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Abstract 

A theoretical discussion is presented of the structure of a stream of electrons 
moving through a gas under the action of a uniform electric field. The treatment 
incorporates the phenomenon of longitudinal diffusion in which the coefficient DL can 
be different from the isotropic coefficient of diffusion D. The treatment also is not 
restricted to the case in which the aperture through which the stream enters the 
diffusion chamber is small. The solution satisfies the boundary condition n = 0 at the 
surface of the anode and everywhere on the cathode except over the plane of the source 
aperture. The theory therefore provides criteria for the validity of simplified solutions 
employed hitherto. 

I. INTRODUCTION 

In the well-known method introduced by Townsend to measure the ratio 
of the drift velocity W to the coefficient of diffusion D of electrons in a steady 
state of motion in a gas, it is necessary to determine the distribution n(x, y, z) of the 
number density of the electrons in a steady stream moving through the gas in a 
uniform electric field E. The source of the stream is an aperture in a plane cathode 
through which pass electrons from a broad stream (assumed uniform) which moves 
in a uniform electric field also equal to E and is intercepted by the cathode of the 
diffusion chamber. The restricted but spreading stream that emerges from the 
aperture then flows through the gas and is received by a plane anode. The experimental 
procedure consists in measuring the proportion R of the whole current received by 
a central region of the anode. It is necessary to determine R as a function of WID 
and the known dimensions of the diffusion chamber so that WID may be deduced 
from the measured value of R (see e.g. Crompton 1972 for a summary of the develop
ment of the theory). To derive the theoretical formula for R it is first necessary to 
determine the distribution of the number density n(x, y, z) in the stream from the 
equation of continuity for n and the boundary conditions. In Townsend's analysis 
the equation of continuity to be satisfied by n(x,y, z)was taken to be 

V2n = (WI D)onloz = 2,,1. onloz , (1) 

and the boundary condition to be n = 0 over the surface of the cathode except over 
the aperture. Let the origin of coordinates (z = 0, p = 0) lie at the centre of the 
circular aperture (of radius p = a) in the cathode which lies in the plane z = 0, 
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the axis of the stream being +Oz and the plane of the anode z = h. The diffusion 
chamber, which was cylindrical in form, was limited laterally by annular rings that 
served as potential dividers. Townsend also assumed that n = 0 at the effective 
radius of the cylinder p = c, while he arbitrarily assumed that n was constant over the 
source aperture, 0 :::;;; p :::;;; a. He supposed the distribution in the stream to be that 
in a stream proceeding to infinity and then assumed that the current density n W over 
the anode in the plane z = h was that over the geometrical plane z = h in the 
uninterrupted stream. Under these conditions he found the appropriate solution of 
equation (1) for n(p,z) in a stream proceeding to infinity in the form of an infinite 
series whose terms involved Bessel functions of orders zero and unity (e.g. Townsend 
1915). Later, Pidduck (1925) derived a solution for the case in which the aperture was 
a parallel sided slot. He used the correct boundary condition n = 0 at the anode 
z = h and also assumed that n was constant across the aperture. 

Much later, Huxley (1940) gave a more convenient form of solution that is 
appropriate to apparatus in which the aperture is made small, that is, a/ h ~ 1. 
Distant solutions of the form 

00 

n = exp(Az)(Ar)-t ~ AkKt(Ar)Pk(cos8) (2) 
k=O 

were assumed for the stream proceeding to infinity, where K is a modified Bessel 
function of the second kind, r = (p2 +Z2)t, and cos 8 = z/r. It is found that for 
a/h ~ 1 the aperture behaves as a point source and is a simple dipole source giving 

n = -A1exp(Az)o{r-1exp(-Ar)}/oz. (3) 

With this solution n vanishes over the cathode except at the origin. The condition 
n = 0 over the anode z = h for a stream not proceeding to infinity is satisfied by the 
addition· of supplementary solutions in the form of dipole "image" sources at the 
positions p = 0, z = ± 2nh (n = 1,2, ... ), all directed parallel to the original source. 
In practice, unless z is small, the distribution n(p,z) is well represented by the system 
comprising the original source and the single image source at z = 2h. 

In what follows, the theory is generalized to remove the restriction in Huxley's 
formulation that a is small and the special assumption in the work of Townsend 
(1915) and Pidduck (1925) that n is constant across the aperture. Moreover, it is 
now known (e.g. Huxley 1972) that the equation of continuity (1), must be modified 
to take account of the difference between the longitudinal coefficient of diffusion DL 
and the transverse coefficient D, when electrons diffuse in the presence of an electric 
field. 

II. INTEGRAL SOLUTIONS 

The modified equation of continuity which takes account of the difference 
between the longitudinal and transverse diffusion coefficients is 

(o2n o2n) i?n _ an 
D -;;--y + -2 +DL - 2 - w ~ . 

ox oy oz uZ 
(4) 
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Division of all terms in equation (4) by DL, with the substitutions X,2 = (DdD)X2, 
y,2 = (DL/D)y2, and 2AL = W/Du then gives 

82n o2n o2n ,on 
-+-+- =2AL-· OX,2 oy,2 OZ2 OZ 

If we write n = exp(ALz) V(x',y', z), it is seen that V is a solution of 

V,2V = Ai V, (5) 

where V,2 == (fP/8x,2 +82/8y'2 + 82/8z2). 
A solution is required such that n = 0 (V = 0) on the cathode z = 0 except 

across the aperture 0 ~ p ~ a, that is to say, Vz=o exhibits a discontinuity in its 
functional form at p = a. We therefore seek a solution in the form of an integral 
since there exist classes of integrals regarded as functions of their parameters that 
show such discontinuous behaviour. It is also evident that cylindrical coordinates 
should be adopted. If p2 = X2+y2 and p,2 = X'2+ y ,2 = (DL/D)p2 then, since the 
stream is symmetrical about its axis, equation (5) is equivalent to 

Put 

1 0 ( , av) a2 v '2 V -- P - +- =AL . 
p' op' op' OZ2 

V(p',z) = exp(±tz) U(p'). 

It then follows from equation (6) that 

1 d ( dU) 
p'dp' p' dp' +(t 2-Al)U = 0, 

(6) 

(7) 

(8) 

which is Bessel's equation of zero order. Consequently a solution finite at p' = 0 is 

U oc JO{(t 2 - AiY!-p'} 

and the solution of equation (6) is 

Yep', z) oc exp( ± tZ)JO{(t 2 - Alyt p'}. (9) 

Since t is a parameter, which is arbitrary except for the requirement t :> Au we may 
multiply the right-hand side of equation (9) by a function ¢J(t) to obtain a more 
general solution of equation (6). Furthermore, provided the integral is convergent 
another solution is 

v oc foo exp(±tz)Jo{(t2-Ai)+p'} ¢J(t) dt. 
AL 

(10) 

Consider first a stream that proceeds in a uniform field to z = + 00, that is 
to say, the anode is at so great a distance that it has no effect on the structure of the 
stream at finite distances z from the cathode. We therefore adopt the negative sign 
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in the exponential term in (10) and let the origin of coordinates be the centre of the 
aperture and the cathode the plane z = O. We also replace the variable of integration 
by v where v2 = t 2 - At with v dv = t dt. Consequently the expression (10) for V 
becomes 

v = A fOC! exp{ _Z(V2+Ah~"}Jo(p'V)4>(V2+ADt)v dv 
o (V 2+ADt ' 

(11) 

where A is an arbitrary constant. The factor 4>(v2 + At)t) may include the case in 
which it is free from AL and of the form 4>(v). We shall, in due course, seek the form 
of 4>( v) that gives V the appropriate behaviour on the cathode when z = 0 but for the 
moment we note the form of V(p',z) when 4>(v) is given particular forms. First let 
4>(v) be a constant equal to unity, in which case 

v = A fOC! exp{ -z(v2+~Dt}Jo(p'v)v dv 
o (v2 +At)~ . 

(12) 

However (Watson 1944, Section 13.47, equation (2», 

f OC! J (bt) Kv{a(t2 +Z2)t} tl'+l dt = bl'(a2+b2)t)V-I'-lKv_I'_1{z(a2+b2)t}. (13) 
01' (t2+ Z2)tv aV z 

It follows from equation (12) that 

V = A(2zjn)t f OC! Jo(p'v)Kt{Z~V2+2APt} v dv 
o (v +AL )4 

= A(2ALjn)t K~{AL(P'2 +Z2)t}j(p'2 +Z2)! 
2 

= A exp( - AL r')jr' , (14) 

where r' = (p,2 +Z2)t and Kv == K_ v. 
Thus the expression (14) gives the solution of equation (6) that represents the 

distribution of V from a "pole" source of V at the origin. It also follows from 
differentiation of (14) with respect to z that additional solutions are 

V = A fro exp{ -Z(V2+At)t}Jo(p'V)(V2+ADtmv dv 
o (V 2+At)i 

= (_l)mA~(eXp(-ALr'») = (_1)mA(2jn)t)'L~(Kt(ALI~»). (15) 
{)zm r' {)zm (AL r')2 

In particular, the distribution of V from a "dipole" source of Vat the origin is 

V = _A~(exp( -ALr'») = _A(2AL)t G (Kt(A~.r'») 
GZ r' n {)z r'2 

= A fo'" exp{ -z(v2 + Alyt}Jo(p'v)v dv. (16) 
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III. PLANE SOURCES 

(a) Ring Source 

139 

Consider the pole source of equation (14) to be uniformly distributed over a 
narrow circular annulus in the plane z = 0 and with its centre at the origin. At a 
point (0, z) on the +Oz axis the value of V, when the radius of the annulus is q, is 
from equation (14) 

V = A exp{ - Adz2 +q'2)t}j(Z2 +q'2)t , (17) 

where q' = (Dd D)tq. The value of V at a point (p, z) not on the axis is given by 

v = A fOCi exp{ -Z(V2+Al)t}JO(p'V)¢(v)v dv 
o ~2+Al)l ' 

in which ¢( v) is to be determined. Since V is given by equation (17) when p = 0 it 
follows that 

fOO exp{ -z(v2+Jel)t}¢(v)vdv = exp{ -JeL(Z2+ q'2)t}j(Z2+q'2}t. 
o (v2+Jel)l 

Comparison with equation (14) shows that ¢(v) = Jo(q'v) and therefore that the 
general expression for V from an annular source of poles is 

V = A foo exp{ -z(v2+ Atyt}Jo(p'v)Jo(q'v)v dv 
o (V2+Jel)t . 

(18) 

Similarly the expression for V from a ring of dipole sources is 

V = A 5000 exp{ -z(v2+Jel)t}Jo(p'v)Jo(q'v)vdv. (19) 

(b) lrifinite Plane Source 

Consider a uniform distribution of pole sources over the whole plane z = O. 
Let s be the strength of sources per unit area, that is to say, the rate of emission of 
electrons from an element dS of the surface is s dS. The value of Vat a point (p, z) 
is a function of z but not of p. It follows from equation (17) that 

v = A I~o [exp{ -JeL(Z2 + q'2)t}j(Z2 + q'2)t]2nq dq 

= A(2nDjDL) I~=o exp{ -AL(Z2+q'2)t} d{(z2+q'2)t} 

= A(2nDjDL)[ -exp{ -AL(Z2 + q,2)!-}jAL];;=O 

= A (4nDjW)exp( -ALz), (20) 
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since 2AL = Wj DL • Also, 

n = exp(ALz) V = A(4nDjW), 
and at the surface z = 0 

n = V = A(4nDjW). 

However, the rate of emission from an element of surface dS is given both by sdS 
and nWdS = Vz=o WdS, and consequently 

s = 4nDA or A = sj4nD. (21) 

Thus if V in equation (14) is due to a pole source with strength s then 

V = (sj4nD)exp( - AL r')jr' . (22) 

Similarly, when the annular source of equation (17) carries a total strength 
(2nq dq)s = (2nDj DL)q' dq' s then (17) becomes 

V = (2nDj DL)(q' dq' sj4nD)exp{ - AL(Z2 +q'2)t}j(Z2 +q'2)t 

= [(sj2DL)exp{ - AL(Z2 +q'2)t}j(Z2 +q'2)t]q' dq' . (23) 

Moreover, equation (18) can then be written 

v = (s/2DL)(q' dq') fa) exp{ -Z(v2+ADt}Jo(p'v)Jo(q'v)v dv 
o (V2+Ai)t . (24) 

Equation (20) becomes 
V = (sjW)exp( -ALZ) (25) 

and 
n = sjW. 

The value of d Vjdz is given by 

dVjdz = -(sAdW)exp( -ALZ) = -(sj2DL)exp( -ALZ) (26) 

when Z is positive. For negative values of Z the sign of d Vjdz is reversed and conse
quently at the surface there is a discontinuity in d Vjdz of an amount 

a(dVjdz) = sjDL. (27) 

Consider the field of V of two infinite parallel plane sources, one on the plane 
z = 0 with source density +s per unit area and the other on the plane z = -h 
with source density -so The expression for Von the plane z = const. is 

V = (sjW){l-exp( -ALh)}exp( -ALZ). 
Ifh~Othen 

V ~ (shAdW)exp( -ALZ) = (mj2DL)exp( -ALZ), (28) 

where m is the "dipole" strength per unit area on the plane z = O. Since V changes 
sign in crossing the plane z = 0 the discontinuity in V at the plane z = 0 is 

aV = mjDL • 
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Also, on the positive face of the plane z = ° 
n = V = m/2DL. (29) 

Thus on the plane z = ° the behaviour of V is that of an electrostatic potential. 
It follows from the above that equation (16) when related to an isolated dipole 

with strength m is 

V = _ ~~(exp( -AL r'») 
4rrD 8z r' . 

(30) 

Equation (19) when related to an annulus of dipoles with total strength 2rrmqdq 
becomes 

V = (m/2DL)(q'dq') fooo exp{ -z(v2+ADt}Jo(p'v)Jo(q'v)vdv. (31) 

(c) Plane Distribution in which sand m are Functions of q' 

Let sand m be functions of the radial distance q and therefore of q' = (DL/ D}~q, 
that is, s == seq') and m == m(q'). It follows from equations (24) and (31) that the 
expressions for V(p', z) produced by the distributions seq') and m(q') respectively are 

f 00 exp{ Z(V2 + A 2)t} (f 00 ) 
V(p',z) = (: "2y'" L Jo(p'v) Jo(q'v){s(q')/2Ddq'dq'vdv 

o v + ilL 2 0 
(32) 

and 

V(p', z) = 5o'Xl exp{ _Z(V2+Atyi} Jo(p'v) (foOO Jo(q'v) {m(q')/2Dd q' dq,)v dv. (33) 

Also, it follows from equation (32) that 

- aV(p',z) = fooo exp{ -z(v2 +ADt}J o(p'v) (5000 J 0(q'v){s(q')j2Dd q' dq,)v dv. 

(34) 
We see from equation (32) that in equation (11) 

¢(V2+Ai)t) == ¢(v) = fooo Jo(q'v){s(q')j2Dd q' dq'. (35) 

On the positive face of the plane z = 0, m/2DL = V(q') = n(q') and consequently, 
since z = 0, equation (33) becomes 

V(q') = 5000 Jo(p'v)t/J(v)v dv, (36a) 

with 

t/J(v) = 5000 J o(q'v) V(q') q' dq' . (36b) 

The pair of equations (36a) and (36b) are a particular example of Hankel's inversion 
theorem (Watson 1944, Section 14.4; Webster 1955, p. 369; Bowman 1958, p. 114). 
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IV. DISTRIBUTION OF n OVER PLANE Z = ° 
The boundary conditions specify the behaviour of n over the plane z = 0, 

namely 
n#O, O~p~a; n=O, p>a. 

It follows from equation (36b) that if the function V(q') is known then ljJ(v) can be 
determined in principle and V(p',z) is then 

V(p',z) = fooo exp{ -z(uz+Al)tpo(p'u)ljJ(u)vdv. (37) 

For instance, Townsend (1915) assumed that on the plane z = ° 
n = const. = no, ° ~ p ~ a; n=O, p>a. 

From equation (36b) 

ljJ(u) = no f:' Jo(q'u)q' dq' = no(a'ju)J1(a'v) , 

where a' = (DLj D)ta. Consequently 

V(p',z) = noa' fooo exp{ -z(vz +),l)tPo(p'v)J1(a'u) du 

and 
n(p',z) = exp(ALz) V(p',z). 

The assumption that n is constant across the aperture is unrealistic in that it 
neglects the loss of electrons by diffusion to the edges. On the contrary it is to be 
expected that n would vary from a maximum value no at the centre to zero at the 
edges. We note that when AL is zero equation (5) reduces to Laplace's equation and 
that V behaves therefore as an electrostatic potential. The problem under consider
ation then reduces to the corresponding electrostatic problem of the penetration of 
a uniform electrostatic field through an aperture in a plane conductor. It is known 
that in the latter problem the distribution of potential across the aperture is 

V(q) = Vo(1-qZjaZ}!-. 

We therefore take the distribution of electron number density across the aperture 
to be 

V(q') = n(q') = no(1-qZjazy = no(l-q,Zja'zy, (38) 

where v is, for the moment, unspecified. Equation (36b) then shows that 

tf;(v) = no f:' J o(q'v) (l_q'Z ja'z)" q' dq' , (39) 

since n(q') is zero when q' exceeds a'. 
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In order to evaluate the integral in equation (39) consider Sonine's first finite 
integral (Watson 1944, Section 12.11) which is 

f-'-1t 

0
2 JI'(zsin 0) sinl'+10cos Zv + 10 dO = {2T(v+ 1)jzV+l}JI'+v+l(Z) , (40) 

for Re(p) and Re(v) > -1. Write sinO = t in order to effect the transformation 

fol JJzt)(1-t2 ytl'+1 dt = {2Vrev+l)jzv+l}JI'+v+l(Z). (41) 

It follows from equations (39) and (41) that 

tjJ(v) = noa,2 501 Jo{(q'ja')(a'v)} (l-q,2ja,2y(q'ja') d(q'ja') 

= noa'2{2T(v+1)}JV+l(a'v)j(a'vy+l. (42) 

The distribution of the number density n in the stream is from equations (37) 
and (42) 

n(p', z) = 1no a,2 2V+ 1 rev + 1) exp(AL z) 

x fooo exp{ -z(v2 +AD~j J o(p'v) {Jv+ l(a'v)j(a'vY+ l}V dv. (43) 

When z = 0 the integral in this expression becomes an example ofa Weber-Shafheitlin 
discontinuous integral (Watson 1944, Section 13.4). The series expansion of 
2V+1 rev+l)Jv+l(a'v)j(a'vy+ 1 = y is 

= re~+ 1) ~ (_1)m_rev+2)_Ga'v)2m 
y rev+2) m=O rem+v+2) m! 

When 1ALa' is small in comparison with unity (see Section VIII) the expression for 
n(p', z) is determined by the first term in the expansion for y, and thus 

n(p', z) ---+ 1no a'2 ~~~: g 5000 exp{ -z(v2 + AD+}J o(p'v) v dv 

as 1ALa' ---+ O. From equations (6) and (16), this gives 

n(p' z) ---+ -~n a' exp(Ji. z)- . 2 rev + 1) . a (exp( - AL r'») 
, 2 0 re v + 2) L oZ r' (44) 

Thus a small aperture behaves as a simple "dipole" source, as is usually assumed. 
It is, however, convenient to postpone consideration of the general case in which 
1AL a' is no longer very small. 
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V. REPRESENTATION OF n(p', Z) FROM SOURCE DISPLACED ALONG Oz AXIS 

If !/J(v) is replaced by exp{/(v2 + Ai}t}!/J(v) in equation (37), the new expression 
for V then is 

V(p',z,l) = tJ) exp{ -(z-l)(v2+Al)t}Jo(p'v)!/J(v)vdv, (45) 

in which !/J(v) retains its original form and 1 is less than z. Evidently equations (45) 
and (37) are the same but for the replacement of z by z -I and consequently 

V(p',z,/) == V(p',z-l). 

The solution is therefore that appropriate to the displacement of the source plane 
from z = 0 to I. The expression for n is 

n = exp{AL(Z-/)} V(p',z-/) = exp(ALz)exp( -ALl) V(p',z-l) 

= exp(ALz) V1(p', z-l), (46) 

in which VI is what V(p', z -I) becomes when the strength of the dipole distribution 
over the source plane is everywhere changed by the same factor exp( - AL I). 

VI. SOLUTION WHEN STREAM TERMINATES ON ANODE IN PLANE Z = h 

In this case the solution must be such that n and therefore V are zero over the 
plane z = h. We refer to equation (9) and note the alternative possibilities of ± tz 
in the exponential. In seeking an expression for a stream proceeding to z = + CIJ 

it was necessary to exclude the positive exponent. However, when the stream is 
limited in length it is legitimate to include, terms in both exponents and indeed 
necessary to do so in order to meet the requirement n = V = 0 when z = h. In what 
follows, the terms are associated to form a hyperbolic function. For a stream origin
ating from a distribution of pole sources over the plane z = 0 we replace equation 
(32) by 

V(p',z) = fer> sinh{(h-z)(v2+Al)t} Jo(p'V)i4>(v)vdv, 
o sinh{h(v2+Ai)t} (V2+Al)2 

(47) 

where, as before, 4>(v) is given by equation (35). It will be noted that V(p', z) = 0 
on the plane z = h and that when z = 0 

, fOC> J o(q'v),,4>(v)vdv, 
V(q) = 0 (V2+Al)2 

which is what equation (32) gives when z = O. The conditions over the plane z = 0 
are therefore the same as for the uninterrupted stream that proceeds to infinity. 

Similarly, the stream that originates from a distribution of dipoles over the 
plane z = 0 is represented by the following modification of equation (37), 

v;(p',z) = fOC> sinh{(h~z)(v2+Al)t} 
o sinh{h(v2+ADt} JoCp'v)!/J(v)v dv, (48) 
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where 

ljJ(v) = fooo Jo(q'v) {m(q')/2Ddq' dq'. 

Again, V(p', h) = 0 and the original distribution of sources in the plane z = 0 remains 
unmodified. The distribution of number density in each stream (pole or dipole) is 
found to be 

n(p',z) = exp(ALz) V(p',z). 

In particular when the stream enters through a circular aperture in the cathode 
it follows from what has immediately preceded and from equation (43) that 

n(p',z) = -!-noa,22v +1 r(v+ l)exp(ALz) 

f OC> sinh{(h~z)(v2+AD-!-}J ( , )JV +1(a'v) d 
x . .1. opv V v. 

o sinh{h(v2 + Al»} (a'vr+ 1 
(49) 

When -!-ALa' --+ 0 (see Section VIII) this expression approaches the form 

r(v+ 1) Joo sinh{(h -z)(v2+AD-!-} J (p'v) v dv, 
') 1 ,2 2 i} 0 n(p ,z --+ %noa r(v+2) 0 sinh{h(v2+Ad 2 

(50) 

which represents the distribution of electrons in the stream from a small aperture 
such that -!-AL a' ~ 1. 

VII. REPRESENTATION IN TERMS OF SUPPLEMENTARY IMAGE SOLUTIONS 

We return to equation (48) which is an expression for V(p',z) appropriate to 
a stream that falls on an anode in the plane z = h, the number density being 
n(p',z) = exp(ALz) V(p',z). The factor in the integrand that is the ratio of two 
hyperbolic functions can be expanded into a series as 

sinh{(h -z)(v2 +AD-!-} 

sinh{ h(v2 + AD-!-} 

00 

l:: (exp{ -(z+2kh)(v2 +AD-!-} -exp[ - {2(k+ l)h -z }(v2 + Al)t]) . (51) 
k=O 

An equivalent form for the number density from equation (48) is therefore 

n(p',z) = exp(ALz) V(p',z) 

= exp(AL Z)C;o too exp{ -(z + 2kh)(v2 + Alyt}J o(p', v) ljJ(v) v dv 

- k;O fooo exp[ -{2(k+l)h-z}(v2+Al}~]Jo(p'v)ljJ(v)v dV). (52) 
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It follows from Section IV that the first sum of integrals on the right-hand side of 
equation (52) is the contribution to n(p', z) between the electrodes of the original 
distribution of dipole sources over the plane z = 0, with supplementary contributions 
from image distributions of dipoles over the planes z = - 2kh, k = 1,2,3, ... , whereas 
the second sum of integrals is the contribution of plane image distributions of dipoles 
over the planes z = 2(k + l)h, k = 0,1,2, .... The sense of polarization is the same 
on every plane and is that of the source plane z = 0, that is, in the direction +Oz. 

In the same way equation (47) is seen to be equivalent to the contribution from 
the original distribution of pole sources over the plane z = 0, together with image 
distributions of poles over the planes z = ± 2kh. The sign of the poles on the planes 
z = + 2kh is negative and that on the planes z = - 2kh is positive. 

When ().Lh) is large, as is usually the case in practice, the number density n(p', z) 
in the stream except near the source, is given with adequate accuracy by the sum 
of the contributions of the source distribution over the plane z = ° and of that over 
the plane z = + 2h. In the case of the stream emerging from a circular aperture in 
the cathode, the source and its images behave as simple dipoles when the radius a 
is such that (tALa') < 1 in accordance with equation (44). The use of image solutions 
has been frequently made in practice (Huxley 1940; Huxley and Crompton 1955; 
Crompton and Jory 1962; Crompton et al. 1965). 

VIII. APERTURE WITH FINITE RADIUS 

We seek a representation in series of the right-hand side of equation (43) in 
which the restriction a/z < 1 is removed. The factor 2v +1 Jv + l(a'v)/(a'vY + 1 in the 
integrand can be replaced by its series expansion 

2v+1 Jv+1(a'v) = 1 f (_l)m r(v+2) (ta'v)2m 
(a'vy+ 1 r(v+2) m=O r(v+2+m) m! 

= oF1{v+2; -t(a'v)2};rev+2), (53) 

where OF1{V+2; -t(a'v)2} is a generalized hypergeometric function expressed in 
Pochhammer's notation (Watson 1944, Section 4.4). In this notation 

. . z = £ (cx1)n (CX2)n ... (cxp)n z:, 
pFq(CX1,CX2, ... ,CXp,Pl,P2'···'Pq ,) n=O(Pl)n(P2)n···(Pq)nn. 

where each (cx)n is given by 

(CX)n = cx(cx+l)(cx+2) ... (cx+n-l) = r(cx+n)/r(cx) 

and (cx)o = 1, with a corresponding interpretation of (P)n. 
The right-hand side of equation (43) can be represented in series form in several 

ways, but because the limiting case where a/z < 1 as expressed in equation (44) 
depends upon the effective polar distance r' = (p,2 +Z2)t we seek an expansion that 
is a function of r'. To this end we transform the right-hand side of equation (53) 
to become a function of a'2(v2 +AD in order to employ equation (15). If we write 
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U == ta'2(v2 + A£), or ta'2v2 == u-(!ALa')2, it then follows from Taylor's theorem that 

_1_F{+2'_('l,)21 _ 1 ~(_l)k(l~ '2kdk( { ) 
r(v+2)o lV, za v J - r(v+2) k~O k! ZIi.La) du k oFl v+2; -u}i 

1 00 

=r(-v-+2) ~ (i'ALa,)2k oFl{v+2+k' - } k=O ' U k!(v+2h 

f (tAL a,)2k 
k=O k!r(v+2+k)oFl{v+2+k; -ta'2tv2 + A£)}. (54) 

We now assemble the right-hand side of equation (54) to form a series 10 

ascending powers of ta'2(v2 +,1£). The coefficient of (_I)m{-!-a'2(v2 +AD}m/m! is 

f (!ALa,)2k 1 r(v+2+k) = ~ (i'ALa,)2k 
k=O k! r(v+2+k) r(v+2+k+m) k=O k!r(v+l+m+l+k) 

= I V +1+m(tALa')/(!ALa')"+l+m, 

where Iv+1+m is a modified Bessel function of the first kind. Consequently 

1 00 

r(v+2) oFl {v+2; -(!a'v)2} = ~ (_1)m Iv+ 1 +m(!AL a') {!a'2(v 2+AD}m 
m=O (!ALa')"+1+m m !' 

It follows that equation (43) can be replaced by 

n(p',z) = !noa,2 exp(ALZ) fooo exp{ _Z(V2+A£)-!"} Jo(p'v) 

( 
00 {La'2(v2+A2)}m) 

x r(v+l) ~ (-l)mlv+ l+m(!AL a') "4 +1+L vdv. 
m=O (!ALa')" mm! 

We conclude therefore from equations (56) and (15) that 

n(p',z) = exp(ALz) V(p',z) 

= no exp(ALz)(2/n)tr(v+ 1) f (-I)m(-!A a,)2(m+l) Iv+l+m(tALa') 
m=O L (tALa,)"+l+mm! 

x ." L 1 a2m+ 1 (K ,(A r'») 
A£m+ 1 az2m+ 1 (AL r,)t . 

As shown in the Appendix, the derivatives 

a2m (K.!(AL r'») 
az2m (ALr'l 

and 62m + 1 (K.~.(A'L r'») 
az2m+ 1 (AL r')t 

can be represented respectively as the sum of terms of the forms 

{K2/l+ 1/2(AL r')/(AL r')t}P2icos 8) and {K2/l+ 3 /2(AL r')/()"L r'}~'}P2/l+l (cos 8). 

(55) 

(56) 

(57) 
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The coefficients A21' and A21'+1 in their expansions are given by equations (A8) and 
(A9) of the Appendix. It follows from equation (A9) that (57) can be transformed 
by rearrangement to an ascending series in {K21'+3/iALr')/O-Lr,)t}P2/I+l(Cos8) as 

n(p', z) 

nor(v+l)(2/n)t exp(ALz) 

=r(-t) ~ (~(_l)m4(m+l)r(m+t)(-!-ALa')2(m+l) 
1'=0 m=1' r(-!-) (-!-ALa,)v+1+m 

4,u+3 )K21'+3/iALr') P21'+1(COSU). 1 , 5 ~ I t 
xJv+1+m(zALa )(m-,u)!r(m+,u+z) (ALr) (58) 

When lALa' ~ 0 the series on the right-hand side reduces to the leading term for 
which,u = m = O. Equation (58) is then seen to reduce to equation (44) as required. 

We note that for r > a and 8 = In the corresponding points lie on the metal 
surface of the cathode. Since. the Legendre polynomials in equation (58) are all of 
odd order they vanish when 8 = In. Thus n vanishes on the surface of the cathode 
as required. When ALa' is small but finite the factor Iv+l+m(lALa')/(lALaT+1+m in 
equation (58) may be replaced by l/r(v+2+m). 

We shall require in the following section a formula for - oV(p, z)/oz. From 
equation (57) we have 

__ = no _ rev+l) ~ (_l)m Z)'La v+l+mZA La 8V (2)t 00 (1' ,)2m+3J (11') 

Jz a' n m=O m! (lALaT+ 1 +m 

x 2 L 1 82(m+l)(Ki(A r')) 
A[(m+1)8z 2(m+l) (ALr')t . (59) 

After application of equations (A6) and (A8) of the Appendix and rearrangement 
it can be shown that 

_ oV = no(~)trev+ l)r(~) ~ ~ (_l)m {2(m+ I)}! (lALa,)2m+31v+l+m(!ALd) 
8z a' n 2 1'=1 m=1' 2mm! (lALaT+1+m 

4,u+ 1 K (' ') x 21'+t ALr 
(m+l-,u)!r(m+,u+i) (ALr,)t P2icos8). (60) 

Consequently when 8 = l1t the derivative - 0 V/oz does not vanish on the cathode 
for r > a. 

IX. FLUX DENSITY AT ANODE 

The flux of electrons across an element of surface dS of a geometrical plane 
z = const. is 

FdS = (nw -DL ~~)dS = eXP(ALZ)(W -DLAL)V -DL ~~)dS 

= eXP(ALZ)(lWV -DL ~~)dS = DLeXP(ALZ)(AL V - ~~)dS, (61) 
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since 2AL = WI Dv At the anode where z = h and V = 0 the expression for the 
flux density becomes 

FdS = -DLexp(ALh)(dVldz)z=hdS. 

When the general expression for V(p', z) from equation (48) is introduced into 
equation (61) the flux is seen to be 

FdS = (DLeXP(ALZ) foo ALsinh{(h-z)(v2+ADt}+(v2+ADtcosh{(h-z)(v2+ADt} 
o sinh{h(v2+ADt} 

x Jo(p'v) !/J(v) v dV)dS, 

which on the anode, where Z = h, reduces to 

FdS = (DLeXP(ALh) foo (v2+~DtJo(p'v)!/J(v)v dV)dS 
o smh{h(v2+AD~"} . 

The factor sinh{h(v2 +ADt} is equivalent to 

1- exp{h( v2 + ADt}[l - exp{ - 2h( v2 + ADt}] . 

Since exp{ -2h(v2 +M)t} is less than exp( -2ALh) and in practice )oL is of the order 
of magnitude 10 cm -1 and h is several centimetres (commonly 10 cm), it is evident 
that exp{ - 2h( v2 + ADt} is extremely small in comparison with unity. Consequently 
FdS at the cathode is accurately represented by 

FdS = (2DLeXP(AL h) 5000 (v2+ADt exp{ -h(v2+ADt}Jo(p'V)!/J(V)VdV)dS. (62) 

It is evident from equation (37) that this value of the flux is twice the value of the 
quantity -DLexp(AL h)(8VI8z)z=h dS in an uninterrupted stream across a surface 
element of the geometrical plane z = h. We can therefore calculate the actual flux 
to a surface element dS of the metal anode from the value of this quantity for an 
uninterrupted stream as if the anode were absent. 

The flux to a central disc of the anode with radius b is 

-2DL exp(AL h)2n f: (&Vloz)z=hP dp, 

where VCp, z) is appropriate to the unimpeded stream. It can be seen from equation 
(59) that over the fixed plane z = h of the anode - 8VI8z becomes a function of r' 
and zlr' since cos e = hlr'. Also on this plane r,2 = h2 + p'2 and p'dp' = r'dr'. 
Thus 

d V_(r_', z_) = ~ 0 V( r', z Ir') + _0 V_C,-;;:r'_, z-,-I r-,-') 
dz r' or' oz' 

Z = h. 
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The flux to the central disc is therefore, with d' = (h2 +h'2)t, 

-4nDLexp(ALh)(D/DL) {d' hdV(r', hjr') + dV(r>.h/r')r' dr' 

= -4nD exp(AL h)( h V(r', h/r')lf + {d' dv(r~Jlh/r') 1" dr') 

= 4nD exp(AL h)(h{V(h, 1) - V(d', hid')} + I~ dV(~hh/r') 1" dr') . 

The total flux is obtained by setting d' = OCJ and noting that V(d',h/d')d'=oo = 0. 
The proportion R of the total flux that is received by the central disc is 

h{V(h, 1) - V(d', hid')} + fh d VJr', h/r') 1" dr' 
R = d' dh (63) 

hV(h, 1)+ fh d~(r', h/r') •• 1" dr' 
00 

When tAL a' in equations (57) and (59) is so small that the first term on the 
right-hand side of each equation, for which m = 0, is the dominating term then 

V(r', z/r') oc 8{Ki/AL r')/(AL r'}~}/8z . 

Thus from equation (AlOa) of the Appendix 

V(r', z/r') oc (z/r')K3/iAL r')/(AL 1")1: • 

The ratio R is then 

h{K3/iAL h)/(AL h}t -(h/d')K3j2(AL d')/(AL d')t} + fh {K3/iAL r')!(AL r')t} dr' 
R = ________________________________ ~d' 

hK3/iALh)/(ALh)t + f~ {K3/iALr')/(ALr,)t} dr' 

But 
K3/iAL r')/(AL r')t = - d{KI/iAL r')/(AL r')t}jd(AL 1") 

and consequently 

f h {K 3/2(AL r')!(AL r')t} dr' = -Ai:" I[K l/iAL r')/(AL r')t]~,. 
d' 

On replacement of the Bessel functions KI/2 and K3/2 by their equivalent forms in 
terms of exponentials and after reduction it is found that 

R = 1_(h 1-h2/d,2)h -;r- ALh d7 exP{-Add'-h)}. (64) 
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The formula (64) for R is the standard expression for a dipole point source 
and has often been discussed in the literature (see e.g. Crompton 1972; Huxley 
1972, Section IX, and references therein). This particular example illustrates the 
applicability of equation (63) in general. In order to apply it to a stream for which 
tAa' is not negligible it would be necessary to evaluate the dominant terms of equations 
(57) or (58). 

The exact representation of the function Kk+t(x)/(nI2x}~ is given by 

Kk+t(x) () ~ (k+I)! 1 
-~.1. =exp -x "-' , 
(nI2x) 2 1=0 I! (k-l)! (2x)' 

and consequently with large values of the argument x the functions Kk+t(x) all 
approach the form Kt(x) , especially when k is not large. Thus when ALr' is large 
the Bessel functions in the leading terms of equations (57) and (58) all ;;tpproach 
the form Kt(AL r'). Moreover, when blh ~ 1, cos (} ~ lover the central disc and 
we conclude that when ALh is large and blh is small the structure of the stream 
approaches that from a pole point source even when tAL a', although small, is not 
negligible. In these circumstances the formula for the ratio R is 

R = 1-(hld')exp{ -Add' -h)}. (65) 

Typical magnitudes of the parameters are h = IO cm, AL ~ IO cm -1, b = 0·5 cm, 
and consequently AL h « AL r') ~ 100; also over the disc cos (} ~ 1- t{/0)2 = 
1 - 850 ~ 1. The usual size of the radius of the aperture is a = 0·05 cm and con
sequently tALa' ~ t, which is small enough to suppress the higher order terms in 
equations (57) and (58). It is found in practice that equation (65) accurately describes 
the measured values of R when the experimental parameters have magnitUdes of the 
above order. The ratio R is then independent of the size of the source, as is found to 
be the case. At smaller values of h, the variation of cos (} across the disc becomes 
significant but, provided tAL a' is sufficiently small to suppress all terms in equation 
(57) following the first, the structure of the stream is that from a dipole point source 
and the ratio R is given by equation (64). At smaller distances and with apertures 
such that tAL a' is not negligible, the ratio R would not be given accurately by formulae 
(64) or (65). The present analysis permits the values of R to be calculated in these 
less restricted circumstances. 

The ratio R is the important experimental quantity since from it the value of 
AL , or at greater distances A = WI2D (see e.g. Huxley 1972), can be derived. The 
related quantity Dlfl, where fl is the mobility WIE, is an important physical magnitude 
in the study of the motion of electrons in gases. 

X. DEPENDENCE OF V UPON (AL a') 

It was remarked in Section IV that in the limiting case where AL --+ 0, so that 
equation (5) assumes the form 'V,2 V = 0, the problem reduces to the corresponding 
electrostatic problem. The distribution of number density across the source aperture 
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is then given by equation (38), that is 

n(q') = V(q') = no(1-q,2ja'2}t, 

where z = 0 and 0 ~ q' ~ a'. Nevertheless the investigation was carried out 
intentionally in a general manner by replacing the specific index t by a general 
symbol v. It can be seen, however, that the same value v = t is not correct when 
AL is not small. Small values of AL = Wj2DL imply that the distribution near the 
aperture is dominated by diffusion to the cathode through the coefficient DL rather 
than by transport through the aperture from the drift W in the electric field; such 
are the conditions with small gas pressures and weak electric fields. As also diffusion 
becomes more effective as the radius a of the aperture is reduced, we replace the 
criterion AL ---+ 0 by AL a' ---+ O. At the other extreme where AL ---+ 00, loss of electrons 
from the stream through diffusion to the cathode is negligible in comparison with 
the number transported through the aperture by the drift W. Moreover when AL 
is finite the proportional loss by diffusion becomes less as a is increased. The 
criterion for small loss is therefore )'L a' ---+ 00. When AL = Wj2DL approaches large 
values it follows that equation (4) approaches the form onjoz ---+ 0, or n ---+ const. In 
these circumstances the distribution of n across the aperture is constant, a behaviour 
which is consistent with the distribution n = no(1-q,2ja,2r if v ---+ 0 as AL ---+ 00. 

In view of the above considerations it is evident that to adopt a fixed value of v 
whatever the value of AL a' does not give a faithful description of the properties of 
the stream. Since the change in v is only from t to zero as )'L a' varies from zero to 
infinity, we adopt the following empirical formula for the distribution of n across 
the aperture for any value of AL a' : 

n = no(1-q'2ja'2r, 0 ~ q ~ a; 

= 0, a < q. 

v = (2 + AL a') - 1 ; 

} (66) 

We now consider the matter in more specific terms. Equation (43) is equivalent 
to 

n(p',z) = no a'(2ja')T(v +l)exp(ALz) 

x So'Xl exp{ -z(v2+ADt}Jo(p'v){Jv + 1(a'v)/vV} dv. (67) 

As AL ---+ 00 the factor exp{ - z( v2 + ADt} in the integrand approaches the form 
exp( -ALZ) and is cancelled by the factor exp(ALz) that prefixes the integral. Equation 
(67) therefore approaches the form, since v ---+ 0, 

n(p',z) = noa' So'Xl Jo(p'v) Jj(a'v) dv, AL ---+ Cf), 

= 0, a < p. } (68) 
= noa' x lja' = no, o ~ p ~ a, 

The stream is a nondiffusing column with constant radius a and number density no. 
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In general when AL a' is finite so that ° < v ~ t, equation (67) gives for the 
distribution of n on the plane z = 0, where q' := p', 

n(q',z) = no(a,Zj2)(2jaT+ 1 rev+l)/, (69) 
where 

/ = fo'" J o(q'V){Jv+l(a'v)j vV} dv. 

The integral/is a special case of the class of discontinuous integrals of Weber and 
Shafheitlin (Watson 1944, Section 13.4; Magnus and Oberhettinger 1949, p. 35; 
Abramowitz and Stegun 1965, p. 487), which are of the form 

J = fo'" Jiq'v){JoCa'v)jvY} dv. 

In particular, it can be deduced from the general expressions for these integrals J 
that 

1= (taT a'I"(v+l)zFt (-v,l;l;q' Zja'Z) = (taT(1-q,Zja,2y 
a'r(v+l) 

when ° ~ q' < a', but that / = ° when a' ~ q'. Thus from equation (67) when 
z = 0, n = no(1-q'Z ja'zy across the aperture but is zero on the cathode where q > a. 
This is the required behaviour. 

The appropriate value of v = AL a' = (AAL)ta is found from the experimental 
values of A and AL • When the momentum transfer cross section qm(c) is, in effect, 
independent of the speed c of the electrons then AL R::i 2A where tm<cz> greatly 
exceeds 3j2KT, the mean energy of a molecule. In that event v R::i ../2 Aa. From the 
above discussion it is a good approximation to the truth to suppose that n is constant 
across the aperture when ../2Aa ~ 2, that is, Aa ~ ../2. In practice a = 0·05 cm and 
consequently we require A ~ 28. To meet this condition requires, in diatomic gases, 
the use of gas pressures of several tens of torr and, in monatomic gases, hundreds of 
torr. Thus in general it must be assumed that n is far from constant across the 
aperture. 
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ApPENDIX 

Derivation of Expression for on{Ktp'L r')jp'L r')t}jozn 

Let 

1= Sa'X) exp{ -z(v2+Ai)t}Jo(p'v){¢(v2+Ai)t)j(v2+Ai)t}vdv 

and suppose that ¢(v2 +ADt) is the convergent series 

OC) 

¢(V2+Ai)t) = 2:: An(v2 +;.t)tn • 

n=O 

It then follows from equation (15) that 

I = (~)tAL¢~(_ Kt(A~r:») = (~)\L{ ~ (-I)nAn ~n (Kt(AL:»)}. (Al) 
n 8z (ALr)2 n n=O OZn (ALr')2 

Let 
OC) 

¢(V2+Ai)t)= exp{a(v2+Ai)t} = 2:: an(v 2+ Ai)tnjn !, 
n=O 

which gives, for a < z, 

I = fOC) exp{ -(z-a)(v2+)oi)t}J ( ') d = exp[ -Ad(z-a)2+p'2}t] 
2 2' 0 PV v V 2 2"' . 

o (v + ALY" {(z -a) + p' }2 
(A2) 

Alternatively, 

I = fOC) (exp{ _Z(V2+Ai)t} Jo(p'v) ~ an(v2 + Atyl:n/n !)v dv 
o (V2+Ai)t n=O 

= (~)t AL ~ (-lr an !!.-(K~(AL '2) . 
n n=O n!8zn (ALr')2 

(A3) 

However, in equation (A2) 

(z-a)2 +p,2 = (Z2 +p,2)-2az+a2 = r,2 -2ar' cos8 +a2, 

where r' = (Z2+ p'2)t and cos8 = zjr'. Now (Watson 1944, Section 11.41, equation 
(11» 

exp{ -AL(r,2+a2-2ar'cos8)t} = :f (2m+I)Km+t<:Lr')Im+t~La)Pm(cos8), 
(r,2+a2-2ar'cos8)t m=O r'2 a 2 (A4) 

and consequently 

~ AL(2m+I)Km;-t(\r')Im+t(ALa)Pm(cos8) = (~)\L ~ (_I)n an ~(Kt(AL~')). 
m=O VLLr)2 (ALa)t n n=O n!OZn (ALr')" 

(AS) 
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Consider the expansion 

00 

I.,+t()'La)j(ALa)t = ~ (-!-ALa)"+Pj2t rcs+p+t)p!. 
p=o 

Let s + 2p = n. When n = 2m is an even number it is found that the coefficient of 
an = a2m on the left-hand side of equation (AS) is 

(-!Ad2m f 4(m-p)+1 K 2(m-p)+1/iALr') 
p=o plr(2m-p+t) (ALr')t P2(m-plcos{) 

and when n is an odd integer (2m + 1) the coefficient of a2m + 1 is 

(-!AL)2m+l f 4(m-p)+3 K 2(m-p)+3/2(ALr') 
p=oplr(2m-p+%) (ALr')t P2(m-p)+1(COS{). 

When the coefficients of an on each side of equation (AS) are equated we derive the 
two formulae 

a2m (KtCAL rl») = (2m) 1 (!Ad2m r( i) 
az2m (AL r')t 

~ 4(m-p)+1 K2(m-p)+ldALr') P )(cos{) (A6) x ~ -'- 2(m-p 
p=o plr(2m-p+j) (ALr'» 

for n = 2m and 

a2m+ 1 (Kt(AL :») = -(2m+l)I(-!AL)2m+lr(t) 
OZ2m+ 1 (AL r'» 

~ 4(m-p)+3 K 2(m-p)+3/iALr') P _ )+l(COS{) (A7) 
x ~ 5 (" ')t 2(m P p=o p! r(2m - P+Z-) AL r 

for n = 2m + 1. These are the formulae sought. 
If m - p = 11 it follows from equation (A6) that when n = 2m the coefficient 

A2/l of {K2/l+ 1/2(AL r')j(AL r')t}P2icos 0) in the expansion of 82m{Kt (AL r')j(AL r')t}j8z2m is 

A2/l = (2m) 1 (-VL)2m r(i) (411+ l )j(m-I1)!r(m+l1+i), (AS) 

and similarly from (A7) that the coefficient A2/l+ 1 of {K2/l+ 3/2(AL r')j(AL r')t}P2/l+1 (cos () 
in the expansion of 82m+l{Kt(ALrl)j(ALr')t}j8z2m+l is 

A2/l+ 1 = -(2m+1)!(!AL)2m+lr(!)(411+3)/(m-I1)!r(m+l1+t) (A9) 

for f1 ~ m. 
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Simple special cases of equations (A6) and (A7) are, with 

FO'L r') = KtO'L r')jO'L r')t , 

_ 8F = A K3j2(AL r') p (cos 0) 
8z L (AL r')t 1 , 

82 F _ l.A2 (K 1 / 2(AL r') + 2K s/2(AL r') p 2( cos 0)) , 
8z2 - 3 L (AL r')t (AL r,)t 

_ 83F = .1A3(3K3/2(ALr') p (cos 0)+ 2K7/iA~r') PiCOS O)) , 
8z3 5 L (AL r')t 1 (AL r')"-

84F '4(K 1/iALr') 4Ks/2(ALr')p ( l1) 8K9 /2(ALr')p ( (J)) 
- = AL + 2 cos 0 + 4\ cos . 
8z4 5(AL r')t 7(AL r,)t 35(AL r,)t 

(AlOa) 

(AlOb) 

(AlOe) 

(A10d) 




