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Ab8tract 

A continuum theory of surfaces is developed for fluids near their critical 
points. The free energy of the fluid interface is considered to consist of two terms: 
the self free energy of inhomogeneity and an energy of interaction across the inter­
face due to van der Waals forces. This second term is computed via the principles 
of Lifshitz theory and gives a physical basis to Widom's modification of the Cahn­
Hilliard theory of surfaces. The scaling laws as derived by Widom are recalculated, 
and several differences from the Ol'iginallaws emerge. The theory permits calculation 
of absolute values of surface tensions and interface widths near the critical point 
from experimental dielectric and free energy data. Furthermore, the fluids con­
sidered are not necessarily simple fluids where only pairwise forces' are important. 

1. INTRODUCTION 

It is now well established experimentally that the bulk properties of two 
phases in contact are not discontinuous but have a transition layer in which the 
various parameters characterizing the phases change continuously (e.g. Huang and 
Webb 1969). The width l of this layer is determined once the temperature T and 
pressure P of the system are specified. This width becomes very large as the critical 
temperature T c is approached, and its temperature dependence is generally charac­
terized by a negative critical exponent, - v. 

The original theory of interfaces that was valid near the critical point was put 
forward by van der Waals (1894) and was extended significantly by Cahu and 
Hilliard (1958). These authors assumed that the free energy density of an inhomo­
geneous system could be expanded in a Taylor series in terms of the density gradients 
which were taken to be small. Widom (1965a) criticized this theory and showed 
that it leads to a scaling law relating the critical exponent v to .that for the surface 
tension, fL' which is not consistent with either experiment or numerical calculations. 
By replacing the Cahn-Hilliard hypothesis with the assumption that the free ~nergy 
associated with an inhomogeneity of volume l3 in the fluid remains finite as the 
critical temperature is approached, he deduced the now generally accepted scaling 
laws. While this theory has been remarkably successful, the several hypotheses which 
form its foundations are at best only plausible and unfortunately the theory has seen 
little further quantitative expression or refinement. 

It is well known that the free energy of a homogeneous fluid is mainly due to 
the intermolecular or van der Waals forces between the molecules. Surface tension 
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arises when a spatial inhomogeneity in the fluid upsets the balance of these forces. 
Fowkes (1962,1963,1964) has attempted to derive a set of rules for the determination 
of interfacial tensions in liquid-liquid interfaces using the measured surface tension 
of the liquid-vapour interface. He considered the interfacial tension to be just the 
sum of the surface tensions of each liquid in the presence of its vapour (i.e. due to the 
pull of the bulk of the liquid on the surface molecules) less the sum of the dispersion 
forces between two liquids across the interface (i.e. due to the pull of the one liquid 
on the molecules of the other across the interface). In order to determine the inter­
facial or surface tension of fluid interfaces near the critical point of the system, a 
different means of calculating the van der Waals forces must be used. This is because 
the interface is diffuse and is spread over many intermolecular distances. Thus we 
turn to Lifshitz theory of van der Waals forces which enables us to calculate the 
free energy of interaction of two bulk phases across a given spatial inhomogeneity. 
Lifshitz (1956) first calculated the van der Waals interactions of two bulk media 
across a vacuum, the physical meaning of which is relatively simple to understand. 
However, this method has been extended (Dzyaloshinskii and Pitaevskii 1959) 
to include all types of inhomogeneous systems where the region between the two 
phases is filled with a third medium which mayor may not be homogeneous. In this 
case the van der Waals interactions of the two bulk phases are again present, even 
when one phase is a vacuum. Thus a finite contribution to the van der Waals free 
energy comes from the intervening medium. We attempt in Appendix II to explain 
the physical significance of the interactions in this general case. 

The free energy of interaction as calculated by Lifshitz theory is not quite the 
same as that used by Fowkes (1962, 1963, 1964). With an appropriate choice of a 
self free energy of the fluid system, which is a free energy calculated as if there were 
no inhomogeneity present, we should by simple addition be able to determine the 
total free energy of an inhomogeneous fluid. 

Besides allowing a physical interpretation to be placed on all components of the 
free energy of inhomogeneity in fluids, Lifshitz theory uses measured dielectric data 
for the fluids, and thus includes all many-body effects that are not accessible by 
pairwise summation techniques. The full theory has been reviewed by Dzyaloshinskii, 
Lifshitz, and Pitaevskii (1961), and has been much extended and simplified by others 
(Ninham and Parsegian 1970a, 1970b, 1970c; Parsegian and Ninham 1970; Richmond 
and Ninham 1971a; Davies and Ninham 1972; Mitchell and Ninham 1972). 

The outline of the present paper is as follows. In Section II the fundamental 
assumptions of Widom's theory are discussed and equations are derived for the free 
energy of an inhomogeneous fluid using our hypothesis. Theoretical values of inter­
face widths and surface tensions for nitrogen, argon, and xenon liquid-gas mixtures 
are calculated in Section III. These values are compared with experimental results 
and are shown to agree to within an order of magnitude. In Section IV the scaling 
laws which follow from the present theory are derived and shown to be in agreement 
with experiment. Finally, in Section V some observations are made concerning 
modifications which become necessary very near to the critical point. The scaling 
laws can be expected to change their form and acoustic fluctuation forces may become 
important, leading to the possibility of flat-topped coexistence curves in some, but 
not all, liquid-gas or binary mixture systems. 
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II. GENERAL FORMULATION 

Consider a liquid and its vapour in equilibrium at pressure P and temperature 
T in a vertical container of length Ll + L2 and constant cross section of area A. The 
planar liquid-vapour interface is perpendicular to the z axis and the density P of the 
system has some profile as indicated schematically in Figure 1. The system is oriented 
so that as z ~ -L2 (L2?> l) the density approaches that of the bulk liquid PI, and as 
z ~ +Ll (Ll?> l) the density tends to that of the homogeneous vapour pg. The 
thickness l shown would lle a reasonable (albeit arbitrary) choice for the interface 
thickness. The division between the two phases, i.e. the position of the plane z = 0, 
can be fixed as usual by the Gibbs criteria (Landau and Lifshitz 1959) 

(la, b) 

where V and N are the total volume and total number of molecules in the system. 
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Fig. I.-Schematic diagram of the 
variation of both the density p and 
dielectric susceptibility E in the 
system described in Section II. 
Also shown are the single step and 
constant gradient interfaces used in 
the calculations and discussions. 
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It is clear that the density profile p = p(z, l) must also satisfy the relation 

fL I 

A -L p(z, l) dz = N. 
2 

(2) 

From equations (la) and (2) and the fact that N is a constant for the system 
we have 

fo ILl 
{p(z, l) - PI} dz + {p(z, l) - pg} dz = 0 . 

-L2 0 
(3) 

This equation states that the shaded areas in Figure 1 are equal. With this choice 
of the Gibbs dividing surface, the surface tension a is given by (Cahn and Hilliard 
1958) 

(4) 

where F(l) is the total free energy of the inhomogeneous system and fg and fl are the 
bulk free energy densities of the gas and liquid respectively. 
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The basic assumption of Cahn and Hilliard (1958) and Widom (1965a) is that 
F(l) in equation (4) can be separated into two terms: 

F(l) = Fo(l)+Fl(l). (5) 

The first term Fo(l) is a "self" energy term which is the energy of the fluid calculated 
as if the inhomogeneity were not present. Widom points out that this term (which 
is proportional to l) cannot represent the total free energy associated with the inter­
face since the surface tension would achieve a minimum when the interface is infinitely 
sharp, that is, 1 = O. The second term is essentially mathematical in character for 
the Cahn-Hilliard theory. This term arises from a Taylor expansion of the free 
energy in powers of the density gradients, and is taken to be the first (supposedly) 
nonzero term. Widom rewrites this term as 

foo 
2 2 

Fo(l) = -00 K{V p(z, l)} dz "-' K(Clp) Il, (6) 

where Clp is the difference in density between the two bulk phases and 1 is the "range" 
or thickness of the interface. The coefficient K is a parameter whose temperature and 
density dependence is unknown, and must be fixed by experiment and guesswork 
(Rice 1960). The term is primarily introduced to provide a repulsive force which 
stabilizes the interface against the attractive self energy term. For this reason the 
parameter K in equation (6) must be positive. 

Thus Cahn and Hilliard's (1958) theory introduces a second term into the free 
energy expression (5) which has no physical basis, and is difficult to determine experi­
mentally or theoretically. Widom's (1965a) extension to this theory has physical 
significance but is not directly amenable to quantitative calculations. We have noted 
that the self energy term Fo is the free energy of the fluid calculated as if the inhomo­
geneity were not present, and represents an attractive force. The van der Waals 
interactions as calculated by Lifshitz theory only arise when an inhomogeneity is 
present, and are repulsive when the density changes monotonically from one phase 
to the other. While the self energy represents the total energy density of the fluid 
summed over each microscopic subvolume of the fluid, the Lifshitz interactions 
represent the energy required to rearrange a homogeneous fluid to give an inhomo­
geneous fluid. We postulate that these two contributions are distinct and together 
make up the total free energy. We propose therefore that 

fL I 

F(l) = Fo+Fl = A -L l{p(z, l)} dz +AH(l, T)lz2 , 
2 

(7) 

where Fo is identified with the self energy term used by Cahn and Hilliard (1958) 
and Widom (1965a). We follow them in leaving open the question of whether in any 
real system the free energy density f(p) has a complete analytical continuation 
p(p) into the unstable two-phase region (Fig. 2). The second term is the Lifshitz 
interaction energy written in a standard form with a generalized Hamaker constant 
H defined by this equation (7). This H has no physical significance of its own, but 
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III special cases (Appendix I) it is a constant representing the strength of the 
Lifshitz interactions. The Lifshitz energy may be calculated from the dispersion 
relation for electromagnetic surface waves in the system (van Kampen, Nijboer, 
and Schram 1968). In fact the l-2 form for this energy may be deduced from dimen­
sional arguments. 
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Fig. 2.-Variation of the 
thermodynamic free energy 
density f(p) (solid curve) at a 
fixed temperature below the 
critical temperature; it is 
linear in the two-phase region 
pg < p < pl. The dashed 
curve is the continuation into 
the two-phase region. 

In principle the density profile p(z, l) may be calculated by minimizing the free 
energy with respect to variations in p subject to the constraint equation (3). We 
shall simplify the analysis by using where necessary model profiles, and simply mini­
mize the total free energy with respect to l to determine the optimal interface thick­
ness lo after the manner of Widom (1965a). Since H is calculated from experimental 
dielectric data for the fluids in the system, € must be known as a function of p. We 
shall assume that this dependence is linear for simplicity (this is almost certainly 
true for nonpolar fluids, and may be nearly true for polar fluids near the critical 
point). The free energy density Jf(p) will also need to be calculated from an appro­
priate model as sufficient experimental or Monte Carlo data are not available to 
permit deduction of the analytical continuation into the two-phase region. 

III. NUMERICAL CALCULATIONS WITH CRUDE MODEL INTERFACES 

(a) Determination of Interface Widths 

We now wish to compare the surface tensions and interface widths calculated 
from our theory with experimental values measured near the critical point. We 
assume that: (i) the shape of the interface is the same at all interfacial widths, that 
is, 

p(z, l) = p(zjl) and €(z, l) = €(zjl) , 
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and (ii) the interface is not wide enough for retardation effects to predominate. It is 
shown in the first section of Appendix I that H is independent of l in this case. Thus 
equation (7) becomes 

IL, 

F(l) = A -L f{p(z/l)} dz +AH(T)/l2 . 
2 

(8) 

Minimizing this with respect to l and allowing Ll and L2 to approach infinity, we have 
the equilibrium interface width 

lo = (2H/D)! , (9) 

where 

(10) 

and u = z/l. Equation (4) yields the surface tension 

a = 3H/l~. (11) 

Note Added in Proof 

Rusanov (1971; Recent Prog. Surface Membrane Sci. 4, 59) has put forward a 
theory of fluid interfaces which is based on long range van der Waals forces. He 
derives an interface width lo identical with our equation (9) by using rigorous statis­
tical mechanical techniques. This gives rise to the same scaling laws as the present 
results (see Section IV). 

(b) Widom's Theory of Free Energy 

The self energy term Fo requires a knowledge of both the interface shape 
p(z/l) and the free energy density f of the homogeneous fluid with its analytical 
continuation into the two-phase region. Widom (1965b) has proposed a general 
form for the chemical potential of fluids near the critical point, which is suitable for 
use here. A difficulty with this chemical potential is that it is in terms of an unknown 
function of density and temperature, which has only a few restrictions on its form. 
Griffiths (1967) has examined the suitability of several different functions and Fisk 
and Widom (1969) have given a further set of functions which can be used in a 
practical calculation. Unfortunately they are all arbitrary to some degree. 

Widom's (1965b) postulate reduces to 

where T(p) = Tc-a(p_pc)l/P is the equation for the temperature along the coexis­
tence curve andj is an arbitrary function of {Tc-T(p)}/(Tc-T). Here p is the density, 
T is the temperature, fL is the chemical potential, y and (3 are critical exponents, and 
a is a constant, while the subscripts c refer to values at the critical point. The 
Helmholtz free energy density f(p) is given by fL = (8f/8p)T, so that equation (12) 
gives 

f(p)-f(pc) = (I-T/Tc):;+Yj(l)f Y y'q(y') dy' + (I1T{ fL(Pc,T)y, (13) 
ya 0 a 
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where 
q(y) = y(y1/P-l)j(y1/P)fj(I) , (14,15) 

andj(l) is a constant. 
From equations (10) and (13) and the condition (3) we get 

where 

B = f W(f1 xq(x) dx -fY(-U)xq(X) dX) du 
o y(u) -1 

(17) 

is a constant depending only on the functional form q(x) for the chemical potential 
and the equation y(u) of the interface profile. Here u is the scaled distance z/l as 
used in equation (10). Fisk and Widom (1969) used the function 

q(x) = l-x4, 

which satisfies experiment and most of the mathematical thermodynamic conditions 
for the chemical potential. The interfacial profile y(u) which they derived has been 
shown by Huang and Webb (1969) to fit experiment reasonably well, and so we 
shall use their value B = 0·31 directly in equation (16). With the relationships 

for the compressibility and 

a2P = 4(I-T/Tc)2P/(Pl-pg)2, 

derived from Widom's (1965b) equation of state (12), we may write (16) as 

(18) 

This is now suitable for use with experimental density and compressibility data. 

(c) Calculation of Lifshitz Free Energy 

The Hamaker constant H was calculated using a different model interface for 
which the mathematics and numerical computations are not too complicated (see 
Appendix I). This model was the constant gradient interface as shown in Figure l. 
It approximates the interface by a linear interpolation between liquid and gas 
densities over the distance l. The present use of two different models to calculate 
the self energy and van der Waals energy contributions is not inconsistent as the two 
calculations are completely independent. 

Numerical values of the Hamaker constant derived in Appendix I were calcu. 
lated by computer using the dielectric susceptibilities for liquid 

El(ign ) = ED = 1+(ni-l)/(I+g!/w2) , 

= Ep = 1+47TNe2/mg!, 

= [{ Ep(W')- ED(W)}/(W' -w)](gn-W)+ED(W) , 

gn < w, 

gn> w', 

W < gn < w', 

(19a) 

(19b) 

(19c) 
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and for gas 
Eg = 1. 

The expression (19a) is an adapted Lorentz representation appropriate to a nonpolar 
fluid with only a single ultraviolet absorption at frequency w; here nR is the 
refractive index and w = eI In is the absorption frequency, I being the ionization 
potential of the fluid molecules and e the electronic charge. The second representation 
(19b) is the plasma dielectric susceptibility due to the electronic cloud around the 
molecules; here N is the number density of the electrons and m is the electronic 
mass. In the region between wand Wi the electronic spectrum is usually very com­
plicated, and we have chosen a linear interpolation after the suggestion of Ninham 
and Parsegian (1970a). This choice is arbitrary to some degree and will introduce an 
uncertainty in the non-retarded calculations of van der Waals forces. This is of no 
importance in an order of magnitude calculation. 

We have taken values of refractive index in (19) which are appropriate to 
temperatures far from the critical point. This is to avoid the influence of critical 
fluctuations in dielectric susceptibilities which make calculations of the Hamaker 
constant difficult. The effect of fluctuations on scaling laws is estimated qualitatively 
in Section IV. For numerical calculations, however, we need to concentrate on 
regions where these fluctuations are small but where the approximation (i) in Section 
III(a) for the density profile is still reasonable. These calculations may then be 
extrapolated using scaling laws derived in Section IV. The fully quantitative 
calculations including fluctuations must await further developments in Lifshitz 
theory. 

(d) Data Used in Calculations 

The results of the theoretical calculations of Hand D are listed in Table 3 for 
the liquids nitrogen, argon, and xenon. Values of H for the polar liquid mixtures 
cyclohexane-methanol and cyclohexane-aniline were calculated from modified forms 
of equations (19) to account for the large microwave contributions to the dielectric 
susceptibility. 

Experimental data used in the calculation of Hand D are given in Table 1. 
Inthis table each entry for the density and compressibility is the factor ~o and the 
accompanying value in parentheses is the experimental critical exponent 8 in the 
scaled equation 

where ~ is the quantity appropriate to each column. (This scheme is repeated for the 
experimental values in Tables 2 and 3.) For the calculations of H, dielectric data 
were taken from Hodgman et al. (1971). The refractive index of liquid xenon was 
taken from Garside, Molgaard, and Smith (1968). For the calculations of D, com­
pressibility data for xenon were from Smith and Benedek (to be published) and for 
nitrogen and argon from Fisk and Widom (1969) and Buff and Lovett (1968) respec­
tively, while density and surface tension data were from Smith, Gardner, and Parker 
(1967) but for xenon from Zollweg, Hawkins, and Benedek (1971). The data for the 
correlation length g for nitrogen and argon were taken from Fisk and Widom (1969). 
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They calculated g values from compressibility data, which in turn were calculated 
by numerical differentiation of PVTdata (Thomas and Schmidt 1963, 1964). The 
latter are not very reliable estimates. The correlation length data for xenon were 
taken from Giglio and Benedek (1969). By far the most accurate compressibility 
data in Table 1 are for xenon. The calculated values of interface width lo and surface 
tension a as functions of temperature are given in Table 2. 

TABLE 1 

DATA USED IN OALOULATIONS 

The values in parentheses are the measured critical exponents (see Section III(d)) 

Fluid Pl-pg (g cm-3) p2X(p) (g2 erg-1 cm-3) nR I (eV) 

Nitrogen l·ll (0·317) 6·39 X 10-10 (-1·23) 1·2053 14·53 
Argon 1·88 (0,341) 5·48x 10-11 (-1·24) 1·23 15·755 
Xenon 3·98 (0·345) 3·46x 10-10 (-1·21) '1·2 12·127 

TABLE 2 

OOMPARISON OF EXPERIMENTAL AND THEORETICAL VALUES OF INTERFAOE WIDTH 10 AND SURFAOE 
TENSION a 

The experimental interface widths are taken to be 10 = ../24~, where ~ is the correlation length, 
as discussed in the text. The values in parentheses are the measured critical exponents 

Fluid lo(exp.) (A) lo(theory) (A) a(exp.) (ergcm-2) a(theory) (ergcm-2) 

Nitrogen 5·14 (-0'624) 6·59 29·1 (1,241) 37·6 
Argon 3·09 (-0·64) 5·18 38·1 (1'281) 106·4 
Xenon 6·81 (-0'598) 5·89 62·9 (1' 302) 89·7 

(e) Experimental Interface Widths 

In order to compare the theoretical values of lo with correlation length data, 
it is necessary to relate the two. Huang and Webb (1969) considered this problem 
and proposed several different definitions of interface width in order to find a suitable 
measure. The "exponential" definition is: as z --+ 00 say, the interfacial profile 
p(zjl) will ha.ve the asymptotic form 

Pl- p(zjl) ,..." K exp( -zjl') , 

where K is a constant. The interface width l' defined through this relation is identical 
with the correlation length g (Fisk and Widom 1969).' The second definition we con­
sider is the "central gradient" definition: the interface width lo is defined as the 
width of a constant gradient interfa,ce having the same slope as that of the real 
interface at the origin.z = O. This latter definition is identical with that of our model 
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interface used to calculate the Hamaker constant. Now the relation between these 
two definitions of interface width lo and l' depends on the actual interfacial profile. 
For the tanh profile, derived from Oahn and Hilliard's (1958) theory of interfaces 
applied to a classical van der Waals liquid, we have 

l' = g = lo/4. 

~ut for the Fisk and Widom (1969) profile, which we used for our calculations of D, 

l' = g = lo/..j24. (20) 

For other profiles, Huang and Webb (1969) have given a list of connecting factors 
between g and lo. Because the Fisk and Widom profile appears to fit the Huang and 
Webb experimental data closely, we assume this to be the actual profile and use the 
relation (20). This is of course another source of error in our comparison of theory 
and experiment. Again we emphasize that these errors will be unimportant in an 
order of magnitude calculation. 

TABLE 3 

COMPARISON OF EXPERIMENTAL AND THEORETICAL VALUES OF HAMAKER CONSTANT H AND SELF 

ENERGY FACTOR D 

Two binary mixtures for which free energy data are not available are also compared. The values 
in parentheses are the measured critical exponents 

Fluid 
H(exp.) H(theory) D(exp.) D(theory) 

(10-16 erg) (10-16 erg) (108 ergcm-3) (108 ergcm-3 ) 

Nitrogen 254 (-0·001) 544 3·771 (1·865) 3·49 
Argon 120 (0·001) 952 8·229 (1·92) 11·27 
Xenon 973 (0·106) 1040 6·158 (1·9) 10·14 
Cyclohexane-methanol 578-3024 (-0 ·11) 440 
Cyclohexane-aniline 1838 (0·16) 488 

(f) Compari8on of Theory with Experiment 

In Table 2, the experimental interface widths lo = ..j24 g and surface tensions 
are compared with theoretical values from equations (9) and (11), while in Table 3 
theoretical values of the Hamaker constant H and self energy term D are compared 
with the experimental values 

D = iu/lo = u/..j54 g. 

This latter separation allows the comparison of each of the two independent calcula­
tions in our theory. The experimental value of H for argon is low by a factor of eight, 
but in general the order of magnitude comparison is very good. This indicates 
that dispersion forces, if not the only contributing force, at least give a substantial 
contribution to the stability of the interface in fluid systems. 
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IV. SCALING LAW ANALYSIS 

We now consider the consequences of our theory. The critical exponents 
JL, v, and v are defined by 

which immediately give the scaling laws from equation (9) 

3v = 2f3+y-v (21) 
and from equation (11) 

JL = 2v+v. (22) 

Eliminating v from these equations gives 

which is one of the scaling laws postulated by Widom (1965a) to be common to all 
theories of surfaces. To find the exponent v we must look very closely at the expres­
sions for the Hamaker constant H. It is possible to show analytically that to a good 
approximation 

(23) 

for our model interface. We expect this to be true for any type of interface near the 
critical point. In polar fluids the actual temperature dependence of El- Eg is uncertain, 
although some experimental work suggests that it may be divergent with a similar 
power law type of singularity to that of the specific heat (Arkhangelski and 
Semenchenko 1967; Snider 1971). In nonpolar liquids Garside, Molgaard, and 
Smith (1968) have demonstrated that to very good accuracy 

(24) 

where the critical exponent f3 Rj -~. This means that v as given via equation (23) is 
of the order of 0'7, which is well in excess of the value of v deduced from any 
experiment. 

It is possible that the discrepancy lies in the neglect of fluctuations in the 
system. The self energy includes implicitly all those fluctuations which would occur 
in a homogeneous system. We need some estimate of the difference between the 
root mean square amplitude of fluctuations in the actual system and those in the 
virtual homogeneous system. We now postulate that the temperature dependence 
of H is not that defined in equation (23) but is in fact 

(25) 

where the subscript h refers to the homogeneous system and v is the fluctuation 
amplitude p-<p) at some representative point in the interface, most likely where 
the fluctuation amplitude is a maximum. The Ornstein-Zernike fluctuation theorem 
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(Landau and Lifshitz 1959, Section 115) states that 

(26) 

where p = p( rl) and V is some small volume in the fluid. The subscript 1 refers to 
fluctuations in a fluid of average density <p(rl). The first relationship states that 
the mean square fluctuation amplitude at any point in the homogeneous fluid is the 
sum of all correlations over the volume V. If We extend this idea to inhomogeneous 
systems, we may generalize equation (26) to 

(27) 

where V2 is the fluctuation in a fluid of mean density <p(1'2)' Now define 

so that using (27) 

<vl(rl)2) = <vl(r1)2)h+f v <vl(rl) ov(r2) V-I dr2. (28) 

Taking the square root of both sides of (28) gives 

If we now expand the square root, substitute into equation (25), and neglect higher 
order terms, we have 

H oc 1 2 (f <Vl(rl) OV(~2) v-I dr2)2 (29) 
<vl(rl)h v 

Expanding about Zl. 

d ( ) Z2-Z1d<vl(rl)2) 
<vl(rl) ov(r2) = (Z2-Z1)dz2 <vl(r])v2(r2)Z2~ZI' + ... = ~ dZl + ... , 

and equation (29) becomes 

(30) 

The volume V is just the volume of the interface V = Al and, since 

by symmetry, we have 
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All higher order terms in the expansions here have been neglected since they are 
smaller than the first term near the critical point. Now 

to first order, so that from equation (26) 

( ~ )2 {d (kT/X(p))}2jkT/X(p) op fluet ex Zl- ---
dZl V V 

where T2 is a term in X'(p). Here the first term is a maximum for Zl ,....., l, and the 
second term is of the same order as the first term, so that we have finally 

H ex (2kT/Al)x(p) (ldp/dz)2 ex !::..T2jJ-y+v 
or 

v = 2j3-y+l'. (31 ) 

Putting the scaling law (31) into equation (21) gives 

1'= ty, (32) 

which is that derived by Widom (1965a) on the assumptions of Oahu and Hilliard's 
(1958) theory. This scaling law does not hold in such rigorous model systems as the 
Ising model. We note, however, that a very recent experiment of Zollweg, Hawkins, 
and Benedek (1971) showed that for xenon the critical exponents were 

tt = 1·302±O·006, 1'= O'57±O'05, y = 1·21±O·03, j3 = O·345±O·Ol, 

which gave 

tt+I'-(y+2j3) = -O'03±O'06, tt--21' = O·16±O·1, y-21' = O·07±O·13. 

For this experiment the scaling law 

tt = 21' 

does not hold within experimental error, but the scaling law of Oahn and Hilliard 
(equation (32)) holds well. It seems possible that, for various different real fluids, 
scaling laws and critical exponents will also be different. We also note that another 
recent experiment with carbon dioxide (Lunacek and Oanell 1971) yields values of 
v and y which do not satisfy equation (32) to within experimental error. A value for tt 
has not yet been accurately measured in this case. 

The purpose of this section has been to demonstrate that scaling laws derived 
from our theory are not completely inconsistent with experiment. The Taylor 
expansions used to derive these scaling laws may not be valid, as was pointed out by 
Widom (1965a) concerning the Taylor expansions in the Oahn-Hilliard (1958) theory. 
More work needs to be done in this area. 



380 K. W. SARKIES, P. RICHMOND, AND B. W. NINHAM 

V. DISOUSSION 

Besides the scaling laws discussed in the previous section, several other 
speculations may be made about the consequences of our theory. 

(a) Retardation Effects 

As the critical point is approached and the interface width l increases, retarda­
tion effects in the van del' Waals interaction will become important. We expect this 
to occur when l ~ 100 A. Determination of the temperature dependence of the 
Hamaker function H(l, T) is difficult, as we have noted, but we can state qualitatively 

10 

10-6 '----__ -'---__ -'---__ -'---__ -'---_--' 

1 10 10 2 103 104 !O5 

(A) 

Fig. 3.-Functional dependence of 
van der Waals or Lifshitz energies 
with the interface width l on a 
log-log plot. The interaction 
energies are calculated from a single 
step interfacial profile model for 
mixtures of cyclohexane (C) with the 
two polar fluids methanol (M, EO = 32) 
and aniline (A, EO = 6) and for 
the nonpolar fluid argon (EO = 1· 513). 
The differences in retarded 
behaviour are clearly shovnl 
by these curves. 

how the force changes as the critical point is reached. For simple fluids such as argon 
and xenon which have a step interface profile as in Figure 1, retardation effects lead 
to an interaction energy proportional to l-3. This behaviour is shown for argon in 
Figure 3. For more complex polar fluids, retardation effects will not cause the van 
del' Waals force to decrease as rapidly with l as for nonpolar fluids, since a new com­
ponent of the energy, due to Debye relaxation of permanent dipole moments, will 
become important. This contribution is proportional to l-2 but the proportionality 
constant is somewhat reduced from the Hamaker constant. The resultant behaviour 
of the van del' Waals interaction energy is illustrated again in Figure 3 for the two 
polar fluid mixtures cyclohexane-methanol and cyclohexane-aniline. The latter 
system has been studied by Atack and Rice (1953, 1954). Because aniline is less 
polar than methanol, the kink in the curve around l ,...., 100 A is larger. 

Thus for the nonpolar fluid 8ystems where the van del' Waals energy becomes 
proportional to l-3, the scaling laws deduced above will break down. It is not possible 
to perform full calculations of van del' Waals forces in continuously inhomogeneous 
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systems. However, if they are approximated by "cell" type interfaces made up of 
many small regions of constant average density, full retarded calculations may be 
performed. The work of Ninham and Parsegian (1970a, 1970c) illustrates that in fact 
the same qualitative conclusions will carryover to this more general case. 

(b) Flat-topped Coexistence Curve 

The self energy Fo and the van der Waals interaction energy F1 need not be 
the only energies which contribute to the stability of the interface. Dzyaloshinskii, 
Lifshitz, and Pitaevskii (1961) at the end of their review suggest that an interaction 
energy may arise from acoustic fluctuations. Although this certainly contributes 
to the forces acting in the fluid close to the critical point, no quantitative predictions 
of its magnitude are possible. However, these authors do show that for a step interface 
the force takes the form 

FA = AHAll2 , 

with the "acoustic" Hamaker constant 

where n is the zero-frequency acoustic refractive index and the suffixes 1, i, and g 
refer to liquid, interface, and gas respectively. The major difficulty here is to under­
stand how ni varies across the interface of a liquid-gas or binary liquid mixture system. 
If it varies monotonically as do the density and dielectric susceptibilities, then the 
energy FA will be repulsive and simply add to the electromagnetic Lifshitz energy. 
We had previously assumed (Sarkies, Ninham, and Richmond 1971) that the acoustic 
refractive index in the interface would rapidly attain a value much smaller than that 
of both the liquid and gas phases. This argument was based on estimates of com­
pressibilities from the Cahn-Hilliard (1958) theory. If this is true, then FA is an 
attractive force which will eventually swamp the retarded electromagnetic forces at 
some temperature T1 < Te. Then the surface tension will become zero and the 
interface will collapse. At any temperature between T1 and T e, the fluid phases will 
mix homogeneously because of density fluctuations in the system and a flat top will 
be observed on the coexistence curve. The meniscus will not be visible in this region, 
giving the impression that T1 is the critical temperature. The phenomenon has been 
observed by Atack and Rice (1953, 1954). 

( c) Restrictions on Retarded Behaviour 

Bullough (1970) discusses in his series of papers on many-body optics the 
variation of the dielectric susceptibility with distance in bulk fluids. He relates this 
to the pair distribution function g(r). At the end of his paper he shows that his 
"complex" dielectric susceptibility in the continuum approximation reduces to the 
physical dielectric susceptibility which we used in our work, provided w ~ ell, where 
w is the frequency of electromagnetic radiation propagating through the fluid and 
l is a correlation length. 

In all simple nonpolar fluids, w for the dominating electromagnetic interactions 
is less than about 1016 rads-I, and the condition on l is that it be less than about 
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100 A. This means that our treatment of the retarded interactions above may need 
to be modified. At present we are conducting further research into the problem. For 
polar fluids at larger values of l, the dominating electromagnetic interactions occur 
at much lower frequencies. We expect in fact that no restriction will need to be placed 
on the values of l in this case. 
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ApPENDIX I 

(a) Non-retarded van der Waals Forces 

We show here that, for non-retard.ed van der Waals forces when the effect of 
the finite velocity of light is negligible, 

where H is independent of l regardless of the shape of the interface. The only con­
dition is 

p(z, l) = p(zjl). (AI) 

Lifshitz theory calculates the interaction of surface electromagnetic modes 
which are set up in the system by random temperature fluctuations and zero point 
fluctuations in the material of the bulk phases. The electric potential cP for these 
surface modes in a medium of non-uniform dielectric constant E{p(Z, l)} is given by 

(A2) 

As E changes only in the z direction, we may write 

cP = u(z) exp{i(wx+vy)} , (A3) 

where wand v are the propagation numbers for the x and y directions respectively. 
From equations (A2) and (A3) we can deduce 

d2u d{ln E(p)} du _k2 _ 0 
dz2 + dz dz u - . (A4) 

Invoking the condition (AI) we introduce a new variable x = zjl and equation (A4) 
then becomes 

d2u d{ln €(p(x))} du 2 
-2 + d d - (kl) u = 0 . dx x x 

Because this equation has only one parameter kl, the resulting dispersion relation for 
the modes of the system will be 

D(k;w;l) = D(kl;w) = o. 

The free energy per unit area for van der Waals interactions can now be written 
down immediately in terms of this dispersion relation (van Kampen, Nijboer, and 
Schram 1968; Ninham, Parsegian, and Weiss 1971; Richmond and Ninham 1971b): 

0Ci fOCi 
G(l, '[') = (kB Tj27T) ~' dkklnD(kl;ign}, 

. n=O 0 
(A5) 

where gn = 27TkB Tnjfi. By change of variable from k tokl in the integral, equation 
(A5) can be written 

G(l, T) = H(T)jl2, 
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where 

H(T) = (kBT/21T) }~ofoOO dy ylnD(y;ign) 

which is independent of I. 

(b) Dispersion Relation for Oonstant Gradient Interface 

For a .constant gradient interface (Fig. 1) the dielectric susceptibilities may be 
written 

€(z/I) = €l, z < -iI, 

-il < z < ii, 

= €2, z> il. 

Substituting into equation (A4) we get 

Ul = A exp(kz) , z < -iI, 

Ui = BIo(tk(z-IS) )+OKo(tk(z-IS)) , -il <z < iI, 

U2 = E exp( -kz) , z> iI, 

where 10 and Ko are the zero-order modified Bessel functions and 

Here only the surface modes (u -+ 0 as z -+ ± (0) have been considered. 
Using the boundary conditions that u(z) and du/dz are continuous across each 

boundary at z = ±il, we get the dispersion relation 

0- D(kl·w) - 1- Ko(kIS1)-Kl(kIS1) Io(kIS2)-I1(kIS2) 
- , - Ko(kIS1)+K1(7cIS1 ) Io(kIS2)+I1(kIS2) , 

_ 1- K o(klS2)-Kl(klS2) Io(kIS1)-I1(kIS1) 
- K o(klS2)+ K1(klS2) Io(kIS1)+I1(klS1) ' 

where Sl = 1 €1/(€1-€2) 1 and S2 = 1 €2/(€1-€2) I. The D(kl;w) defined in this way 
approaches unity as k -+ 00, as required for the convergence of the integral (A5). 
It is not discontinuous across the line €1 = €2 but is in fact analytically continued 
across this line. 

ApPENDIX II 

Physical Significance of Lifshitz Interactions 

We have noted in the Introduction that the calculation of van der Waals 
forces between two bulk phases via Lifshitz theory gives rise to a finite energy even 
when one· or both of the phases is a vacuum. The intervening medium must be 
different from both bulk phases in the value of its dielectric constant at any point, or 
it may be inhomogeneous, in order for this energy to be nonzero. However, if the 



THEORY OF FLUIDS NEAR CRITICAL POINT 385 

intervening medium is identical with one or both of the bulk phases, and is homo­
geneous, no interaction will occur. Thus the Lifshitz interactions arise from the 
presence of any spatial inhomogeneity in the system. Applied to our fluid interface 
(Fig. 4) we see that the inhomogeneity has a spatial extent, and will thus have a finite 
energy of interaction even though the gaseous phase is almost a vacuum. As the van 
der Waals forces are most easily understood when acting in homogeneous systems 
(except for sharp boundaries which have no spatial extent by themselves), we shall 
divide the interface into n approximately homogeneous cells as illustrated in Figure 4. 

E,P 

3 

Liquid 

Vapour 

o 

Fig. 4.-Model interface used 
to understand the meaning 
of van der Waals forces as 
calculated by Lifshitz theory. 

Each cell i must have a width li which is much less than l but is large enough that 
the fluid in cell i may be considered to be a continuum. We suppose that the height 
Sp of each cell is the same for all cells, and consider virtual changes in l keeping Sp 
fixed. 

Consider now a completely homogeneous liquid of density p. We may construct 
a liquid-gas system by rearranging the liquid from the right to the left in such a way 
as to create the given interface in Figure 4. The energy required to do this is the 
energy calculated by Lifshitz theory. We begin the process by removing the very top 
strip labelled 1 in Figure 4. We suppose that this requires an energy SE not including 
the actual self energy of the fluid. Now consider the removal of strip 2. If the strip I' 
were not present in the liquid region, the energy required to remove strip 2 would be 
just SE again. However, we have also removed the van der Waals interactions 
between strip I' and strip 2. Thus the total Lifshitz energy is the total van der Waals 
interaction energy removed by taking away the liquid in the gaseous region. The 
extra energy involved in this removal process is n SE which is the energy of a sharp 
interface situated at z = O. This n SE term is not included in the calculations of the 
interface width because it is independent of l. Furthermore, the sharp interface is 
the standard state to which calculations of surface tension are referred (Cahn and 
Hilliard 1958). Thus it may not contribute to the surface tension either. The self 
energy term mentioned above is just that introduced into Section II. 






