Corrigenda

Volume 24, Numbers 2 and 4

"Observations at 408 MHz of radio sources from the $4 C$ catalogue." By R. E. B. Munro

$$
\begin{aligned}
& \text { "I. Declination range }-7^{\circ} \text { to }-3^{\circ} . " p p .263-91 \\
& \text { "II. Declination range }-3^{\circ} \text { to } 0^{\circ} . " p p .617-30
\end{aligned}
$$

Owing to an error in the computer program used to produce Table 4 of Part I and Table 1 of Part II, the quoted declination errors are generally too small. A firstorder correction may be effected by multiplying the quoted errors by $(\sec z) /(\sec \delta)$, where z is the zenith angle and δ the declination. This correction factor leads to a slight overestimation ($\leqslant 12 \%$) for the stronger sources.

Volume 24, Number 5

"Tetrads, anholonomic coordinates, and space-time geometry." By the late K. M. Gatha and R. C. Dutt. pp. 631-52

Page 639, equation (50). $L_{\nu, \omega}^{\mu}+L_{\omega, \nu}^{\mu}$ should read $M_{\nu \omega}^{\mu}+M_{\omega \nu}^{\mu}$
Page 640, equation (52). $L_{\nu, \omega}^{\mu}+L_{\omega, \nu}^{\mu}$ should read $M_{\nu \omega}^{\mu}+M_{\omega \nu}^{\mu}$
equation (53). $L_{b, d}^{c}+L_{d, b}^{c}$ should read $M_{b d}^{c}+M_{d b}^{c}$
first line after equation (53). $L_{b, d}^{c}$ should read $M_{b d}^{c}$
Page 645, first line after equations (100). $L_{\mathrm{g}}^{\phi \sigma}$ should read ${ }^{a} L_{\mathrm{g}}^{\sigma}={ }^{a} h_{\phi} L_{\mathrm{g}}^{\phi \sigma}$
Page 646, equations (101). Replace the second, fifth, sixth, seventh, and eighth lines by respectively:

$$
\begin{aligned}
{ }^{1} L_{\mathrm{g}}^{12} & =\cot \phi^{2} L_{\mathrm{g}}^{12}=-\cot \theta \cos \phi^{3} L_{\mathrm{g}}^{12}=\frac{2 \cos \theta \cos \phi}{\lambda^{2} r}\left(\frac{\mu^{\prime}}{\mu}-\frac{\lambda-1}{r}\right) \\
{ }^{2} L_{\mathrm{g}}^{31} & =-{ }^{2} L_{\mathrm{g}}^{13}, \quad{ }^{0} L_{\mathrm{g}}^{0}=-4(\lambda-1) \mu^{\prime} / \mu^{2} \lambda^{2} r, \\
{ }^{1} L_{\mathrm{g}}^{1} & =\cot \phi^{2} L_{\mathrm{g}}^{1}=\tan \theta \cos \phi^{3} L_{\mathrm{g}}^{1}=-\frac{4(\lambda-1) \sin \theta \cos \phi}{\lambda^{3} r}\left(\frac{\lambda-1}{r}-\frac{2 \mu^{\prime}}{\mu}\right), \\
{ }^{1} L_{\mathrm{g}}^{2} & =-\sin \theta \cos \theta \cot \phi^{1} L_{\mathrm{g}}^{3}=\cot \phi^{2} L_{\mathrm{g}}^{2}=\sin \theta \cos \theta^{2} L_{\mathrm{g}}^{3} \\
& =-\cos \phi \cot \theta^{3} L_{\mathrm{g}}^{2}=-\frac{2(\lambda-1) \cos \theta \cos \phi}{\lambda^{2} r^{2}}\left(\frac{\lambda-1}{r}-\frac{\mu^{\prime}}{\mu}\right),
\end{aligned}
$$

Page 649, equation (132). $a^{h^{\nu}}$ should read $a h^{\nu}$
Page 650, equation (134). $-\delta_{\mu}^{0} M c$ should read $\delta_{\mu}^{0} M c$ sixth line after equation (137). Delete homogeneous,

