
SELF-CONSISTENT TRANSFORMATION OF BREMSSTRAHLUNG TO 
MONOCHROMATIC PHOTONEUTRON MEAN ENERGIES OF 

NON-MAXWELLIAN NEUTRON SPECTRA 

By R. KOCH, * D. M. eRA WFORD, * K. BOTTCHER, * and H. H. THIES* 

[Manuscript received 26 October 1972] 

Abstract 

The mean energy of neutrons produced in a bremsstrahlung experiment can be 
measured using "energy sweeping" and a multi-BF3 -counter neutron detection 
system. It is shown here how one can obtain from a relatively simple type of experi
ment the required calibration data of the detection system to permit a self-consistent 
transformation of the bremsstrahlung data to the equivalent monochromatic photon 
data for neutron spectra that are non-Maxwellian. 

1. INTRODUCTION 

Barrett et al. (1973) report a novel experiment in which the count-ratio technique 
of Barrett and Thies (1971) has been used to derive systematic information on 
nuclear level densities from measurements of bremsstrahlung photoneutron mean 
energies. The success of this method is mainly due to the relative speed and simplicity 
of the experiment, and also to the fact that level density parameters derived by this 
method are very little affected by the functional dependence on energy of the inverse 
reaction cross sections employed in their derivation. The above type of experiment 
can be improved in accuracy by one order of magnitude using "energy sweeping" 
(Thies et al. 1972a), and it becomes practical to transform the bremsstrahlung photo
neutron data to data corresponding to monochromatic y-excitation. A corresponding 
transformation method for the experiment using the count-ratio technique was 
formulated by Thies et al. (1972b). However, this latter method is only applicable 
if the energy spectra of the neutrons are roughly Maxwellian, i.e. it can be applied 
to data on heavy nuclei and possibly medium weight nuclei. In the present paper 
we report on a slightly more elaborate transformation formalism which permits 
the calculation of photoneutron mean energies of non-Maxwellian neutron spectra, 
i.e. it can be applied even to data on the very lightest nuclei. We show that the 
required calibration data can be obtained in a straightforward manner from calibra
tion data of the simple count-ratio experiment of Barrett and Thies (1971). 

II. TRANSFORMATION FORMALISM 

(a) Notation 

For a multi-BF3-counter neutron detection system employing a radial geometry 
(Thies 1963; Thies and Bottcher 1969), the number 4J of neutrons emitted at the 
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centre of the moderator and the counts I(rs) recorded by a counter at radial distance 
rs from the centre are related by 

¢ = K 2: AJ(r,) . (1) 

In this equation the constant K depends on neutron capture cross sections of moderator 
and counters whereas the coefficients* As are independent of any physical properties 
of the system and can be calculated from the geometry of the system alone. According 
to Thies and Bottcher (1969) then the mean energy En of the ¢ emitted neutrons is 
given by 

En = 2: CsI(rs)/2: AsI(rs) ' 
s s 

(2) 

where the coefficients* Cs are functions of the counter position rs only but require 
for their calculation an accurate knowledge of the function g(rS' En), the probability 
that a neutron emitted with energy En is recorded by a counter at position rs. 

Assume now that in an idealized experiment, using monochromatic photons of 
energy hv, M¢ neutrons were emitted and that the various counters had recorded 
the corresponding counts MI(rs), that is, for a particular Ei = hVi equation (1) now 
reads 

M¢(hvi) = K 2: As MI(rS' hvJ. 

We rewrite this equation using the shorthand notation 

M¢i = K 2: A/'!Ii' (la) 

and equation (2) as 

Eni = 2: Cs M,Ii/2: As M,li' 
s s 

(2a) 

where Eni is the mean energy of the M¢i photoneutrons emitted by photons of energy 
hVi' 

For an actual experiment in which B¢j photoneutrons were emitted by the 
(polychromatic) bremsstrahlung photons of peak photon energy E j , analogously we 
denote the counts recorded by a counter at rs by ~Ij' In this case equation (2) becomes 

Enj = 2: Cs ~lj/2: As ~Ij' 
s s 

(2b) 

where Enj is the mean energy of the B¢j photoneutrons emitted by bremsstrahlung 
of peak energy E j • 

In the following subsection we show how one can transfolm bremsstrahlung 
data for ~Ij into the corresponding data for M,Ii which would have been obtained 
from an equivalent idealized experiment with monochromatic photons. With these 
data for M,Ii equation (2a) can then be used to calculate the corresponding mean 
energies Eni of the photoneutrons emitted by monochromatic photons of energy 

* Here KAs and KCs correspond to Cs and Bs respectively of Thies and Bottcher (1969). 
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hv i , which is what we set out to do. We complete the definition of our notation by 
writing the correlation between ~[j = B[(r"E) and ~[i = M[(r"hv;) explicitly in 
the form 

f E j MJ(r hv) fti 
BJ(r" E) = fJ(E j} P(Ej, hv) M s' a(hv) d(hv) k(t) dt, 

hv=E'h ¢(hv) t=to 
(3) 

where a(hv) is the neutron production cross section which is zero below its threshold, 
i.e. for hv < Eth ; P(Ej, hv) is the bremsstrahlung spectral distribution function 
(non-normalized); fJ(E) is the relative number of bremsstrahlung photons per 
electron injected;* and k(t) is a function which depends on target geometry and 
weight, and is proportional to the rate at which electrons are injected at time t. 
Using an analogous shorthand notation to the above, and approximating integration 
in equation (3) by summation of finite differences, we rewrite this equation as 

MJ Jti 
~Jj = fJj ~ Pji ~ i ai Ai k(t) dt, 

i ¢i to 
(3a) 

where A i is the "bin width". 

(b) Analysis 

Assume now that we have performed a bremsstrahlung experiment using 
energy sweeping (Thies et al. 1 972a). The integral with respect to t in equation 
(3a) then has the same value for all the recorded counts ~[j' say 

Jti 
K = k(t) dt, 

to 

and hence we can write equation (3a) in the form 

~Jj/KfJj = ~ Pji{(~Jr¢;)aiA;}, j = 1,2, ... ,q, (4) 
i 

if we recorded counts for q energies E j • Equation (4) can then be interpreted as a 
system of q linear equations in the q unknowns 

{(~[dM¢i)aiAi} , i = 1,2, ... ,q. 

Hence, if we consider Pji as an element of the triangular matrix P, where 

(P)ji = Pji , 

we can express the solutions of equation (4) explicitly as 

(~JdM¢;)aiAi = ~ (p-l)ij~J)KfJj, 
j 

(5) 

(6) 

the quantity (p-l)ij being an element of P-l, the inverse of P. With equation (6), 

* The quantity fJ(Ej ) can be determined experimentally, as discussed by Thies et at. (1972a). 
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we may now write equation (2a) in the form 

~ Cs ~ (P-1)ij~I)fJj 
E . = s j 

ill -1 B 
~ As ~ (P )ij.I) Pj 

(7) 

s j 

which is the desired expression of Eni in terms of the recorded bremsstrahlung counts 

~Ij' 
Equation (7) is valid whether or not the energy spectrum of the neutrons 

emitted by monochromatic photons is Maxwellian. For its practical application, 
values of the coefficients As and Cs are required. As indicated in subsection (a), 
the coefficients As can be readily calculated from the geometry of the neutron detector. 
The coefficients Cs can be obtained conveniently and with high relative accuracy 
using the following calibration experiment. 

Suppose we require Cs for a detection system employing counters at five radial 
distances ys. We then measure Enj, the mean energy of the photoneutrons emitted 
by bremsstrahlung from a target consisting of heavy nuclei (e.g. lead) for five appro
priate peak bremsstrahlung energies Ej , using the count-ratio technique of Barrett 
and Thies (1971). As the energy spectrum of the bremsstrahlung photo neutrons 
from a heavy element is Maxwellian to a good approximation (Barrett et al. 1973), 
the measured values of Enj should contain only negligible systematic errors. They 
represent five discrete values of the continuous function En(Ej), which should be an 
extremely "well-behaved" function as it is derived from the spectrum of the corre
sponding photo neutrons emitted by monochromatic photons via two successive 
integrations; that is, if m(hv, En) is the normalized spectrum of neutrons emitted 
by photons of energy hv then 

EnCE) = (fEj P(Ej,hV)(J(hV)d(hv)J'Ej~Eth Enm(hV,En)dEn)/fEj P(Ej,hv)d(hv). 
Eth En-O Eth 

We may now rewrite equation (2b) in the form 

"B ~,,~ B 
£.J Cs .Ij = Enj £.J As .Ij , (2c) 

which for the five values of sand j of our experiment represents a system of five linear 
equations in the five unknowns Cs• The solutions Cs can be expressed explicitly 
in terms of elements of the 5 x 5 matrix BI, defined by 

(BI) js = ~Ij' 

and elements of its inverse Br 1, denoted by (Br 1 )sj' namely 

"A '\.-, ~B - 1) B Cs = £.J s· £.J Enj( I sj s.Ij • (8) 
s· j 

From equation (8) it is evident that the derivation of the coefficients Cs from the 
calibration experiment requires no knowledge of the bremsstrahlung spectrum or 
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the photoneutron cross section. (As it is an energy sweeping experiment, obviously 
no dose measurement is required.) 

The self consistency of the transformations discussed above can be tested in 
the following manner. A heavy target, not necessarily the same as that used for the 
Cs calibration, is irradiated with a range of peak bremsstrahlung energies Ej • The 
corresponding values of Eni are then computed once by the present method and 
once using the count-ratio technique of Thies et al. (1972b). The latter method is 
applicable here as the energy spectrum of the neutrons emitted by monochromatic 
photons from a heavy target is very nearly Maxwellian. The corresponding values 
Eni from both methods must then agree within the limits of error. 

The standard deviation [Eni] of Eni due to random counting errors can readily 
be calculated from equation (7). Using the notation 

one obtains 

~ Cs~(P-1)ij/Pj = G, 
j 

~ As ~ (p-1)i)Pj = F, 
s j 

-] - (1 ~ 2 ~ ( -1)2 B 'p2 I ~ 2 ~ ( - 1 2 B /P2)t [Eni = Eni 2 ~ Cs ~ P ij .Ijl j +"2 ~ As ~ P )ij.Ij j . 
G s j F s j 

(9) 

(10) 

For a Schiff spectrum, the coefficients I (P- 1)ij I rapidly decrease with decreasing j, 
in contrast to Pj and ~Ij which decrease only slowly with decreasing j, if the bin 
width Lli of equation (4) is chosen reasonably small. Consequently, if we denote by 
Pi and 'i the largest of the values Pj and ~Ij in equation (10), we may use the 
approximation 

~ (p-1)~')PJ ~ (~I;/P;) ~ (p-1)~, 
j j 

which is well approximated numerically by 

(~IdPD ~ (P-1);j ~ (~I;/P;)(20EdLlf/2)2. 
j 

With equation (12), thus equation (10) may be approximated by 

- - 20 Ei (I ~ 2 B 1 ~ 2 B )t [Eni] = Eni~ 2~ Cs.Ii + ~ ~ As.Ii . 
PiLli G s j s 

(11) 

(12) 

(lOa) 

Usually equation (lOa) is a good approximation, but if accurate values of [Eni] are 
required obviously equation (10) must be used. 
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