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Abstract 

The approach of Van Kampen and Felderhof (1967) is extended to derive 
the variation of potential energy t5W for a finite magnetized plasma contained by a 
vacuum magnetic field and in contact with conducting electrodes supported by insulators. 
The method gives a result in agreement with that of Bernstein et al. (1958) except for 
modification of the vacuum contribution. It leads to proof that the usual interpretation 
of the surface contribution to t5W is incorrect because of modification of the vacuum 
magnetic field energy associated with second-order distortion of the plasma boundary 
surface. 

1. INTRODUCTION 

In the present treatment a fluid theory is adopted in which the influence of 
collisions is such that the kinetic pressure remains scalar but the electrical conductivity 
may be assumed infinite. An expression for <5 W(I;, 1;), the change in system potential 
energy produced by the Lagrangian displacement 1;, may be obtained by determining 
the second-order variation of the potential energy function with respect to 1;. However, 
the literature does not appear to contain a complete derivation of <5 W by this method 
although an expression for <5 W has been obtained by Bernstein et al. (1958), effec
tively by integrating the second-order expression for the rate at which work is done 
in the system. Van Kampen and Felderhof (1967) used the variational method to 
derive <5 W for an infinite plasma. The present extension of their work to the case of a 
finite system provides a convenient framework for an explicit treatment of external 
conductors and insulators, which permits application of the results to the constricted 
plasma between electrodes (James and Seymour 1971). The analysis principally 
involves the calculation of the change of magnetic energy external to the plasma, 
which is first shown to equal the work done in deforming the plasma surface against 
the pressure of the vacuum magnetic field. A basis is therefore provided for a dis
cussion of the surface term <5 Ws(l;, 1;) in the original expression for <5 W (Bernstein et al.) 
in terms of its frequently quoted interpretation as work done against the plasma 
surface current. 

* Mawson Institute for Antarctic Research, University of Adelaide, P.O. Box 498D, Adelaide, 
S.A.5001. 

t Present address: Weapons Research Establishment, Department of Supply, Salisbury, 
S.A. 5108. 

Aust. J. Phys., 1973,26, 123-34 



124 P. W. SEYMOUR AND M. K. JAMES 

II. BASIC EQUATIONS AND BOUNDARY CONDITIONS 

Using a circumflex to denote vacuum quantities, the vacuum magnetic field B 
at all times satisfies Maxwell's equations without displacement or conduction currents 

V.B = ° and v x B = 0, (1) 

and when the system is perturbed 

V.E = ° and v x E = -oB/ot. (2) 

Assuming the adiabatic equation of state d(pp - Y)/dt = ° to apply to the plasma 
region, other basic equations required here are: 

pdv/dt = - Vp +j x B, (3) 

with permissible neglect of charge accumulation and gravitational force; the infinite 
electrical conductivity approximation 

E+v xB = 0, (4) 

a justified theoretical constraint since, for example, resistive instabilities may be 
important in practice even if the conductivity is extremely large; and Maxwell's 
equations without displacement current 

V.B = 0, VxB=/loj, v x E = -oB/ot. (5a, b, c) 

Well-known boundary conditions apply at the plasma-vacuum interface 
(Kruskal and Schwarzschild 1954): 

<p +t/lol B2) = 0, (6) 

where <X) denotes the jump in the quantity X across the interface in the direction 
of the unit normal n directed out of the plasma; 

n x <E) = (n.v)<B) , (7) 

where v is the velocity of points on the interface (Jeffrey 1966); and 

n.<B) = 0. (8) 

In the special case of zero internal magnetic field, conditions applicable at 
the interface at all times are 

B2 = 2/lop and n.B = ° (9a, b) 

from equations (6) and (8) respectively. 
Using the subscript zero to denote equilibrium quantities, the absence of an 

internal magnetic field leads via equation (3) to the condition that Po is constant 
throughout the plasma. Equation (9a) then shows that B6 is constant at all points 
on the equilibrium interface between plasma and vacuum. 
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III. ALTERNATIVE DERIVATION OF c5W 

In practice the plasma is a finite body, either a torus closed upon itself or a 
column terminated by electrodes. For the plasma column it is assumed here that 
the electrodes are hot enough for the contacting plasma to satisfy the infinite electrical 
conductivity assumption leading to equation (4). It is also assumed that, to avoid 
quenching, the plasma contacts only vacuum and very hot rigid electrodes, at which 

n.~ = 0. (10) 

The condition that the region of interest can often be considered to be sur
rounded by a rigid perfectly-conducting wall (Bernstein et al. 1958, p. 19) is not 
applicable to a plasma between electrodes. If, as in many linear pinch experiments, 
use is made of a stabilizing conducting shell that is coaxial with the column and 
continuous along its length, insulating supports must be present to prevent short
circuiting of the discharge and the shell cannot be closed across its ends. Similarly 
the electrodes must be supported by insulators. 

From the treatment of Van Kampen and Felderhof (1967, p. 75) it is possible 
to obtain for the finite magnetized plasma an expression for c5 W representing the 
second-order variation of potential energy within its volume <p. The complete 
expression for c5 W can then be obtained by adding to c5 W the expression for the 
second-order variation in WBE' the external magnetic field energy. This derivation, 
outlined below, leads to a clearer understanding of the surface contribution to c5 W. 

For the finite plasma system the surface terms not taken into consideration 
by Van Kampen and Felderhof (1967) must be included. Assuming zero gravitational 
field the required second-order expression for c5 W is obtainable from their book 
(p. 75, equation (21) et seq.) ast 

c5 W = -2- J deo {,uoll Q /2 -jO.(Q X ~) +YPO(V .1;)2 +(V .~)~. VPO} 
Tp(O) 

+-2-,uolf [(,uoPo +-2-B~)(1;.v~-~v.~) 
Sp(O) 

+{~.(~. vBo)}Bo -{~.(Bo. vBo)}~]. dSo, (11) 
where 

Q = v x (~ x Bo), (12) 

~(Yo, t) is the small displacement of a fluid element from its equilibrium position 
Yo at t = 0, <p(O) is the equilibrium plasma volume at t = 0, Sp(O) encloses tiO), 
and no dSo = dSo is directed out of the plasma. 

An immediate simplification can be made by considering the term 

T = -2-,uo 1 f {1;. (~. vBo)}Bo· dSo 
Sp(O) 

(13) 

of equation (11). If at any interface carrying a surface current j* there is no sheet 

t The factor t has been omitted from the second integral of the last problem on p. 75 of 
Van Kampen and Felderhof (1967); this has been corrected in the corresponding term of equation 
(11) above. 
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mass, the magnetic field must lie in the interface to prevent the occurrence of infinite 
accelerations. Thus Bo. dSo vanishes on SpJO) , the interface between plasma and 
vacuum, making the integrand of term (13) vanish. 

On Spc(O), the interface between plasma and conductor, it is necessary to con
sider the case in which the magnetic field does not lie in the interface but enters the 
electrode (e.g. a linear pinch having internal axial field). At Spc(O) the condition 
dS x E = 0 applies and so through equation (4) 

(dS.B)v = 0, (14) 

since dS.v vanishes at the fixed and rigid interface. 
Since v = a~/at, integration of equation (14) to first order gives 

(dSo.Bo)~ = O. (15) 

Hence, when dSo ' Bo does not vanish, the freezing-in effect of plasma infinite con
ductivity leads from equation (15) to ~ = 0 at the plasma-electrode interface, and 
so ~. (~. V Bo) = 0 there. The term (13) thus vanishes over Sp(O) = Spv(O) + Spc(O). 

Expression (11) gives b W = b WB + b W p , where WB is the energy of the magnetic 
field within the plasma and Wp is the material energy of the plasma. To obtain the 
complete expression for the change in system potential energy 

bW = b W+bWBE , (16) 

the variation b WBE in the energy of the magnetic field occupying the volume external 
to the plasma must be obtained to second order in the perturbation~. To this end 
we first obtain dWBE/dt. 

(a) Determination of d WBE/dt 

The magnetic energy external to the plasma is 

WBE = 1flo 1 f ~ B2 dT, 
<c + «t) + <1 

(17) 

where the subscripts c and i refer respectively to the conductor and insulator regions. 
Using spherical coordinates it can be proved generally that 

d ( f ) f oI(r, t) f -d I(r, t) dT = -~- dT + fer, t)v. dS, 
t r(t) r(t) ot S(t) 

(18) 

an intuitively obvious result, in which Set) is the surface enclosing T(t), v is the velocity 
of a point on Set), and dS is directed out of T(t). Thus 

dft~E _ -1 f OGB2) d 1 -1 f B2 dS -- - flo --- T + 2flo v.. 
dt <c+r(t)+<i ot S(t) 

(19) 

In the rigid material occupying Tc the electrical conductivity is extremely high, 
and so aBlat is sensibly zero there, at least on the rapid time scale of unstable motions 
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under consideration. Hence equation (19) becomes 

dWBE - -1 f 8(tB2) dT +1./10- 1 f B2v. dS', -- - /10 8 2 
dt ret) + 'I t Set) 

(20) 

where 
Set) = Spy +SCy + Sci +S"'. (21) 

In equation (21) Sab is the interface between media a and b, S'" is the surface at 
infinity, and Spi = 0 by assumption. In equation (20) the prime on dS is introduced 
so that on Spy there will be no confusion between dS', directed out of the vacuum, 
and dS, directed out of the plasma, in conformity with its equilibrium form dSo of 
equation (11). 

Since no conduction currents flow in ret) and Ti' V x B vanishes in these regions. 
With the help of equation (5c), a standard vector identity, and Gauss's theorem the 
volume integral in equation (20) then transforms to the surface integral 

11 = f B. E x dS'. 
Set) 

(22) 

Considering the terms of equation (21), Ex dS' vanishes on the conducting 
surfaces SCy and Sci' and furthermore it is assumed that the field quantities fall off 
rapidly enough for the contribution over S'" in (22) to be vanishingly small. 11 can 
thus be written 

11 = f B.E x dS'. 
Spv(t) 

(23) 

From equations (4) and (7) and the fact that· n. B = 0 on Spy(t) for the 
plasma-magnetic field model chosen, it is found that 

Ex dS' = -R(v.dS') 

on Spv(t). Equation (23) now becomes 

Putting 

f ~2 , 
11 =- Bv.dS. 

Spv(t) 

12 =J B2 v.dS' 
Set) 

(24) 

(25) 

(26) 

for the surface integral in equation (20), rigidity of SCy and Sci implies v • dS' = 0, 
and so again taking Spi = 0 and the contribution to the integral over S", vanishingly 
small, 

f ~2 , 
12 = Bv.dS. 

Spv(t) 

(27) 

From the results (25) and (27), equation (20) now becomes 

dWBE -1 -1 f ~ ClT- = /10 11 +t/10 12 = -t/10 1 B2v. dS'. 
Spv(t) 

(28) 
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Since !Jlo 1 B2 dS' is the force directed into the plasma by the pressure of the 
vacuum magnetic field at the plasma-vacuum interface, integration of equation (28) 
with respect to time confirms mathematically the physical concept that the change 
in external magnetic energy is just the work done against the pressure of the vacuum 
magnetic field in deforming the surface Spv(t). 

(b) Evaluation ~f <5WBE 

To obtain <5WBE to second order in the perturbation, equation (28) must be 
written to second order and integrated. To achieve this, one recalls that from the 
Lagrangian viewpoint physical properties of a given fluid element at (r, t) are functions 
of the initial position ro of that element and of the time t. Thus to first order in ~, 
the vacuum magnetic field at the perturbed plasma boundary at time t (see e.g. 
Schmidt 1966) can be written as 

B(r,t) = B(ro,O) +~. VB(ro, 0) +V x <51, (29) 

where <51 is the first-order perturbation in the vacuum magnetic vector potential 1. 
To derive the required expression for dS(r, t), the usual expression for 

d(dS)jdt on a deforming surface, 

d(dS)jdt = (V .v)dS -(Vv).dS (30) 
with 

vCr, t) = 8~(ro, t)j8t, (31) 

is here integrated to first order in ~ to obtain 

dS(r, t) = dS(ro, 0) + (V .~) dS(ro, 0) - (V~). dS(ro, 0) . (32) 

Insertion of equations (29), (31), and (32) into equation (28), together with 
2Bo . (~. V)Bo = ~. V B5 , then yields 

It 'f 1{~2 ~2 ~ ~}o~ JlO<5WBE = - dt 2" Bo +~. VBo +2Bo. V x <5A -, 
o Spv(O) at 

• {dS6 + (V. ~) dS~ - (V~) • dS6} , (33) 

where Eo = E(ro, 0), and dS6 = dS~v(ro, 0) is directed into the plasma. 
All quantities in equation (33) are functions of (ro, t) and, since ro is time 

independent, the integrations can be commuted. Retaining integrand terms to second 
order in ~, the equation becomes 

JlO l5WBE = L+M+N, (34) 
where 

L = - f dS6 • It dt' G-B5)O~/ot' = - f dS6 • ~G-B5), (35) 
Spv(O) 0 Spv(O) 
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M = - f dS6 . It dt' {tB~ (v .~) a~ - a~. V~) + a~ ~. VG;1~~)} , (36) 
Sl'v(O} 0 at at at 

and 

N = - f It dt' (dS~. a~fat')(Bo' V x (jA). 
Spv(O) 0 

(37) 

The simplification of N is readily achieved. We note first that equations (29), 
(31), (32), and E = 8«jA)f8t enable equation (24) to assume the first-order form 

dS6 x 8«jA)f8t = -(dS6.8~f8t)Bo, (38) 

so that equation (37) becomes 

N = fIt dt' {dS~ x a«jA)/at'}. (V x (jA). 
Spv(O) 0 

(39) 

Since dS6 x 8«jA)/8t vanishes on Scv and Sci and the field quantities are assumed 
negligible at Soo' the integral (39) can be taken over the surface 

S(O) = Spv(O) + Scv + Sci + S 00 , (40) 

the equilibrium form of equation (21) for the surface bounding the combined vacuum 
and insulator volume regions. With A the corresponding magnetic vector potential, 
the integral (39) becomes 

N = It dt' f dS6 • {a«j~) x (V x (jA)} , (41) 
o S(O) at 

which, by use of Gauss's theorem and the vanishing electric current condition 
V x (V x (jA) = 0, becomes 

N = t f~ (V X (jA)2 dTo, (42) 
t(O}+t; 

after time integration. 
The reduction of M in equation (36) to simpler form presents difficulties. 

However, the procedure gives useful insight into the underlying physics, and is 
outlined as follows. 

Using a standard vector identity, the expansion of the vector triple product, 
and the equilibrium form of the pressure balance equation (6), equation (36) becomes 

M = P+Q, (43) 
where 

f ' It, { -2 (a~ a~) a~ - 2 } p= - dSo ' dt tBo ~v.,-~.v, +~,.V(tBo) 
Spv(O} 0 at at at 

(44) 

and 

Q = - It dt' f dS~. {(/lO Po +tB~)V x (a~ x ~) + V(tB~) x (o~ x ~)}. (45) 
o Spv(O} at at 
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Equation (44) can immediately be integrated by parts to give, with the help of 
equation (36), 

p= -f dSb·UB6(;V.;-~.v~)+~~.VG-Bm-M. (46) 
Spv(O) 

Integration of equation (45) presents some difficulties. Writing 

Q = R+S, (47) 
where 

R = - It dt' f dS~ . {(f.10 Po +1-B6)'1 x (a~ x ~)} 
o Spv(O) at (48) 

and 

S = - It dt' f (dS~ x '1(1-B6») . (a~, x ~) , 
o Spv(O) at (49) 

S can be simplified by introduction of the jump condition (see e.g. Rose and Clark 
1961) 

<dS~ x '1(f.1oPo +lB6» = 0, (50) 

which permits equation (49) to be written as 

s = - It dt' f dS~ . {v(f.10PO +1-B6) x (~~ x ~)}. (51) 
o Spv(O) 01 

Combination of equations (48) and (51) in equation (47) now yields 

Q = - It dt' f dS~ . v x {(f.10 Po +1-B6) (a~, x ~)}. (52) 
o Spv(O) at 

If Spv(O) is a closed surface (i.e. if the plasma is in contact with vacuum only), 
Gauss's theorem applied to equation (52) shows that Q vanishes. If, however, the 
plasma is in contact with electrodes, Spv(O) is not a closed surface. In this case let 
C(t) be the contour representing the intersection of Spv(t) and Spe(t), and let dl be 
an element of path around C(O). Then equation (52) transforms by Stokes's theorem 
to 

Q = - It dt' 1 dl. (f.10 Po +lB6) (a~, x ~) . 
o J C(O) at (53) 

At the beginning of this section (equation (15» it was shown that, when 
Bo. dSe =1= 0, ~ vanishes on Spe(O). Under these conditions Q of equation (53) 
correspondingly vanishes. 

If Bo. dSe = 0 the displacement of fluid elements on Spe(O) must always be 
parallel to that surface, 

v(r,t).dSe(r) = o. (54) 
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Recalling equation (31), and noting the spatial relationship 

dSe(r) = dSe(ro) +~. V{dSe(ro)} 

to first order, equation (54) gives the first-order result 

(8~/8t). dSe(ro) = 0, (55) 

which when integrated to first order yields 

~.dSe(ro) = 0, (56) 

since ~ = 0 at t = O. From equations (55) and (56) 

dSe x {(8~/8t) x ~} = 0, 

and so, with C lying in Spe, dl. dSe = 0 and 

dl.{(8~/8t) x~} = o. (57) 

Applying the result (57) to equation (53), it is seen that in this case Q again vanishes. 
Equation (43) now reduces to M = P, and equation (46) therefore yields 

M = -tf dS~.HB~(~V.~-~.V~)+~~.V(tBm. (58) 
Spv(O) 

From equations (35), (42), and (58), equation (34) can now be expressed 
explicitly as 

f.10DWBE = - f dS~ .~(!B~) +tJ~ (V x DA)2 dro 
Spv(O) «0) + <. 

-tf dS~.{tB~(~v.~-~.V~)+~~.v(tBm· (59) 
Spv(O) 

The first-order term in equation (59) represents the contribution from external 
regions to the first-order variation in system potential energy. Since this first-order 
variation vanishes for a system originally in equilibrium, it is the second-order terms 
that are used in the following analysis. 

(c) Determination of D W = D WF + D Ws + D WE 

It was shown above that the term T (equation (13», which appears in equation 
(11) vanishes over SpCO) = Spv(O) + Spe(O). Recalling that ~ = 0 for the required 
condition Bo. dSe -=1= 0, the remaining terms in the surface integral of equation (11) 
may be taken over Sp(O) = Spv(O) alone. With the help of equations (3) and (6) in 
equilibrium form, the former being transformed to give Bo. V Bo = V{J.1oPo +tB5), 
substitution of equation (11) and the second-order terms of equation (59) into 
equation (16) leads, with dSo = -dS~, to 

DW = DWF+DWs+DWE (60) 
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for the change in system potential energy. The three terms in equation (60) are: 

c5WF = t f d"t'o {flo 1 1 Q 12 - jO' (Q x ~) +YPO(V' • ~)2 +(V . ~)~. Vpo} (61) 
_ <p(O) 

the fluid contribution; 

c5Ws = t f (dSo• ~)~. {VG-flo 1 B~) - v(PO +tflo 1 Bm (62) 
Spv(O) 

the surface contribution; and 

c5WE = tflol fA (V X c5A)2 d"t'o (63) 
«0)+ <I 

the contribution from the vacuum and insulator regions external to the plasma. 
Expressing ~ = (no x ~) x no + no(no.~) and dSo = no dSo, (62) assumes the 

familiar form 

c5Ws = t f dSo (no· ~)2<no· V(po +tflo 1 B~», 
Spv(O) 

(64) 

in view of the jump condition (50). 
The result (63) for c5WE can also be expressed as a surface integral over SpvCO). 

Noting that dSb x c5A also vanishes on Scv and Sci' the argument leading from 
equation (39) to (42) shows that 

f It dt' (dSb x c5A). o(V x ,c5A) = t fA (v X c5A)2 d"t'o = N, (65) 
Spv(O) 0 ot «0) + <I 

as in (42). Since, from equations (42) and (63), c5 WE = flo 1 N, combination of 
equations (39) and (65) followed by time integration and use of 

dSo x c5A = -(dS~.~)Bo, (66) 

the boundary condition on Spv(O) obtained by integration of equation (38), leads to 

c5WE = f (dSo ·~)(tflol Bo. V x c5A), 
Spv(O) 

(67) 

a form not unexpected on physical grounds. 
In the approach of Bernstein et al. (1958) an expression was obtained for the 

second-order variation of system potential energy for a region which can often be 
considered to be surrounded by a rigid perfectly-conducting wall, without specific 
inclusion of external insulators. 

Here the approach of Van Kampen and Felderhof (1967) has been extended 
to a system comprising a finite plasma-body with external non-shortcircuiting rigid 
conductors, insulators, and an external magnetic field in a vacuum region extending 
to infinity, showing that it is permissible to apply the energy principle to the plasma 
between electrodes. In particular the approach adopted here enables a better under
standing to be obtained of the surface term c5 Ws given by equation (64). 
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IV. EXAMINATION OF SURFACE CONTRIBUTION t5 Ws 

At first sight it seems plausible to identify the surface term (64) appearing in 
equation (60) as the second-order part of the work performed against the surface 
current in displacing the boundary by;, as has been done, for example, by Schmidt* 
(1966, p. 125). The following examination of t5Ws amplifies its nature and suggests 
that such a simple one-to-one correspondence between its mathematical form and 
a specific physical effect is not possible. 

If the plausible identification mentioned above is to be generally correct, it 
must be correct when the internal magnetic field Bo is zero. The "work done against 
the surface current" is then just the work done against the vacuum magnetic field, 
and for any; it follows that for second-order surface terms 

t5Ws = t5WBE (68) 

should be true. Noting that the first-order plasma volume change produced by ; is 

t5't"1 = - J dSo .;, 
Spv(O) 

(69) 

we choose for convenience ; tangential to SpvCO) at .all points, 

dSo'; = 0, (70) 

and find from equations (59), (63), and (67) that 

t5WBE = !.uo 1 B'5 f dSo .(;. V);, 
Spv(O) 

(71) 

in view of the last paragraph of Section II. 
Thus equation (71) does not necessarily vanish for the; field chosen to satisfy 

equation (70), whereas t5Ws given by equation (64) does. The equality (68) is therefore 
not satisfied, and the plausible identification mentioned at the beginning of this 
section does not hold in this case. Hence it cannot be true in general. 

The non-vanishing of expression (71) for t5WBE reflects the fact that equation 
(70) does not specify zero deformation of the plasma surface to second order in ;. 
In fact there exists such a deformation, which requires a second-order amount of 
work given by expression (71). To understand this more clearly, consider the exact 
plasma volume change 

t5't" 2 = - It dt' J dS' • v . 
o Spv(O) 

(72) 

For no deformation of the plasma surface t5't"2 = 0, and this is ensured by the condition 

dS'.v = O. (73) 

* One of us (P.W.S.) wrote on this point to Professor Schmidt, who advised that he did not 
regard his proof of this identification of d Ws as satisfactory. 
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With the help of equations (31), (32), and (69), time integration of equation (72) 
leads to 

~t'2-~t'1 = -tf dSb·(~V.~-~.V~), 
Spv(O) 

(74) 

the second-order change of plasma volume. Using this result and the relation (67), 
for zero internal magnetic field, equation (59) becomes 

~WBE = 1-110 1 B~~t'2 -1-110 1 f (dSb .~){Bo. V x ~A +t~. VB~}. (75) 
Spv(O) 

For the condition (73), which also implies the weaker condition (70), ~ WBE of equation 
(75) vanishes. For condition (70) alone, which ensures the vanishing of ~t'1 of equation 
(69), but which does not make ~t'2 of equation (72) zero, ~WBE of equation (75) 
correctly reduces to the second-order energy form (71). 

From this treatment it is seen that interpretation of ~ Ws given by equation 
(64) as the work done against the surface current when the plasma boundary is 
displaced by ~ is not correct because of modification of the vacuum field magnetic 
energy arising from second-order distortion of the boundary surface. Indeed, it 
seems very difficult to give ~ Ws a simple direct physical interpretation, probably 
because it is a composite term arising from combination of equations (11) and (59) 
in equation (16) as described. Mathematically the situation is easily understood. 
In obtaining ~W of equation (60) from equations (11) and (59), the term 

f ~2 -1- dSb·(~V.~ -~. V~)(tBo) 
Spv(O) 

appearing in equation (59) is cancelled, and so it cannot influence ~Ws appearing in 
equation (60). On the other hand, it is just this term in equation (59) that gives rise 
to the non-zero residue (71) for the condition (70), leading in turn to violation of the 
proposed equality (68) when dSo• ~ = O. 
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