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Ab8tract 

The effect of an imposed vertical magnetic field on convective transfer in a 
horizontal Boussinesq layer of fluid heated from below is studied in the mean field 
approximation. Solutions are found over a wide range of conditions, for free 
boundaries, by a combination of numerical and analytic techniques. Quantitative 
estimates are made of the significant modifications to the heat transfer which are 
brought about by the presence of the magnetic field. It is found that the general 
properties of nonlinear steady cellular convection seem to persist in the face of 
magnetic inhibition. 

I. INTRODUCTION 

It has been known for some time that the imposition of a uniform vertical 
magnetic field on a horizontal convectively unstable layer of fluid can inhibit the 
onset of steady convection (Thompson 1951; Chandrasekhar 1952, 1961). Of course, 
even when the steady convection is suppressed, convective instability may arise as 
a growing oscillation or overstability (Chandrasekhar 1952, 1961; Danielson 1961; 
Weiss 1964). When convection does arise in the presence of an impressed magnetic 
field the resultant heat transfer is sensibly less than it would be under the same 
conditions without the field. Thus, we have Biermann's (1941) explanation of the 
darkness of sunspots, namely that the strong fields there decrease the normal heat 
transfer of solar convection. 

In view of the solar application of magnetic convection, as well as others in 
astrophysics and geophysics, it seems worth while to try to estimate the quantitative 
effects of magnetic fields on convective transfer. J. Wright (personal communication) 
has recently attempted this by numerically solving the relevant equations for the 
case of two-dimensional motion. This is a logical extension of works by Parker (1963) 
and Weiss (1966) which were concerned with distortions of the field by convective 
motions but which did not include the effect of the field on the motions themselves. 
However, purely numerical studies do not readily reveal the roles played by the 
various parameters of the problem, and for this purpose some approximate analytical 
treatment seems desirable. 

The approach taken here is to use the so-called mean field approximation of 
normal convection theory. In this approximation one defines mean quantities as 
horizontal averages and decomposes all quantities into mean and fluctuating parts. 
(In Boussinesq convection, which we shall consider here, the velocity has zero mean.) 
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With this decomposition, the nonlinear terms in the equation of motion separate into 
terms that are bilinear in mean and fluctuating quantities and quadratic in fluctuating 
quantities. The mean field approximation then consists in neglecting the deviations 
of the nonlinear terms that are quadratic in fluctuating quantities from their means. 

The mean field approximation is suggested indirectly by a theory of Malkus 
(Spiegel 1962) but it follows also from an appropriate choice of trial function in a 
variational approach (Roberts 1966) as well as from the Galerkin method (Spiegel 
1971; D. O. Gough, personal communication). In normal convection the mean field 
approximation has been studied quite extensively (Herring 1963, 1964, 1966; Howard 
1965; Roberts 1966; Stewartson 1966; Chan 1971; Murphy 1971; Van der Borght 
1971) and it seems to give reasonable estimates for .convective transfer for high 
Prandtlnumbers(SpiegeI197l). 

As iii most discussions of the mean field equations, the present work considers 
only ()nehorizontal mode ... It has been possible to include further modes in the 
nonmagnetic case (Chan 1971; Spiegel197l) but in the case of free boundaries, with 
which we shall be mainly concerned, the addition of further modes does not seem to 
qualitatively alter the convective heat transfer, at least for the nonmagnetic case. 
In the next section we set forth the equations to be studied. These are restricted to 
the case of steady convection. In Section III we present the asymptotic solution for 
highly unstable Qonve()tlon as well as for some i~termediate cases, and in Section IV 
we give some results pbtained by numerical solution of the mean field equations. 

II. BASIC EQUA',I'IONS 

W~ consider a horizontal slab of fluid confined between the planes z = 0 and d, 
where z is the vertical· coordinate. The boundary temperatures are assumed to be 
fixed, the lower boundary being warmer, and the impressed temperature difference 
AT acrosS the layer is also fixed. The magnetic field can be writtenJfl'o = <Jfl'o)+h, 
where the angle brackets denote a horizontal average. Since <Jfl' 0) can depend only 
on z, imd V • Jfl'ij = 0, <.Yt'o)z must be constant and takes on the value of the impressed 

field~ Iftlusvalue istaken as the unit of field strength, Jfl'o = k+h, where k is a 
unit vector inthe verticltl direction. Likewise, we take d as the unit oflength; d2/K 
as the unit of time, where K is the thermal diffusivity; K/d as the unit of velocity; 
AT as the uirlt of teIAperature; and pd2/vK as the unit of pressure, where p is the 
(effectively constant) density and v is the kinematic viscosity. The equations of 
hydr~Jllagnetic conve~tion (Chimdrasekhar 1961) then take theform 

1 (Ou' OUt) ok, okt Ow - 2 1/ Out> -. -+Uj- -'TQ--'TQkj-= --+R8kt+VUt+-" Uj- , (1) u.ot ..OXj. oz OXj OXt u" OXj 

w'=(p_(p»)/p +t'TQ(h2-<h)2)+'TQkz+'TQ<kz)2, (2) 

o<T)/Bt +o<w8)/oz = o2<T)/oz2, (4) 
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(5) 

(3 = -8<T)/8z, T = <T)+8, (6) 

(7) 

Here the Latin suffixes denote cartesian components (e.g. ha = hz, W =:= Ua = uz) 
and summation over repeated suffixes is implied. The notation is fairly standard: 
T is the temperature, (J the acceleration of gravity, 'Y] the magnetic diffusivity, IL . • the 
(constant) permeability, and Ut the velocity. The mean field equations can be 
immediately read off from these by simply omitting the terms that are nonlinear in 
fluctuating quantities. Thus the mean field equations are 

8h/8t = 8u/8z +7 \l2 h, 

8<T)/8t +8<w8)/8z = 82<T)/8z2 , 

88/8t -(3w = \128, 

\I.u=O, 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

It is convenient to take the curl of equation (9) twice to eliminate wand the horizontal 
components of velocity. We find 

(15) 

where \I~ = 82/8x2 +82/8y2. Also we shall need only the z component of equation (10), 
that is, 

(16) 

Thus equations (11), (12), (15), and (16) are four relations for <T), 8, w, and hz which 
define the basic problem considered here. 

The basic equations are separable and admit solutions of the form 

W = f(x, y) W(z, t) , 8 = f(x, y) e(z, t) , hz = f(x, y) H(z, t), (1'7) 
where 

(18) 

In equation (18) a is a separation constant andfis the planform of the cellular pattern 
with horizontal scale,......, a-l. The basic equations then reduce to 
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oH/Ot = DW +T(D2_a2)H , (20) 

a<T)/Ot +D(We) = D2<T) , (21) 

(22) 

where D == %z. It should be noted here that the forms of solution (17) are special 
since in general a sum of many such forms for various a is also a solution. It is for this 
reason that we refer to the result as a one-mode solution. 

One of the main quantities of interest in this problem is the nondimensional 
heat transfer or Nusselt number 

(23) 

which is clearly the sum of the convective and conductive heat fluxes. In the case of 
steady convection, which is the one considered here, equation (21) simply shows that 
N is a constant. We note also that, since the temperature difference is unity in non
dimensional units, on integrating equation (23) over z we find 

(24) 

In the steady-state case, equations (19), (20), and (22) become 

(25) 

(26) 

(27) 

If we eliminate H between equations (25) and (26) we have 

(28) 

Similarly we can combine equations (27) and (28) to give 

(29) 

To complete the formulation of the problem we need to prescribe the boundary 
conditions. We have already required that the boundary temperatures are fixed, and 
hence 

e(o) = 0, e(l) = o. (30) 

We have also assumed that the fluid is confined between the planes z = 0 and 1 (where 
d is the unit of length), which implies 

w(O) = 0, w(l)=O. (31) 
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The boundary conditions to be applied to the magnetic field depend on the 
nature of the medium adjoining the fluid. If the adjoining medium is current-free 
the external field h ext is irrotational and derivable from a potential, that is h ext = V'X. 
Moreover, V'2X = O. The potential X must be smooth on the boundary of a current-free 
region so that hz and Dhz are continuous (which is equivalent to the statement that 
h is continuous). Then the external potential must be of the form X = f(x, y)<X(z), 
so that (D2-a2)(X) = O. For z > 0 this has the solution <X) = <Xo) exp( -az) 
where <Xo) is a constant. Smoothness of X (or continuity of h) implies 

H(I) = -a<Xo) exp( -a), DH(I) = a2<Xo) exp( -a). 
Hence 

DH+aH = 0 on z=1 (32) 
and likewise 

DH-aH = 0 on z = O. (33) 

Now a typical current-free adjoining medium is a vacuum and the corresponding 
boundary is a free boundary. Across such a boundary the tangential stresses are 
continuous. Since the above conditions show that the magnetic part of the tangential 
stress is continuous across a free boundary, and moreover there are no viscous stresses 
outside the fluid, the tangential viscous stresses must vanish on free surfaces and it 
follows that (Chandrasekhar 1961) 

on z = 0,1. (34) 

A final point to be made is that we have found steady solutions for equations 
(23), (27), and (28) with the boundary conditions (30), (31), and (34) only for R ~ Ro, 
where Ro is the Rayleigh number for steady marginally stable convection for given 
a and Q. The value of Ro is obtained by solving the linearized equation of motion and 
is (Chandrasekhar 1961) 

(35) 

III. ASYMPTOTIC SOLUTIONS FOR LARGE RAYLEIGH NUMBER 

(a) Q = 0(1) 

The solution of the mean field equations for large R with Q = 0 has been con
sidered in various analytic approximations for free boundaries (Howard 1965; 
Herring 1966; Van der Borght 1971). When Q = 0(1) these calculations can be 
readily extended to the magnetic case, and here we use the method of matched 
asymptotic expansions following Howard's (1965) treatment of the nonmagnetic 
case. In doing this we shall consider a = 0(1). 

Let us introduce the quantity 

F = N-l(9. (36) 

Equations (23), (27), and (28) yield 

(37) 
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and 

(D2_ a2)F = -(I-FW)W. (38) 

Moreover, from equations (23), (28), and (29) we find that 

Now we have N ~ 1 and a = 0(1) so that Ra2N ~ 00 as R ~ 00. Away from 
boundaries we expect the derivatives D to be 0(1) so that for equation (39) to have 
nontrivial solutions we require W to be large; in particular we need W = O(p<) where 
P = Ra 2N. This tells us that in the main body of the fluid, to leading order, we have 

(40) 

where 

tp = (Ra2N)-! W = P-l W. (41) 

In solving (40) we shall apply the free-boundary conditions (31) and (34), which 
now are 

tp = D2tp = 0 on Z = 0,1. (42) 

The main difficulty in this analysis is the solution of equation (40). For Q = 0 
Howard (1965) used a truncated Fourier sine series for tp and obtained an approximate 
solution. We shall repeat this calculation for Q = 0(1). 

Let 
tp = A I sin1Tz +Aasin31TZ + .... (43) 

This represents a solution that is symmetric about Z = t and satisfies the conditions 
(42). Substitution of this series in equation (40) yields 

00 

L [{(2n+l)21T2 +a2}2 +(2n+l)21T2Q]A2n+l sin{(2n+l)1Tz} 
n~O 

= 1 (1- As sin 31TZ + ) 
Al sin 1TZ Al sin 1TZ ... 

= ~ (1_A3(l+2COS21TZ)+ ... ). 
AI slll1TZ Al 

(44) 

If we now multiply by sin{(2m+l)1Tz}, integrate over z, and retain only the first two 
terms in expansion (43), we find 

(45) 

and 

(46) 
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These equations can be solved approximately when Aa/Al ~ 1, as is to be expected 
when the two-term sine series is a good approximation. We find 

(47) 

(48) 

Thus we are provided with an approximation to P in the interior of the fluid. To 
obtain F we note that for large W equation (38) is satisfied to leading order only if 
F = W-l = P-i p-l in the interior. This conclusion can also be reached by comparing 
equations (37) and (40). 

We turn next to the solutions in the boundary layer in which we use the scaled 
independent variable 

(49) 

To obtain the appropriate matching condition we note that near z = 0 equations 
(43), (47), and (48) implyP ,....,Az, where 

(50) 

Hence in the boundary layer we let 

F =P-l/, (51) 

so that equations (37) and (38) become 

PlljJ"" = /+QIjJ" (52) 

and 

/" = -(l-fljJ)ljJ, (53) 

where the primes denote differentiation with respect to ~. 
The boundary conditions are 

IjJ = 1jJ" =/= 0 at ~=O. (54) 

while the matching conditions are 

as (55) 

Similar considerations apply near z = 1. 
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To leading order the appropriate solution of equation (52) is 

(56) 
and equation (53) becomes 

1" = -A(l-A~f)~, (57) 

which is the same as the corresponding equation for Q = o. Howard's (1965) particular 
integral of this equation is 

] = H Sol exp( -lA ~2t) (1_t2) -t dt . (58) 

Since this integral satisfies the boundary and matching conditions it represents the 
desired solution. 

Now, on introducing equation (36) into equation (24) we find 

N-I = f1 (l-FW) dz. Jo . (59) 

Since FW = 1 in the interior, we need only consider the contributions from the 
boundary layers. The two boundary layers contribute equally and hence on introduc
ing the definitions (49) and (51) into (59) we see that 

(60) 

where if and] are given by equations (56) and (58) respectively. If these latter results 
are also introduced, we find after some straightforward integrations that N is given by 

(61) 

(62) 

which reduces to Howard's (1965) result for Q = o. For Q = 0(1) this expression for 
N has its maximum value for amax ~ 1T(1 +Q/1T2)1. 

To complete this phase of the analysis we consider the form of H as implied by 
equation (26). In the interior of the fluid this becomes 

(63) 

which admits as the solution satisfying condition (32) 

+l( 2AI 2+ ~A3 2)(eXp{a(1-Z)}-eXp(-az))}. (64) 
1T +a 9?T +a 
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We could also solve equation (26) in the boundary layer, but as equation (64) already 
satisfies the boundary conditions no boundary layer contribution is needed. We see 
that H, which represents the deformation of the magnetic field imposed by the 
motion, is quite large (O(Pi/T)) and tends to be constant near the boundaries. 

(b) Q = O(R) 

The analysis in subsection (a) considered the case of strong convection in which 
convective transport is the dominant mode of heat transfer in the interior of the 
fluid. However, we know from linear theory that, for a = 0(1), as Q approaches 
a2R/{7T2(7T2+a2)} the steady convection is suppressed. We now consider some aspects 
of the transition between the kind of solution discussed in (a) and the situation of 
marginal stability. 

Let 
A = R/Q, (65) 

Clearly, as the stabilizing effects of the field increase N approaches unity and, in at 
least part of the transition regime, N = 0(1). We now consider only that part of the 
regime and hence assume A = 0(1), but we continue to suppose that Q and R are large. 

Introducing the scalings 

W = (Ra 2N/Q)'oQ, F = (Q/Ra2N)!cP, (66) 

equations (37) and (38) then become 

(67) 
and 

(68) 

It is now preferable to eliminate (/> from equations (67) and (68) to yield 

(69) 

Now, in analogy with subsection (a) we approximate Q as 

(70) 

If we substitute the expansion (70) into equation (69), multiply separately by sin7Tz 
and sin37Tz, and integrate, we obtain the two equations for Al and A3 

(71) 

and 
(72) 

where we have treated A3/Al as small. 
Likewise we expand (/> as 

(73) 



712 R. VAN DER BORGHT ET AL. 

and introduce equations (70) and (73) into (68). Mter then multiplying the resultant 
equation by Sin7TZ and Sin37TZ and integrating, we derive the formulae for otl and ots 

(74) 

and 
2 22 2 A} yAl{I-4As/Al)+{As/Al){4(7T +a )+yAl{3-2As/ 1) 

2 2 2 A A 2yAl +4(97T +a )+y s 1 
(75) 

This completes the interior solution and we must now consider the boundary 
layer solution. It is easy to see that these are boundary layers of thickness Q-!. 
However, as the interior solution already satisfies all the boundary conditions, it 
supplies an adequate description of the entire solution and there is no real need to 
write down the boundary layer part separately. We should remark though that this 
is a purely viscous boundary layer, not the thermal one that occurs in normal strong 
convection. 

We may next compute N from the relation 

(76) 

which gives 
(77) 

This equation together with the formulae for AI, As, otl, and ots then specify N as a 
function of Ra2/Q. 

IV. NUMERICAL SOLUTIONS 

The analytic approximations of Section III give the solutions in various limiting 
cases. To obtain more precise solutions over a wide range of the parameters and to 
exhibit graphically the nature of the solutions, we turn to numerical methods. For 
the free-boundary case such methods are available which have been used in the 
analogous problem without magnetic fields (Herring 1963; Murphy 1971). Following 
these procedures, we introduce the expansions 

M 

W = ~ Wn sin{(2n-l)7Tz} , 
n~1 

M 

M 

e = ~ fn sin{(2n-l)7Tz} , 
n~1 

<T) = ~ tn sin(27Tnz)-z. 
n~1 

} (78) 

These representations satisfy the free-boundary conditions and correspond to solutions 
that are symmetric about the plane Z = t. 

In principle we could in this fashion deal with time-dependent solutions, but 
here we shall consider only the steady case and thus use the corresponding form of (21) 

(79) 
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Fig. I.-Numerical results (solid curves) 
for N as a function of: 

(a) Q for four values of R with a = 1T, 

(b) R for five values of Q with a = 1T, 
and 

(e) '" = a/1T for seven values of Q with 
R = 107• 

Analytic results from Section III are 
included in (a) and (b) for comparison. 

as well as equations (27) .and (28) in which f3 = -D<T). Substitution of the Fourier 
representations and projection onto the various components leads to the system of 
nonlinear algebraic equations: 

M 

{(2m-1)2 +i}!m == Wm -7T ~ ltl{Wm+1 + Y(2m-2l-1) WtI2m-21-11+t} , (81) 
1=1 

M 

mtm = trr ~ Wl{fm+l + Y(2l-2m-1)!tI2m-21+1\H} , (82) 
/=1 
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S n < O. 

Fig. 2.-Numerical results 
(solid curves) for the variation 
of the amplitude of the vertical 
velocity. The dependence of 
the maximum value of W 
(over z) on R is illustrated for 
four values of Q with a = 71". 

The dashed curves represent 
the analytic results from 
Section III(a). 

(83) 

For a given M these equations were solved and N was computed from equation 
(23). The value of M was then increased until N was constant to an accuracy of 
0·1 %. In practice this required values of M ranging from 30 to 90 as R varied from 
104 to 107 . In addition, H was computed from the expression 

H = lT~1 (])(O){exp(az-a)-exp( -az)} +T~I </>(z) , (84) 
where 

M (2n-l)Wn 
</>(z) = ~ 2 2 cos{(2n-l)1Tz}. 

n~I1T{(2n-l) +at} 
(85) 

These expressions are readily derived from equation (26) with the help of the con
ditions (32) and (33). The solutions were found for R up to 107 and for a large range 
of Q. 

Figure l(a) shows the variation of N with Q for four values of R with a = 1T. 
The inhibition of convective flux by a magnetic field is well illustrated. For com
parison, the analytic results from Sections III (a) and III(b) are also shown, and these 
agree quite well for R = 107 . Another aspect of the results is indicated by Figure 
l(b), which shows N as a function of R for five values of Q with a = 1T. The change 
in heat transport as a function of at = a/1T is also shown in Figure l(e) for R = 107 

and a range of values of Q. The main feature to be noted is the increase with Q of 
the value of a that maximizes N. 
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The results for the variation of the amplitude of the vertical velocity as a function 
of R are given in Figure 2, which plots the maximum value W max of W (over z) for 
four values of Q. 

The graphs in Figures 3(a)-3(l) show a variety of solutions for various parameter 
values and are self-explanatory. The solutions for given Rand Q are qualitatively 
like those for the nonmagnetic case but with R reduced by an amount depending on 
the value of Q. Of course, we have now in addition the disturbance magnetic field H 
which gives a total field 1 +H(z)..j2cosax. What is interesting about this field is 
that, for the most part, in strong convection H is quite small in the mid regions of 
the fluid and the magnetic field has its original imposed value. However, near the 
boundaries (both inside and outside the layer) the perturbation field can be comparable 
with or even much larger than the original field. Clearly then, measurements of a 
magnetic field just at the edge of a convective layer may give a completely misleading 
expression of the internal field if this feature of magnetoconvection is neglected. 

V. CONCLUDING REMARKS 

From the present study of the behaviour of convection under the influence of 
externally impressed magnetic fields using the mean field approximation, which is 
known to give quite reasonable results for laboratory convection, we have gained 
some insight into the continued influence of magnetic effects even when the convective 
instability is pronounced. The solutions have shown that, for a given impressed field 
and if the Rayleigh number is large enough, convection in the fluid interior is 
practically unhampered by the field. However, even without the presence of the field, 
convective motions and transport must diminish near the boundaries. It is in these 
regions that the field can make itself felt. In the regions of transition between the 
strong interior convection and the vanishing motion at the boundaries, the convection 
can be further inhibited by the impressed field. The result is that the boundary layers 
in which conductive transfer dominates are thickened. Since the Nusselt number 
varies inversely as the thickness of the boundary layers, magnetic fields have an 
inhibiting effect on the total transport. This is likely to be true no matter how large 
the Rayleigh number becomes, so long as the flow remains laminar. Of course, at 
high enough Rayleigh numbers the convection will become turbulent and these 
conclusions could be modified, particularly if the boundary layers become turbulent. 
Also, the possibility of corrections from time-dependent effects, even in the mean 
field approximation, remains to be examined. 

The most concrete result of the calculations is that in expressions for N at 
large R the chief effect of imposed magnetic fields is the replacement of Ra2 by 
Ra2/Q in the expression for N. Apart from dissipation coefficients, the quantity R/Q 
contains the important factor (grx./lTd)(4-rrp)/JL<Jt'O)2. The factor grx./lTd = V~ gives 
a measure of the convective velocity Ve, while JL<Jt'o)2/47Tp = Vl is the square of 
an Alfven speed. Thus R/Q is proportional to (V e/ V A)2, which is the sort of parameter 
one might have expected to find playing an important role here. However, it must 
also be appreciated that the preferred value of a can be affected by the magnetic 
field. For example, if we wish to estimate the maximum heat transport then we 
expect a = O(Qt) for large Q and in that case RQ-l is a key parameter in estimating N. 
Thus, we expect to find that the maximum heat transport in this kind of problem 
varies as Rl/ QI. 
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Figs. 3(a)-3(l).-Solutions of W, e, (T>, and TH as functions of z, each for R = 107 and 
IOglOQ = 1.3, and 5 with a = 7T and 87T and y = (7T2+a2){(7T2+a2)2+7T2Q}/a2R = 0·85. 
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