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Abstract 

An analytic expression for the dispersion of travelling helicon waves in a 
uniform non-resistive plasma is used to show the effect of electron inertia on the 
radial structure of the wave in a cylindrical plasma bounded by perfectly conducting 
walls. 

INTRODUCTION 

The use of helicon waves as a diagnostic tool was initially suggested by Gallet 
et al. (1960) and later by a number of authors (Blevin and Christiansen 1966; Blevin, 
Christiansen, and Davies 1968; Jolly, Martelli, and Troughton 1969). The importance 
of the electron inertial term in the generalized Ohm's law (Spitzer 1962) has been 
shown by Davies (1970) to be important in low density laboratory plasmas even if 
the wave frequency w ~ Qe, the electron cyclotron frequency. The purpose of this 
paper is to show that electron inertia must be accounted for when interpreting the 
radial wave profiles in cylindrical geometry, due to the possible importance of higher 
order radial modes. Approximations appropriate to Q e > w ~ v, Q i are made. 
Although the inclusion of the collision frequency v increases the complexity of the 
equations, its main effect on the dispersion relation is to introduce an imaginary part 
for the wavenumber, while the real part of the wavenumber is affected onJy to second 
order in v/Qe. 

DISPERSION RELATION 

Using the generalized Ohm's law and assuming immobile ions, a uniform 
electron density N, and negligible resistivity, the equation to be solved becomes 
(in Gaussian CGS units) 

(M/Ne 2 )8j/8t = E-(Nec)~lj X Bo, (1 ) 

where M is the electron mass and Bo the uniform static magnetic field. Comparing 
the left-hand side of equation (1) with the j X Bo term, the ratio of the magnitudes 
of these two terms is seen to be "" w/Qe and it would appear that the inertial term 
could be neglected when w ~ Q e . However, the following analysis shows that this is 
not necessarily the case. 
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Using Maxwell's equations, and seeking solutions of the kind 

f(r) exp{i(wt-kz-m8)} 

for perturbing quantities in a cylindrical plasma, some simple algebra yields 

wV X V X b-kQe V X b+(47rNe2w/Mc2)b = 0, (2) 

where b is the magnetic field of the wave. Following the method of Klosenberg, 
McNamara, and Thonemann (1965), the solution of (2) is therefore the sum of 
solutions of 

V X b = q1b 

where ql and q2 satisfy 

(a) 
n~1 
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(b) 
n~7 

Fig. I.-Dispersion curves for the m = 1 azimuthal mode showing the radial mode variation for 

(a) equation (7) and (b) equation (5). 

With a conducting wall at r = a, the tangential components of the electric field must 
be zero and the dispersion relation is 

YIJm(Yla)(~Jm(Y2a) +~J~(Y2a))-Y2Jm(Y2a)(~Jm(Yla) + ~J~(Yla)) = 0, 
Y2 a q2 Yla ql (5) 

with 

where the plasma frequency Wp = (47TNe2/M)i, and 

(6) 

Since resistivity has been neglected, ql,2 must be purely real and hence 
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To· compute the roots of the dispersion relation, dimensionless parameters are 
used and a characteristic frequency wo = Boc/47rNea2 is introduced, where a is the 
plasma radius. 

For high electron densities (De/wo -+ (0) it can be shown that the dispersion 
relation (5) reduces to the result obtained by omitting the electron inertial term 
(Davies 1970), namely 

(7) 

This dispersion relation is plotted in Figure l(a) for a number of radial modes and 
for the m = 1 azimuthal mode. 

The effect of the electron inertial term is shown in Figure l(b), the curves repre
senting computed roots of the dispersion relation (5) for a number of radial modes. 
The shaded region represents values of k < 2wwp/Dec for which solutions are not 
allowed. A comparison of Figures l(a) and l(b) shows that the effect of the electron 
inertial term is similar to a wedge being pushed into the curves from below, the first 
to be affected being the higher radial modes. The importance of the inertial term is 
increased by decreasing De/wo. 

ASYMPTOTIC LIMITS 

For k ~ 2w wp/De C we can find asymptotic solutions. In this limit 

and (8) 

From equations (6) and (8) we can derive a simple form for the dispersion 
relation for large ak and when w approaches De. As ak becomes large, aY2 '" iak and 
the Bessel function Jm(Y2a) can be replaced by its asymptotic form in equation (5) 
yielding, for m = 1, 

1 1 Ji(YIa) _ 0 
(aql)(aYI) JI(YI a) - . 

(9) 

The first t'Yo terms on the left-hand side of (9) are small for large ak whereas 
the third term, being independent of ak, remains finite. The last term must therefore 
remain finite for large ak. The coefficient of this term varies as (ak)-2 and hence 
JJ.(YI a)/JI(YI a) is large for large ak. Since the function (aYI) is large for large ak, 
the Bessel functions can be replaced by their asymptotic expressions giving 

We therefore require (Yla -p) ~ (2n-l)7T/2, which for large n reduces to Yia ~ n7T. 
Usirig equations (6) and (8) 

(10) 

where n determines the radial mode number. Figure 2(a) shows how the higher order 
modes are approximated by this asymptote, whereas the low order modes are 
approximated by the dispersion curve neglecting electron inertial effects. The effect 
of the cyclotron term can be clearly seen even though the chosen values of w/wo and 
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De/wo represent a value of wiDe = 1/20. In Figure 2(b) similar curves are plotted 
for a number of values of Del wo to show the effect of this parameter on the dispersion 
of the waves. 

Fig. 2.-Radial mode variation for w/wo = 4, 
showing: 

(a) asymptotes and minimum value for ak with 
De/wo = 80 

(b) effect of variation of De/wo 
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DISCUSSION 

-- Present work 
----- Ferrari and K10zenberg 

n 

It can be seen from the curves that, over quite a large range of De/wo (which 
includes values for typical experimental conditions), two or more differing radial 
modes can propagate with approximately the same wavelength. Experimental 
difficulties will therefore be expected to arise in trying to launch pure modes in a 
low density plasma with small damping. However, when appreciable resistivity is 
included, computed results have shown that the higher order radial modes suffer 
greater attenuation than ~he fundamental mode. The pure fundamental would 
therefore be expected to be observed after the wave has travelled a few wavelengths 
down the plasma cylinder. 

It is interesting to compare the results derived from the analytic expression for 
the dispersion relation with the approximate form of Ferrari and Klosenberg (1968). 
Although their work applies to helicon waves in the range De ~ v ~ w, their ex
pansion of ak as a power series in g = (w+iv)/De to only the first order in g is remark
ably accurate for w quite close to De. 

Their power series is 

where Ko is the value of ak neglecting electron inertia and collisions and Kl and K2 
are the first- and second-order corrections to the dispersion relation. Examining 
Figure 5 in their paper, the values of Kl for the first three radial modes can be seen 
to be increasing as,....., n1T over a large range of w/wo. To the first order we can therefore 
write (for negligible resistivity) 

ak = K O+n1T(w/De). (11) 

The second term is the same as the asymptote defined earlier in equation (10). The 
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values of ak obtained from (ll) are also plotted in Figure 2(b). This approximation is 
accurate to within a few per cent for Qe/w ;;:; 20 but for Qe/w :$ 20 higher order 
terms in their expansion are required. 

Since Qe/WO is proportional to the electron density N, the effect of mode mixing 
will be most obvious in low density (~1013 electronscm-3) plasmas and will tend 
toward the case discussed by Klosenberg, McNamara, and Thonemann (1965) for 
high density (~1015 electronscm-3) plasmas where electron inertia plays a negligible 
role. This can be seen from Figure 2(b) for the higher values of Qe/wo. 
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