enclosing 
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the system, and S denotes changes resulting from a small adiabatic change Sx in the 
coordinate x. Equation (1) is not restricted to single scattering or affected by the 
presence of boundary surfaces etc. or the nature of the external excitation but is a 
result which holds for acoustic systems of arbitrary complexity, provided only that 
dissipation is negligible. 

Equation (1) is used here to derive expressions for the radiation pressure force 
and torque exerted on an elastic scatterer in a plane wave incident field. It is shown 
that, when the force and torque are expressed in terms of the scattering amplitude, 
Westervelt's (1951,1957) and Maidanik's (1958) formulae are obtained. In addition, 
alternative formulae for the radiation torque are obtained from the generalized optical 
theorem (Schiff 1968). 

II. RADIATION PRESSURE FORCE ON A SCATTERER 

For computations using equation (1) it is useful to introduce a velocity potential 
IF, where 

v = -v'P, p = iwp'P, 

p being the density of the medium. Equation (1) then becomes 

Fx Sx = tp II {(oIP/on)SlJ'* -'Po(S'P*)/on} dA. 
s 

(2) 

(3) 

To discuss scattering we use polar coordinates (r, 8, cf» and take 8 to be a large sphere 
centred on the origin. The differentiation %n along the normal in equation (3) then 
becomes 0/ or. 

For the scattering of a plane wave of velocity c and wave vector k (with 
k = wlc), the incident wave is represented by the velocity potential 

'Pi = exp( - ik . r) , (4) 

while the asymptotic form for large r of the scattered wave velocity potential is 

'Ps = r-1 exp(-ikr)f(8,cf» , (5) 

wheref(8,cf» is the scattering amplitude for the incident wave (4). The asymptotic 
form of the total velocity potential is then 

'P = 'Pi + 'Ps = exp( -ik. r) +r-1 exp( -ikr) f(8, cf» . (6) 

In order that equation (3) may be used to find the force on the scatterer we need 
an expression for the change S'P in 'P on the surface 8 due to a vector translation 
Sx of the scatterer without change of orientation. In this case the incident wave is 
not affected but the scattered wave potential is changed asympto~ically to 

'Ps+8Ps = exp( -ik. 8x){ 1 r-Sx 1--1 exp( -ik 1 r-Sx I)} f(8, cf». (7) 
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The first factor arises from the phase change in the arrival of the incident wave at 
the scatterer, the second incorporates changes in the radial distance (only the phase 
change part proves to be significant), while the angular scattering amplitude remains 
unchanged. 

Noting that 
I r-8xl = r-8x.r, 

where the circumflex denotes a unit vector, from equation (7) we can write 

8Ps = ikr-1 exp( -ikr){(8x. r -8x. k)+r-18x. r}f(8, (M . (8) 

Since only terms in r-1 are significant asymptotically, equation (8) becomes 

8Ps = ikr-1exp( -ikr) (8x. r -8x. k)!(8, (M (9) 

= 8xikr-1 exp( -ikr) (cosf3 -cos IX)! (8, (M , (10) 

where IX and f3 are the angles between 8x and k and 8x and r respectively. 
In order to integrate the incident wave potential Pi, the asymptotic 8·function 

resolution of a plane wave into incoming and outgoing spherical waves (Morse and 
Feshbach 1953) is used to give 

Pi = exp( -ik. r) 

= 27T(eX~(ikr) 8(7T+U-8) 8(v-(M _ exp~ -ikr)8(u_8) 8(v-cp) ) (11) 
lkr lkr ' 

where the polar angles u and v correspond to the direction of k and the 8·function 
distribution is defined for continuous functions g by 

f f g(8, cp) 8(u-8) 8(v-cp) dQ = g(u, v), 

dQ being an element of solid angle which is integrated over all directions. 
Finally, for substitution in equation (3), the total velocity potential may now 

be written 

P = 27T(eX~(ikr) 8(7T+U-8) 8(v-cp) _ exp~ -ikr) 8(u-8) 8(V-cp)) 
lkr lkr 

+ exp(-ikr) !(8,cp) 
r 

(12) 

and we have 
(13) 

Substitution of (12) and (13) into (3) gives, on retaining only terms of order r-2, 
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Fa; 8x = tp 8x II [{ 21T( eXp;ikr) 8(1T+U-O) 8(v-4»+ eXp(;ikr) 8(u-O) 8(V-4») 

s 

_ ikexp; -ikr) 1(0,4»}( -ike:p(ikr) 1*(0,4» (cos{3 -cos ex)) 

_{21T(eX~(ikr) 8(1T+U-8) 8(v-4» _ exp~ -ikr) 8(zt-O) 8(V-4») 
lkr lkr 

+ exp( ;ikr) 1 (0, 4» }(k2eX~(ikr) 1*(0,4» (cos{3 -cos ex)) J dA 

If (4 ·k 2k2) 
= -tp 8x (cosf3 -cos ex) ;~ 1*(0,4» 8(u-0) 8(v-4»+ 7 1(0,4»1*(0,4» dA 

s 

= 8x k2 P I I (cos ex -cos {3){ 11 (0,4» 12 -(21T/ik) 1*(8,4» 8(u-0) 8(v -4>)} dQ 

= 8xk2p II (cosex-cos{3) 11(8,4»12dQ 

since f3 = ex for ° =U and 4> = v. Hence the force Fa; in the direction of 8x is 

(14) 

(15) 

for unit r.m.s. amplitude ofthe incident potential. From equations (2) this corresponds 
to an energy flux 

pv*.k = pwk, 

so that for unit energy flux, equation (15) becomes 

Fa; = c-1 II (cos ex -cosf3) 11(0,4» 12 dQ. (16) 

In the usual description of scattering, k is taken in the ° = 0 direction and the 
force in the direction of k then becomes 

FII = c-1 II (1- cosO) 11(8,4» 12 dQ, (17) 

since ex = 0 and {3 0, while the force in a perpendicular direction is 

(18) 

where f3 is now the angle between the direction in which F J.. is being evaluated and the 
current radius vector in the solid angle integration. Equations (17) and (18), which 
have been obtained here from the generalized adiabatic theorem, are Westervelt's 
(1951, 1957) formulae for zero absorption. They have the obvious physical interpre
tation (Olsen, Wergeland, and Westervelt 1958) that the force results from the 
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momentum reaction exerted on the scatterer in compensation for the change in 
momentum of the scattered radiation. Although the force equation (1) is in some 
respects of very general applicability, it cannot accommodate dissipation. The 
addition to equation (17) of a term corresponding to the momentum absorbed by the 
scatterer gives Westervelt's results for inelastic scattering. 

III. RADIATION PRESSURE TORQUE 

Let N be the torque about the origin exerted on the scatterer and S0 a vector 
representing a rotation of the scatterer through a small angle se about an axis 
through the origin in the direction of S0. Then, instead of equation (3), we obtain 
from equation (1) 

N. S0 = tp II {(ap/an) sp* -'I' a(Sp*)/an} dA, (19) 
s 

where, as before, S is a large sphere centred on the origin. 
To calculate the torque on the scatterer we take IjJ to be the potential when 

the scatterer is in its initial orientation (i.e. as described by equation (12)) and then 
P+SP must correspond to a solution when the scatterer is rotated through S0. 
The easiest way to find such a neighbouring solution is to rotate both the scatterer 
and the fields together. This is a valid procedure because there is no angular momentum 
associated with the incident plane wave which itself undergoes rotation too. Thus 
the potential P+Sp at some point r on the sphere S arises from the potential 'I' at 
the point obtained by rotating r through -S0, i.e. 

'fJ+SP = R(-00) '1', (20) 

where R(0) 'I' indicates the value of 'I' at a point obtained by rotating through a 
vector angle 0 from the current direction. For functions that can be expanded 
in Taylor series, the rotation operator R can be written as 

R(0) = exp(0. L), L=rx'V. (21) 

The component of the operator L in any direction is the derivative with respect to 
angle about that direction as axis. A familiar explicit form is 

Lx= -(sinc/>:e+cosc/>cote:c/», L y = (cosc/>:e-sinc/>cote:c/», Lz= :c/>' (22) 

For infinitesimal rotations, 

R(00) = 1+00.L (23) 

so that from equa,tions (20) and (23) 

Sp = {R(-00) -1}p = (-00.L)p. (24) 
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Substitution of equation (24) in (19) gives 

N.8e = 8e. tp II {P L(oP*jor) - (oPjor) LP*} dA. (25) 

s 

Because of the relationship of L to infinitesimal rotations, 

II L(hh) dA = 0, or (26) 

s s s 

Using (26), equation (25) can be written in a variety of ways, e.g. 

N.8e = -8e. tp II {(oP*jor) LP + (oPjor) LP*} dA, (27) 
s 

which is equation (15) of Maidanik (1958). 
If N is expressed in terms of the scattering amplitude by substitution from 

equation (12) into (25) then, on retaining only terms of order r- 2, 

N.8e = l p II [{27T(eX~(ikr) 8(7T + U- 6) 8(v-¢»- exp~ :-ikr) 8(u - 6) 8(V-¢») 
2 lkr lkr 

s 

+ exp(~ikr) f(6,¢»} 

X 8e. L{27T( exp( ~ikr) 8(7T+ U- 6) 8(v-¢»+ eXp;ikr) 8(u-6) 8(V - ¢») 

+ ikex;(ikr) f*(6,¢»} 

_{27T(exp;ikr) 8(7T+U - 6) 8(v - ¢» + eXp(~ikr) 8(u - 6) 8(V-¢») 

_ ik exp; -ikr) f (6, ¢»} 

X be. L{27T(eX~(ikr) 8(u-6) b(V-¢» _ exp~ -ikr) 8(7T+ U- 6) 8(V- ¢») 
lkr lkr 

(28) 

In equation (28) only terms in f(6, ¢» contribute since, physically, N is zero when 
fis. To mathematically interpret the operation of 8e. Lon 8-functions, it is necessary 
to use the more basic definition 1- R( - 8e) implied by equations (24). Thus 

N.8e = p II [27T{f(6, ¢» 8e. LO(u-6) 8(v-¢» - 8(u - 6) 8(v - ¢» 8e. Lf*(6, ¢>)} 

+ ikf(6,¢» 8e. Lf*(6,¢»] dQ, (29) 
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or, by virtue of equations (26), 

N.00 = -27Tp II 0(u-8)0(v-~)00.L{f(8,~)+f*(8,~)}dQ 
+ikp II f(8,~) 00. Lf*(8,~) dD. 

Since this is true for all 00, 

N= -47TpRe(Lf(8,~)L~u +ikp IIfLf*dQ, (30) 
¢~v 

which is Maidanik's (1958) result. For unit incident flux, 

N= -(47TCjw2)Re(Lf(8,~)t~u +(ijw)II fLf*dQ. (31) 
¢~v 

The second term in equation (31) is the reaction to the angular momentum carried 
off by the scattered field, while the first term represents the interference between the 
scattered wave and the outgoing component of the incident plane wave. 

An alternative derivation, which initially yields a different expression for the 
torque N, is obtained by regarding the direction of the incident plane wave as 
unchanged in the variation. The scattering amplitude is then best regarded asf (k, 8, ~), 
that is, as a function of both (8,~) and k in the body fixed axes. As well as the rotation 
operator used above, a corresponding operator Lk for changes in the k direction is 
required. Since only the scattered wave undergoes change, we have, for substitution 
in equation (19) OP = oPs, where o'['s is composed of two contributions: 

(1) the incident wave arriving from a different direction relative to the body, and 

(2) the radiation scattered relative to the body being rotated relative to the 
fixed surface of integration. 

The combined effect of these when the scatterer is rotated through 00 is 

oPs = -r-lexp(-ikr)00.(L+Lk)f(k,8,~) (32) 
with 

(33) 

Substitution of equation (32) into (19) leads to 

N = ikp II f(L+Lk)f* dQ -27TP II 0(u-8) o(v-~) (L+Lk)f* dQ. (34) 

However, the generalized optical theorem for elastic scattering (Schiff 1968) may be 
used to show that 

II f Lkf* dQ = (27Tjik) II 0(u-8) o(v-~) (Lkf* -Lf) dQ, (35) 

which may then be used to eliminate Lk from equation (34), thus reducing it to the 
previously obtained equation (30). 
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Alternatively, although it cannot be entirely eliminated, L can be removed 
from the interference term to give 

N = 2kp f f Im(f*(tL+Lk)J) dQ -hpRe( LkJ L~u (36) 

¢~v 

as another form for the radiation pressure torque. In this case, the interference term 
depends on the variation of the forward scattering amplitude as the incident wave 
is rotated. 

IV. CONCLUSIONS 

A generalized radiation pressure force theory has been applied to the calculation 
of forces and torques exerted on a scattering body and the expressions of Westervelt 
(1951, 1957) and Maidanik (1958) for the average force and torque on a non-absorbing 
scatterer have been obtained. For the radiation torque, some alternative formulae, 
which depend on variations in the scattering amplitude for changes in the direction 
of the incident plane wave, have also been obtained by means of the generalized 
optical theorem. 

Although the generalized radiation pressure theory may be applied to an acoustic 
system of arbitrary complexity, it is strictly valid only when dissipation is absent. 
In the present application the scattering is required to be elastic, i.e. the net average 
energy flux to the scatterer is zero. On the other hand, Westervelt's and Maidanik's 
methods, although effectively limited to simple systems (e.g. single scattering), can 
accommodate absorption by the scatterer. In all cases, however, the assumption of 
zero absorption in the medium is made. Radiation pressure is usually discussed 
using some such idealized model and if there is any significant departure from ideal 
behaviour it may sometimes be estimated as a correction. However, within its domain 
of applicability the present generalized theory has been shown to include the Wester
velt and Maidanik formulae as special cases. 
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