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Abstract 

The conditions that usually prevail in drift tube experiments for the measure
ment of mobility and diffusion of electron and ion swarms are appropriate for the 
application of a linearized Boltzmann equation. Starting from such an equation, 
formulae for mobility and (anisotropic) diffusion coefficients are derived for the case 
where only elastic collisions are important. No restriction is placed on the masses of 
particles or on the nature of interaction potential. Results of earlier theories are 
shown to be special cases of the formulae obtained here. The intended application 
of the equations is mainly to the case of alkali metal ions in neutral rare gases, where 
numerical evaluation of the formulae is necessary. The m!lin features of some of the 
numerical procedures are discussed. 

Before presenting the applied aspect of this work, an outline of the general 
theory is given. This includes a scheme for calculating transport coefficients of higher 
tensorial rank and a rough estimate of their effect. The role of the continuity equation 
in this connection is discussed. An attempt is made to place the theory in the general 
context of kinetic theory. In particular, the close similarity between the present theory 
and that of sound propagation in rarified gases is pointed out. Some experimental and 
theoretical implications of this comparison are discussed. 

I. INTRODUCTION 

Recently the restilts of experiments on the drift and diffusion of electron swarms 
through neutral gases have been the subject of extensive critical reviews (Phelps 
1968, 1969; Crompton 1969; Bederson and Kieffer 1971; Golden et al. 1971). It 
seems beyond doubt that these experiments now make possible some of the most 
accurate determinations of the electron-atom scattering cross sections in the low 
energy region. A much greater variety of interactions can occur in ion swarms and 
experiments of comparable or greater accuracy are possible (McDaniel 1964; Elford 
1971), but uncertainties in the theoretical analysis and the interpretation of experi
mental data in this case have prevented an equally reliable determination of ion-atom 
interactions. Many experimental possibilities remain unexplored because of the dis
couragement from this source. 
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The analysis of electron data is based upon an approximation which makes 
essential use of the smallness of electron mass (Lorentz 1916; Davydov 1935; Morse 
et al. 1935; Margenau 1946; Allis 1956; Ginzburg and Gurevich 1960). This 
approximation is built into the equations at an early stage, and it so alters their form 
that it has been difficult to see some fairly important physical consequences. Usually 
there is no estimate of errors caused by the approximation. Thus, although the 
phenomena are closely related, the theory of electron transport in its usual form 
offers no guidance for the treatment of ion transport. The theory for the latter has 
developed almost independently and is dominated by the fact that for the inverse 
fifth power force (Maxwellian or polarization force law) the equations are exactly 
solvable, and the approximations are built around this model case (Kihara 1952, 
1953; Wannier 1953). Their limited successes and unsuitability for more extensive 
work are to be traced to this starting point. 

The rather specialized treatment of the problems has also obscured the fact 
that these phenomena are described by the linearized Boltzmann equation. They 
have as much basic interest as the sound propagation experiments of Greenspan 
(1956), which have received so much theoretical attention (Pekeris et al. 1962; 
Uhlenbeck and Ford 1963; Sirovich and Thurber 1965; de Boer and Uhlenbeck 
1970; Foch and Losa 1972). In fact the swarm experiments seem to have many 
advantages over the sound experiments. Since the former are concerned with the 
movement of charged particles, a variety of experimental techniques become possible 
and properties of many different types of ions and gases can be studied. Although 
it is not easy to compare these two phenomena, it would appear that greater accuracy 
and control should be possible with the measurement of electrical movements involved 
in swarm experiments. 

The theories mentioned above and the one investigated in the present work are 
based on the Boltzmann equation, but in principle it should be possible to extract 
information by considering the underlying random processes. Attempts at developing 
a theory of the latter type for swarm experiments have been made by Fahr and 
Muller (1967), CavalIeri and Sesta (1968, 1969), CavalIeri (1969), and Braglia (1970). 
It is of interest to note that there exist experiments in which the motion of individual 
charged particles is observed (Hurst et al. 1963). At the pres.ent time the tendency 
is to emphasize their equivalence with the swarm experiments, and thus vast numbers 
of events are accumulated and fluctuations are disregarded. However, it is possible 
that further development of different approaches may indicate some significance 
in the differences that must exist (e.g. fluctuations), presumably in connection with 
more adequately formulated random process theories. 

The preceding remarks indicate the extraordinary scope and interest of this 
subject and the need for an adequate development of theory. In the present work we 
wish to make a beginning in that direction by further developing the Boltzmann 
equation approach, especially to improve the theory for ion swarms. It has been 
found that the most effective way to formulate the theory is also the most general. 
In Section II we indicate the place of this theory in the general context of kinetic 
theory, not for the sake of generality but to indicate, through comparison with the 
theory of sound propagation, the direction in which further improvements may be 
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sought. It will involve special approximations as well as investigation of spectral 
properties of operators that occur in the equations. 

Starting from the linearized Boltzmann equation for the charged particles, 
it has been shown, albeit only in outline (Section II), that the coefficients in a poly
nomial expansion of the distribution function can be obtained as elements of a 
matrix for a wide class of problems. The lowest of these coefficients are related to 
the transport coefficients measured in experiment, namely mobility and diffusion. 
Detailed formulae are then obtained for these coefficients for the case in which 
collisions are assumed elastic but no restriction is placed on masses or on the type 
of interaction potential (Section III). Special approximations are left to Section IV 
so that they do not obscure the features common to various cases; they are indicated 
briefly to show how most of the earlier special theories on the subject, starting from 
Langevin's (1905) theory, are contained in the formulae derived here. These formulae 
have also proved useful for the electron case where we were able to estimate the errors 
caused by the usual two-term approximation (Robson and Kumar 1971; see also 
Section IV(e) below). 

In beginning the discussion in Section II we pay some attention to the continuity 
equation. This equation is the link between the Boltzmann level of description and 
the experimental measurements. Transport coefficients occur as constants in this 
equation and are determined by fitting experimental data to appropriate solutions. 
To go beyond the first-order diffusion approximation (Section lI(e)) is to consider 
transport coefficients of tensorial order higher than two. Recently there has been 
some interest in such coefficients in view of the possibility of experimentally observing 
the pear-shaped components in diffusing swarms (R. W. Crompton, personal com
munication). Our discussion serves to indicate their place in the approximation 
scheme and provides some rough estimate of qualitative features. 

In concluding the introduction we may say that this paper is concerned with 
the derivation of formulae for mobility and diffusion, their theoretical antecedents, 
and some broad features of the process of evaluating them; they are limited to the 
case of elastic collisions so that the most appropriate applications will be to alkali 
metal ions in neutral rare gases. The dependence of transport coefficients upon 
experimental parameters is sensitive to the shape of the ion-neutral interaction 
potential. A detailed study of the physical consequences of varying the potential 
parameters (and hence determining these parameters from experimental data) is 
made in Part II (Robson and Kumar 1973, present issue pp .. 187-201). 

II. OUTLINE OF BASIC THEORY AND ITS PLACE IN GENERAL CONTEXT OF 

KINETIC THEORY 

(a) Boltzmann Equation and Continuity Equation 

The theory of electron mobility and diffusion, in a form adequate for obtaining 
anisotropic diffusion effects, has been considered by several authors (Parker and 
Lowke 1969; Lowke and Parker 1969; Skullerud 1969; Huxley 1972). They have 
confined themselves to the well-known two-term approximation of the distribution 
function which is sufficient for their purpose. Within this limitation Parker and 
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Lowke developed a one-dimensional treatment using Fourier transforms of the 
Boltzmann equation and outlined a three-dimensional treatment along the same 
lines. In an equivalent treatment Huxley emphasized the importance of the continuity 
equation for clarifying the physical basis of the experiments. These elements may 
be combined in the presentation of a general theory. In this section we suppress 
details and give only the essential definitions in order to bring out the basic structure 
of the theory. 

The starting point is the linearized Boltzmann equation 

(at +e.o, +a.oc +J)f(r,e,t) = 0, (1) 

where a is the acceleration suffered by the particles due to the application of an 
external field and J is the collision operator whose only property needed for the time 
being is that it acts on any function of e as a linear operator. This form of the equation 
is applicable when the density of charged particles is very small compared with the 
density of the neutrals so that mutual interactions among charged particles, which 
have to be described by a nonlinear operator, can be neglected. 

Assume now that the space-time dependence of f can be expressed in terms of 
a Fourier transform with a k-dependent OJ, as 

fer, e, t) = (2n)-3 J dkj(k, e)exp{ik. r -OJ(k) t}. (2) 

The equation satisfied by jis obtained from (1) as 

(-OJ +ie.k +a.oc +J)j(k,e) = 0. (3) 

In terms of the distribution function/, the density n and the convective velocity* 
W of the charged particles are given by 

n(r,t) = J def(r,e,t) 

and 

W(r,t) = (1ln) J de ef(r,e,t). 

They are related through the continuity equation 

0tn +or.(nW) = 0, 

(4) 

(5) 

(6) 

which is obtained by integrating equation (1) with respect to e. Introducing the 
analogues of (4) and (5) 

Ii(k) = J de j(k, e) (7) 

* The convective velocity W represents the mean velocity including the effects of the electric 
field as well as density gradients. Sometimes it is also called the drift velocity, a name we shall 
reserve here for its part W which is proportional to the vector a, that is, for W in equation (15) 
below. 
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and 

V(k) = (l/n(k)) I de ej(k, e), 

the continuity equation in k space becomes 

-roCk) +ik. V(k) = O. 
We have 

nCO) * 0, V(O) * 00, and ro(O) == O. 
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(8) 

(9) 

(10) 

It is evident that k is a measure of inhomogeneity. In particular, if the gradients 
of density are small then n(k) is concentrated close to the origin and the average 
value of k is small. One may then expand as 

roCk) = ik. 0>1 +kk : 0>2 + ... , 

V(k) = W-ik.~+ ... , 

(11) 

(12) 

where subscripts represent the ranks of the constant tensors. If 0>2 can be diagonalized 
by an orthogonal transformation the integral 

per, t) = (2n)-3 I dk exp{ik. (r -0>1 t)-(kk :0>2)t} (13) 

represents a Gaussian pulse whose centre travels with the velocity 0>1 and which 
diffuses in the shape of a spheroid, in general anisotropic, determined by 0>2. 

Substituting equations (11) and (12) in (9) we have 

0>1 W, 0>2 =~. (14) 

These are of the nature of compatibility relations. They must be satisfied if we want 
to use the Boltzmann equation to determine the constants 0>1 and 0>2' which are 
respectively the drift velocity and diffusion tensor. In this case from equations (5), 
(8), and (12), with 0 = 0" 

w= W-~.n-10n, (15) 

and the continuity equation (6) takes the form 

(Ot +0>1. 0 -0>2 : oo)n(r, t) = O. (16) 
The solution is given by 

n(r,t) = (2n)-3 I dkn(k)exp{ik.r-ro(k)t} = n(-iO)P(r,t), (17a) 

where the function n(k) is determined by the shape of the pulse at time t = 0, 

n(k) = (2n)-3 I drn(r,O)exp(-ik.r). (17b) 
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The function n is usually determined as a power series in k or (] along with the 
coefficients 0>1 and 0>2 from the Boltzmann equation. The solutions obtained by 
Parker and Lowke (1969) and Huxley (1972) are of this type. It will be noted that 
no matter what its initial shape, the pulse will eventually take the form of the function 
per, t) since the term roCk) t must at some value of t dominate the initial shape
dependent contribution log n(k); a delta function shape for n( r, 0) corresponds to 
n(k) = 1 and the resulting pulse nCr, t) = per, t). 

It is evident that equations (16) and (17) do not exhaust the content of the 
continuity equation (6). Equation (16) itself is often called the continuity equation 
as it is a good approximation to (6) and applies when the usual (i.e. first-order) 
diffusion approximation (15) holds, a situation that is strictly valid when the density 
gradients are very small or equivalently when the expansions (11) and (12) are needed 
only up to the second-order tensor term. The above development is needed to identify 
the drift velocity (W = 0>1) and the diffusion tensor (@ = 0>2) in the expansion 
of V, which is in turn obtained by solving the Boltzmann equation (3) for J(k, c). 

(b) Polynomial Expansion 

Let 4>[V](e) be a complete set of functions orthogonal with respect to a weight 
function wee) such that 

f de wee) 4>(V)(e) 4>[V](e) = Jvv" (18) 

We may then write 

l(k, c) = n(k) wee) ~ 4>[V](e) <fj(vl(k), (19) 
v 

where 

<fj(V)(k) = (l/n(k)) f def(k,e)4>(V)(e). (20) 

Here the functions with indices in parentheses are complex conjugates of functions 
with indices in square brackets. Note that we do not need any detailed properties 
of this orthonormal system, although we do have a system in mind, which will be 
specified in Section UI(a). It can be arranged to have the first (v = 0) of the functions 
4>[V] equal to unity so that with n(k) given by equation (7) 

4>(O)(e) = 1, <fj(O)(k) = 1. (21) 

In the space of functions 4>(V) the operators e, (]e, and J induce linear trans
formations and may therefore be represented by matrices C, D, and J operating on 
the column vector <fj formed from the coefficients <fj(V). In other words, using 
equations (19) and (20) in (3) we get the matrix equation 

(-ro(k)I +ik.C +a.D +J)<fj = O. (22) 

Note that there are three operators each in the symbols C and D since they are vector 
operators; the terms involving them in equation (22) are scalar products with ordinary 
vectors. We shall not elaborate the notation to exhibit this. In going from equations 
(3) to (22) some constants have to be absorbed in the operators or their coefficients. 
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Although this makes no difference to the argument of the present section, and is 
therefore ignored here, it does become important for deriving explicit formulae, 
as will be seen in the following sections. 

Equation (22) is an infinite set of equations for the expansion coefficients 
ffi(vl, which are linear combinations of certain moments of the distribution function. 
Thus (22) is fully equivalent to the moment equations, which continue to play such 
an important role in these theories. The first of these equations, that corresponding 
to ¢(O)(c) = 1, is the continuity equation (9) discussed in subsection (a). This equation 
needs to be considered separately since (22), which is a homogeneous equation for 
ffi, can be solved only if the determinant vanishes. One way of ensuring this is to 
arrange for the first equation to be satisfied identically, which would mean that the 
first row of the matrix could be obtained as a linear combination of other rows. 
This will be true in any polynomial system. With the determinant thus ensured to 
vanish one can proceed to convert (22) to a set of inhomogeneous equations in the 
usual way by omitting the first row and using the first column as the inhomogeneous 
term. Unfortunately the equation so obtained is nonlinear in ffi. Specifically, we 
note that without loss of generality three further members of the polynomial system 
¢(V) can be taken to be linear combinations of the three components of the vector c, 
so that from equations (7) and (8) the vector V is seen to be one of the vectors in the 
set ffi(v). The nonlinearity arises because according to (9), which is to be satisfied 
identically, roCk) occurring in the inhomogeneous equation is to be replaced by 
ik. V where V is one of the vectors in ffi. 

The power series expansions (11) and (12) are one way of dealing with the above 
nonlinearity. For physical reasons k may be taken to be small, and it is appropriate 
to expand as 

ffi = °ffi +ik. 1 ffi + .... (23) 

Equation (22) may then be separated into a series of coupled equations according 
to successive powers of k. The lowest approximation k = 0 gives 

(a.D +J)Offi = o. (24) 

The first of these equations takes the form 0 = 0, implying that, independently of 
the polynomial system, all elements in the first row of the matrix vanish. Hence the 
determinant vanishes automatically. One sets °ffi(O) = 1 to agree with (21) and con
verts to an inhomogeneous equation in the usual way. The solution gives the constant 
term W of equation (12) or the coefficient of mobility. For the electron problem 
this equation was discussed by Robson and Kumar (1971). 

Collecting linear terms in k from equation (22) we get the vector equations 
(we do not elaborate the notation to indicate the vector nature of various quantities, 
e.g. 1ffi) 

(-<01 I +Ctffi +(a. D +J)1ffi = O. (25) 

In the first equation of this set the second term produces a zero as in (24). In order 
to be consistent the first term must also produce a zero, i.e. we must have 

<01 = (C °ffi)(O) . 
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This is the implication of using the continuity equation (9) and the expansions (11), 
(12), and (23). The first equation, which now gives ° = 0, can thus be omitted. 
To be consistent with (21) and (23), the disposable 1(£)(0) must now be put equal to 
zero thus eliminating the need to consider the first column of the matrix in the second 
term. The reduced matrix is the same as in equation (24) but the inhomogeneous 
part is given by the first term. The reduced form of (25) is thus similar to the reduced 
form of (24). Upon solving (25) one obtains the 1(£)(V) which provide the second-order 
tensor COz of equation (11), which as we have seen is the diffusion tensor. 

This completes the basic outline of the theory that is needed for calculations 
up to the first-order diffusion approximation. To this point we have not needed 
to say very much about the polynomial system, the only properties of the collision 
operator used being its linearity and the collisional invariance of the unity. The 
latter is the property by which the collision integral leaves the continuity equation 
unaffected, that is to say, no matter what the distribution function there is no change 
in the total number of particles due to (elastic) collisions. 

In order to proceed towards actual calculations one must choose a system of 
polynomials and consider the representation of the operators in this system. Ideally 
one would like a system in which the operator matrix elements were easy to calculate 
and only a few terms sufficed to express the distribution function in (19). These 
requirements are probably incompatible. At present only the system of polynomials 
based on a Maxwell distribution as the weight function, i.e. the system of eigen
functions of the linearized collision operator appropriate to an inverse fifth power 
intermolecular force, is well enough developed to enable the operators to be con
structed. The problems that this presents in representing the function f for high 
values of the external fields will be discussed in Section IV. 

Equations (22), (24), and (25) can be simplified by a proper choice of coordinate 
systems for a and k or by use of the algebra of the three-dimensional rotation group. 
This may be looked upon as part of the problem of specifying the representation 
of the operators and is discussed in Section III(b). We continue here with some 
further points of general theory. 

(c) Beyond First-order Diffusion Approximation 

In the second order in k, equation (22) yields the tensor equation for the 
unknown z(£) 

(IDzI)O(£) +( -coli +C)I(£) +(a.D +J)Z(£) = 0. (26) 

The discussion is similar to that for equation (25). The inhomogeneous term comes 
entirely from the first two terms, when z(£)(O) is taken to vanish in accordance with 
(21). In general there is no reason to suppose that the solution vanishes identically. 
It will lead to the third-order tensor term C0 3 in the expansion* 

W(r,t) = COl -coz.n- 1 an +C03 :n- 1aan. (27) 

* This can be looked upon as a multi pole expansion. It will be appropriate to speak of dipole 
(OJt), quadrupole (OJ2), and octupole (OJ3) diffusion coefficients. 
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The solution of equation (6) in terms of the Fourier transforms is 

n(r,t) = (2n)-3 J dkli(k)exp{ik.(r-colt)-tco2:kk-itco3:kkk} 

== exp(tco3: 888) Ii( - i8) P( r, t). 
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(28) 

Without going into too much detail one can form some idea of the process involved 
by recalling that there is only one vector, a, from which the tensors co i are to be 
formed. Hence 

COl Ka, 

CO2 = b1 l +b2 aa, 

C0 3 'lla +'2aaa, 

C021 = 811 +82 aa, 

(29) 

(30) 

(31) 

where Greek letters represent constants and 1 is the unit tensor. The explicit form 
of per, t) is 

per, t) = (4nt)-3/2(detco2)-t exp( -C021 : r'r')/4t, (32) 
where 

r' = r -COl t. (33) 

Taking Ii = 1 in equation (28) it can be seen that a delta function pulse at 
r = 0, t = ° expands into a form which has pear-shaped components. Assuming 
the exponent to be sufficiently small we can make a rough estimate of the pulse 
shape. We note, however, that 

8P = _(C021 • r')/2t, (34) 

so that, measuring the distances from the moving centre (33), we have approximately 

tco3: 888 '" t- 2, (35) 

in contrast to the exponent of (32), which is '" t -1. Hence the pear-shaped deforma
tion of the pulse may decay faster than the spheroidal deformation. It is difficult 
to assign a characteristic rate for this relative decay. A crude estimate is probably 
given by the magnitude of the vector (C03 :(021). These considerations indicate that 
some delicate calculation may be needed to disentangle the effects of boundary 
conditions and the tensors co2 and co3. 

(d) Theory without Fourier Transform 

The essential assumption in the foregoing is that the spatial inhomogeneities 
are small and that it makes sense to separate the Boltzmann equation into a hierarchy 
of equations corresponding to different orders of inhomogeneity. Fourier trans
formation is not essential to the argument, although it leads to a neater expression 
of it. We now consider an alternative argument which is somewhat more convenient 
for evaluation of transport coefficients and shows the relationship of the present 
method to that of Chapman and Enskog. 
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Let 8 be a small parameter which is a measure of spatial gradients. In equation 
(1) the operators a. oe and J are independent of density variation and are therefore 
of order zero in 8. The operator e. Or is clearly of first order. The main part of 
temporal variation comes from the density, and hence 0t mainly produces 0tn and 
can be of any order in 8 except the zeroth. Similarly, the distribution function can 
be of any order in 8: 

00 

at = ~ 8SSvt , (36) 
8= 1 

00 

f(r,e,t) = ~ 6S!'f(r,e,t). (37) 
8=0 

Substituting these expressions into equation (1) and separating terms of different 
order in 8 we have the hierarchy 

(a'Oe +J)Of = 0, 

eOt +e. or)of +(a. Oe +J)lf = 0, 

20t of +eOt + e. 0r)lf +(a. Oe +J)2f = 0. 

(38) 

(39) 

(40) 

The first of these (38) determines only the velocity dependence of Of It is sometimes 
called the equation for the spatially uniform case but strictly speaking that is incorrect, 
as it makes no reference to the space-time dependence, which can in particular be 
uniform. 

The space-time dependence of f is determined in successive approximation 
by the remaining equations (39) and (40). It is necessary to arrange the manner 
of this determination so as to be consistent with the continuity equation in each 
order. Without loss of generality one can assume that Of is proportional to some 
space- and time-dependent density function nCr, t) and 

f °f(r, c, t) de = nCr, t), 

f "f(r,e,t) de = 0. 

(41) 

(42) 

The zeroth moment of (39) provides the first (approximate) equation for n, namely 

(Ot+W.o)n=O, W = n- 1 f de e~r. (43 a) 

With the help of (43a) 0tn is then eliminated from the remaining moment equations 
of (39). There is no arbitrariness in the space-time dependence of t.r determined from 
these equations except for the presence of n. It is proportional to (e - W). on. 

In the zeroth moment of equation (40) the term lOt If does not contribute 
because of (42). The e. 0 term provides a second-order tensor, so that 

eOt -!:Z.oo)n = 0, (43b) 
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where ~ is defined in terms of If Combining this with (43a) and recalling that to 
this order 0t = BlOt +B2 20t one gets the appropriate continuity equation (16). 

In these equations a transport coefficient, e.g. K or ~, is determined at one 
level of the hierarchy but finds its interpretation from the continuity equation of 
the next level. This argument and the use of B is similar to that used in the Chapman
Enskog method (see Chapman and Cowling 1970). 

On carrying out the polynomial expansion, equation (38) gives equation, (24) 
so that 0\y, the column vector corresponding to Of is the same as 0(l). The matrix 
equation corresponding to (39) is 

(-roll +C).on°\Y +(a.D +J)l\y = O. (44) 

It follows that 1 \Y is of order on and if this is factored out equation (25) will result. 
Similarly, (40) yields (26). In Section III we will solve equations (24) and (44) to 
obtain the mobility and diffusion. 

(e) Relation to Sound Propagation Problem 

The theory for the sound problem has been reviewed at length by de Boer and 
Uhlenbeck (1970). Other important papers are by Pekeris et al. (1962) and Sirovich 
and Thurber (1965). One considers a simple gas and sets 

f = pOl(l +h) (45) 

in the Boltzmann collision integral. The terms linear in h define the operator J 
of the governing equation of the sound problem, 

(-w(k) +ic.k +J)h(k,c) = O. (46) 

This has the same form as equation (3) with a = O. The main difference comes from 
the operator J. For the swarm experiments J is linear in the distribution function 
because the principal effect arises from the collisions with unlike neutral particles. 
The operator J in the sound problem (equation (46) above) has five collisional invari
ants, 1, c, and c2 , corresponding to the conservation of number, momentum, and 
energy. Symmetry about the direction of k permits one to consider only three invari
ants and they lead to the first three values of w for which the system can be solved. 
One of these is zero and the other two are imaginary, representing the modes of 
heat conduction and sound propagation respectively. The solvability condition for 
equation (46) is that the infinite determinant should vanish. As this is a polynomial 
of infinite degree in w there is an infinity of zeros and hence an infinity of propaga
tion modes (e.g. Sirovich and Thurber 1969; Foch and Ford 1970). It has been 
suggested that these modes are highly damped and hence unimportant or spurious, 
but they do play an important part in the theory. 

By contrast in the swarm problem the operator J has only one collisional 
invariant, namely 1. The only mode considered in this paper is the one which corre
sponds to w = 0 in the lowest approximation; this mode represents a damped 
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motion in higher approximation. We have not studied other modes of this problem
presumably they do exist and represent less important phenomena. 

The perturbation method of treating the sound problem (Foch and Ford 1970; 
Foch and Losa 1972) is very close to the method described above for the present 
problem. In the zeroth order the operator J of the sound problem is replaced by the 
operator (a. 8e +J) in the present one. It follows that for a complete elucidation of 
the problem a full discussion of the spectrum of this operator is needed. However, 
as is often the case, one can extract information of physical interest without going 
into such an investigation, by treating the operators as if there were no pathologies. 
This is the attitude we have adopted. In the following work, questions about spectral 
properties will be ignored and the operators will be treated as matrices. 

At the level of constructing the polynomial system and the matrices and in 
solving the equations, there are also some useful comparisons with studies of the 
sound problem and these will be pointed out at appropriate places. 

Model kinetic equations have been used to study the mobility problem by 
Bakshi and Gross (1968). Their main interest was to look at some special forms of 
singular behaviour of the distribution function. It is not clear how much practical 
importance this will have in the three-dimensional problem with an ordinary non
separable collision term. Our method ignores and does not encounter such singular 
behaviour. There is considerable literature on model equations (Bhatnagar et al. 
1954; Gross and Jackson 1959; Sirovich 1962; Cercignani 1969) and they have 
been used extensively for the sound problem (Sirovich and Thurber 1965; Foch and 
Ford 1970). In view of the connection discussed here, similar investigation into the 
mobility-diffusion problem may be useful. We return to one aspect of it in Section 
III(b) (iii). 

III. REPRESENTATION AND SOLUTION OF EQUATIONS: FORMULAE FOR MOBILITY AND 

DIFFUSION 

In the rest of this paper we assume collisions between the charged particles 
and neutral molecules to be elastic and neglect phenomena such as charge transfer, 
clustering, and ion-molecule reactions. Some of these phenomena may be described 
by a linear collision operator and may therefore be treated by the general theory of 
the previous section. As the following treatment is confined to elastic collisions, 
it is, strictly speaking, valid only for monatomic gases in which the excitation 
energies and ionization potentials of the atoms are sufficiently high so that the inter
nal structures of the colliding particles are not changed at the energies appropriate 
to swarm experiments (:s 1 eV). Alkali ions in noble gases most closely satisfy these 
criteria. 

In deriving the formulae for mobility and diffusion we place no restriction on 
the actual form of the potential except that it lead to an elastic collision. The masses 
of particles are similarly unrestricted. The formulae contain contributions from 
all the terms in the spherical harmonic expansion of the velocity distribution function. 
The final results of the derivation are given in subsections (c) and (d) below, equations 
(117) and (136) in particular. 
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(a) Notation and Polynomial System 

We consider particles of charge e and mass m subject to an electric field E. 
Thus in equation (1) the acceleration is given by 

a = eE/m. (47) 

The distribution functionj(r, c, t) for the charged particles was introduced in Section 
Il(a) and the density n and convective velocity TV were defined by equations (4) and 
(5) respectively. The temperature T of the charged particles may be defined via 
their average kinetic energy as 

3kT(r,t) = (l/n(r,t)) f m(c-W)2j(r,c,t)dc = m{<c2)- W2}. (48) 

These particles move through a neutral gas for which the corresponding quantities 
are mo, co,fo == fo(r, Co, t), no, TVo == 0, and To. 

For the motion of the charged particles only their interaction with the neutrals 
is important. The interaction is assumed to be isotropic and described by the scattering 
cross section a(g, X) where g = J Co ~ cJ is the relative velocity and X is the scattering 
angle. We shall need the expansion of a in Legendre polynomials: 

atCg) = 2n f a(g, X)PtCcos X) d(cos X)· (49) 

The polynomial system is characterized by a set v of three discrete indices v, I, 
and m where v = 0,1,2, ... , 1= 0,1,2, ... , and m = -I, -1+1, ... ,1-1,1 for each 
I. The polynomials are written as 

¢[Vl(O!C) == ¢[v~(ctc) = ¢(v~*(ctc), (50) 

where the asterisk represents complex conjugation. This equation serves to define 
the abbreviation of indices and the relation between parentheses and square brackets 
enclosing them. Their usage is necessitated by requirements of the tensor algebra 
(see Kumar 1966, 1967). The polynomials are orthogonal with respect to the weight 
function 

W(ct, c) = (ct2/2n)3 /2 exp( _tct2C2) , (51) 
with 

ct2 = m/kTo· (52) 

This signifies an expansion about the absolute equilibrium at the temperature To 
of the neutral gas. The polynomials which require special mention are 

¢[ogl = 1, 

¢[O~l(ctC) = ctc[~l, 

¢[1g1(ctC) = (3 - ct2C2)/./6. 

(53) 

(54) 

(55) 
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4>[v~(c) = Rvz(c) ID<,!?(c) , 

RvzCc) = NvzCc/,.J2)Z SI+tGC2), 

N;; = 2n3/ 2 v!/r(v+I+!), 

and the S/+.1. are the usual Sonine polynomials. 
The di~tribution function is expanded in terms of 4>[V] as 

with 

fer, c, t) = nCr, t) w(a, c) ~ 4>[V](ac) 1)'CV)(r, t), 
v 

1)'CV)(r, t) = n- 1 f 4>cV)(ac)f(r, c, t) dc = <4>CV)(ac», 

1)'cog)(r, t) = 1. 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

The same expansion can be used for any other function of c. In particular, the 
functions 'i(r, c, t) of equation (42) are expressed in terms of the coefficients 

S1)'CV)(r,t) = n- 1 f'i(r,c,t)4>CV)(ac) dc, 

so that, from equations (41), (42), and (59), 

S1)'CO)( r, t) = 0, s:> 1, 

1 1, s = O. 

No expansion is needed for the neutral gas which is in equilibrium, and 

her, co, t) = h(co) = no w(ao, co), 
with 

a6 = mo/kTo· 

(62) 

(63) 

(64) 

(65) 

However, the expansion in terms of 4>CV)( ao co) is still meaningful. The coefficients 
of the expansion for the neutral gas, calculated according to equation (60) are 

1)'bV) = bvo blO bmo · (66) 

With these coefficients one can directly use the general expressions derived by Kumar 
(1967, equation (173) in particular). 

Under rotations, the polynomial 4>cv~ and the expansion coefficient 1)'cv~ both 
transform like the spherical harmonic ID<'!? In this notation any vector x corresponds 
to a tensor X~l), where 

x~) = (4n/3)t x ID~)(x). (67) 

Here x is the unit vector in the direction x and represents the spherical polar angles 
() and cp in the argument of ID~1). These tensors are irreducible and any two may be 
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combined to produce a third of rankj according to the formula for the tensor product 
(coupling rule) . 

[ a(i!) x b(h)](j) = ~ (j' m j' m 1 j'm)a(i!) b(h) 
m ,(..j 1 1 2 2 ml m2' (68) 

ml,m2 

The coefficients on the right-hand side are the so-called Clebsch-Gordan or Wigner 
coefficients. 

An ordinary product of two spherical harmonics of the same argument may 
be expanded as 

m(lt) m(l2) = L q(l 1 1) (1 m 1 m 11m)m(/) 
:tim 1 :tIm2 1 2 1 1 2 2 :tim , (69) 

I 

where 

q(11121) = i'l +12-/((211 + 1)(212 + 1))t 
4n(21+1) (11 0120 110). (70) 

Further description of the polynomial system and the method of calculation 
with spherical tensors will not be considered here, as these details together with the 
motivation for their use and their relation to previous literature are given by Kumar 
(1966, 1967). It remains to note that in terms of the expansion coefficients lj(V) of 
equation (60) the convective velocity Win spherical components is given by (equations 
(54) and (60)) 

W~l) = <c~» = oc-llj(O~). (71) 

From equations (48) and (55) the temperature T of the charged particles is 
given by 

TjTo = 1 -..Jt lj(lg) _t(ljOl)2 . (72) 

It is convenient to define an "effective temperature" T err by 

Terr/To = 1 -..Jt lj(lg) = m<c2)/3kTo. (73) 

(b) Representation of Operators 

The polynomial system provides a basis for representing operators as matrices. 
Since any operator may be expressed in terms of irreducible tensor operators, it is 
sufficient to give the definition for one of these. Matrix elements of an irreducible 
tensor operator .r~A>, which may involve differential operators, are given by 

(VI.r~A]lv') = (vlml.r~A]1 v'l'm') (74a) 

= f w(oc, e) <p(v2(oce).r~A](e, Be) <p[v'~1(oce) de (74b) 

= (ImIAJ1l'm')(vlll.r[A]llv'I'). (74c) 
I 

The integral in (74b) is the quantity which can be calculated. The' actual value and 
sign of this quantity depends on the definition and the order in which the factors 
in the integrand are arranged; hence the importance of the details in this matter. 
In equation (74c) the first factor is the Wigner coefficient (cf. equation (68)) and the 
second factor, called the reduced matrix element, is defined by this relation. The 
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equation is an expression of the Wigner-Eckart theorem, which shows that the 
m-dependence of the integral can be factored out in this way. The motivation behind 
the definition is discussed by Kumar (1967). 

(i) Collision Operator 

The Boltzmann collision integral which describes elastic interactions is a 
scalar operator and hence bears no indices (A = f1 = 0). In the usual notation of 
kinetic theory for equation (1) we have 

J(I) = f Ufo - fJ~) g (J(g, X) dQ dco • (75) 

Using the polynomial expansion for f given by equations (59) and (60), the matrix 
elements of J are defined by the integral 

f ¢(V)(IXC) J (I) dc = z: n no(v! J ! v') o:(v·). 
v' 

(76) 

Since J is a scalar operator, by the Wigner-Eckart theorem (74c) we have 

(v! J ! v') = J;v' bll' bmm·. (77) 

In terms of quantities defined in the paper by Kumar (1967) 

(V1 ! J ! v2) = (IXV1 ! J !IXV2, 1X0 0) 

= z: T (r N, yv !IXV1, 1X0 0) T (r N, yv '!IXV2 , 1X0 0) V;v' , (78) 
N,V,V' 

or, using the formulae for T from Appendix I of Kumar (1967) we find, for V1 ~ V2 , 

Vi V2 h+Vl-V 

J;;V2 z: z: z: X(l1 v1 v2!lvv') 
v=o v'=o z=o 

X --- --- v., ( m )2(Vl- V)+ZI- Z( mo )Z+v+v' I 

m+mo m+mo vv , 
(79) 

with 

V;V' = f: w(y,g)RvlYg)Rv,z(yg)((JO-(JZ)g3 dg, (80) 

y = 1X1X0/r, r2 = 1X2 +IX~, (81) 

and other symbols as defined in equations (49), (51), (52), and (57). Also 

X(l1 V1 v2 !lvv') = NvzNv'l (z: {NNL(J(lL11)}2 bp+ p,Pl)bv',V+V2- Vl' (82) 
N V1Z1 N V2Z1 NL 

with 
Nvz = Nvz/v!, p = 2v+l, etc., (83) 

and Nvl and (J(ILl1) as defined in equations (58) and (70) respectively. 
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Equations (79)-(83) fully define the matrix J~v" which can be constructed from 
them. The basic input required is the scattering cross section u(g, X), although this in
formation could also be supplied in the form of partial cross sections Uo - U/. Usually, 
however, one assumes an interaction potential and calculates u(g, X) from it by the 
methods of classical mechanics. Use of quantum mechanics is also possible. The 
operator does not distinguish between the types of dynamics, as it depends only on 
the cross section u(g, X) used in constructing V~v" (For the same potential shape, 
classical and quantum cross sections can be different, especially at the lowest energies, 
and this may produce a detectable difference in transport coefficients.) Only one 
of the partial cross sections, namely the momentum transfer cross section 

qm = 211: J u(g,X)(l -COSX) d(cosX) = UO-u1 , (84) 

enters into the equations for the electrons, and the energy dependence of this quantity 
can be determined from a comparison with experiments without assuming any 
particular potential. In the case of ions a number of partial cross sections Uo - u / 

are significant and it is more convenient to start from an assumed potential whose 
parameters are then determined by comparison with experiment. 

For any I the diagonal elements V;v and J~v are always positive. They are also 
usually large compared with non-diagonal elements. To supplement equation (79) 
we have 

J~lV2 = J~2Vl • (85) 

From (79) we also have 

J60 = {mo/(m+mo)}V60' (86) 

J61 = Jio = {mo/(m+moWVio, (87) 

and most significantly 
J8v = J~o = o. (88) 

The collision matrix is diagonal in I and symmetric in v. Its first row and column 
vanish identically, as a consequence of the conservation of the number of particles 
in a collision. This is also why the collision term does not occur in the continuity 
equation. In case of like molecules there are two more relations of this type and two 
more rows and columns vanish, but the symmetry property which makes it possible 
is no longer available in the case of unlike molecules (cf. Section Il(d) (i) and (ii) 
in Kumar 1967). 

(ii) Operator a. Oc 
From equation (59) 

a. Oc f = a. Oc(~ nw 4>[V] ty(V)) = nw aa. K( ~ 4>[V] ty(V)) , (89) 

where 

K= ac-a- 1 0c ' (90) 
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Hence the matrix element of interest is 

(v I a.KI v') = ~ a~1)(lm 11.ul'm')(vlll K[l] II v'l'), (91) 
p. 

where (Kumar 1967, equation (A43» 

(vIII K[l] Ilv'l') = (- r'+vii(I'Il),J2bp'+1.pNv'I,/Nvl (92) 
with 

ii(l'l/) = (1'010 1/0)i l '-l+3. (93) 

If the electric field is along the z axis, the operator a. K is diagonal in m, for 
then 

(1) -iabp.o ap' (94) 
and 

(vla.Klv') = -ia(lmllOI'm)(vIIIK[l]llv'l')brnrn ,. (95) 

Acting on a spherical harmonic it produces one of another rank by virtue of the 
relation (69), 

~ (vla.Klv')ID~:)(a) = aID~)(a)Dvl,v'I" (96) . 
I'm' 

where 
DVI,v'I' = ii(lil') (viii K[l] II v'l') == d~vv,bl"I+l +d~vv,bl"I_l' (97) 

with 
d~vv' = (2v)t{(l+1)/(2/+1)}bv"V_l> 

d~vv' = -(2v+2/+l)t{I/(21+1)}bv'v' 

(98) 

(99) 

The matrix D above and the coefficient of bmm , in equation (95) may be looked 
upon as matrices in two indices v and I. In contrast to J they have no diagonal 
elements in I. Off-diagonal nonzero elements of D occur in the blocks d~ labelled 
by v. If the matrices are labelled by p = 2 v + I and I instead of v and I, all elements 
of these matrices lie below the diagonal. An interesting consequence is that no 
matter what the value of the parameter a 

det(aD +1) = 1, (100) 
where 1 is the unit matrix. 

In the mobility problem one has to invert the matrix of (a. Gc +J), omitting 
the first row and column. In practice this is done by truncating the matrix and then 
inverting the finite truncated matrix. When J is diagonal, i.e. for the Maxwellian 
force law, the determinant and the inverse are very simple to calculate, essentially 
because one has a triangular matrix. (By considering the matrix (aD + I) it can be 
verified that, on enlarging the matrix, new elements are introduced in the new rows 
and columns of the inverse matrix but the elements already calculated from the 
smaller matrix remain unchanged.) For a non-diagonal J there is an a-dependence 
even in the diagonal elements of the inverse matrix, and enlarging the matrix now 
has large effects upon the inverse elements. This is at the root of the difficulties in 
perturbation treatments as well as in other treatments based upon these matrices. 
These difficulties are inherent in the particular representation, i.e. the polynomial 
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system chosen here. We have not investigated other systems in much detail but it 
seems that the calculation of the collision operator would be more difficult than 
in the present system. The truncation problem and special models are considered 
further in Section IV. 

(iii) Operator k. c 

In this case the matrix element is given by 

(vJk.cJv') = ~ k~1)(lmJ1JLl'm')(vlJJrxc[1]JJv'1'), (101) 
# r . 

where (Kumar 1967, equation (A44» 

(vIII rxc[1] II v'I') = (-y'+v U(I'1l).)2(Op'+1,P ~'l' +Op'-1,p !!Vl). (102) 
N.l N.'I' 

Since the operator k. c occurs only in the inhomogeneous part of the diffusion 
equation there is no need to invert it in the present calculations. On the other hand, 
in the sound problem one wants the determinant of (k. c +J) and k can be large. 
This is related to the problem of inversion, and it appears as such in other approaches. 
This operator differs from that in subsection (ii) above in that it is not triangular 
in the p, / (or v, /) representation even for a diagonal J. The determinant depends 
sensitively on the magnitude of k. The situation is somewhat comparable to inverting 
(a. 0 c + J) for a non-diagonal J. In other words, there is not much qualitative 
difference whether the operator J in (k. c +J) is diagonal or not. 

It has been pointed out by Sirovich and Thurber (1965) that an approximation 
suitable over the whole range of k can be obtained if the equations are arranged so 
that k occurs only in the operator (k. c + 1) -1. One obtains elements of this operator 
without truncating the matrix of (k. c + 1), and then truncates aJl the remaining 
matrices, at which stage fairly small matrices seem to suffice. In view of the com
parison with (a. Oc +J) for non-diagonal J, it would appear that ifthe matrix elements 
of (k. c + 1) -1 were obtained by inverting a truncated matrix of (k. c + 1) then 
very large matrices would be needed to get suitable approximations. The success 
of the Sirovich and Thurber procedure therefore suggests that the function of large 
matrices in sound problem calculations is to provide a good approximation to 
(k. c + 1) -1, which carries most of the information. 

There is no scope in using the Sirovich-Thurber (1965) type of approximation 
in the mobility problem since most elements of the operator (a.oc +1)-1 are exactly 
determined for any given truncation of the matrix (a. Oc + 1). The difference in the 
two problems is that (k. c + 1)-1 is qualitatively similar to the operator (k. c +J).-1 
and can be used to extract most of the physical effects, while (a. Oc + 1) -1 is quali
tatively very different from (a.oc +J)-1 and does not contain certain significant 
information that is contained in the latter for non-diagonal J. 

If one makes a Fourier transform on the c variables the role of the operators 
are changed, and it may then be possible to use an approximation of the above type. 
Thus, if s is the conjugate variable to c, equation (1) becomes 

{roCk) -ik. Os -ia.s +J'}!' = o. (103) 
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This can be converted to a matrix equation as before, using the same polynomial 
system in the s variables but with a different constant in place of rx. The matrix 
elements of a. s are therefore essentially the same as those of k. c in the earlier 
equation. The matrix elements of J' are related to those of J by a similarity trans
formation J' = RJR -1, where R is again diagonal in I and m indices. It may be 
possible to apply a Sirovich-Thurber (1965) type of approximation to the resulting 
equations. This will probably lead to a sizeable investigation of its own, which we 
do not attempt here. Perhaps, it is of even greater interest that in some such way 
the theory of mobility can be related to the various model and spectral theories 
which are being discussed in other contexts (e.g. Sirovich and Thurber 1969; 
Cercignani 1969). 

(c) Equationfor Mobility and its Solution 

It was shown in Section lIed) that the mobility is obtained from the solution 
of equation (38), which may be expressed as 

{(e/m)E.Oe +J}Of = O. 

Using the polynomial expansion (59) and the representation of operators discussed 
in subsection (b), and equations (76), (77), (89), (91), together with equations (68) 
and (101), we obtain the matrix equation 

-(rxe/m) ~ (V1 11 II K[1lll V2 12)[E(1) X 0jJ(v2 z,)]~:) = - no ~ J ;:V2 OjJ(V2~~. (104) 
nZ, n 

The first row of the matrix has only zeros in it and can be omitted. The first 
column then provides the inhomogeneous term, leading to the equations 

~ M 0n:(V2) = °b(V,) 
V,V2 0 , V1 of. 0, (l05) 

V2*O 

where 
M v,v2 M Vt!lml,v2Z,m2 

= J;!V2 bit!' b m1m2 

- (rxe/mnO)(V1 11 II K[1l ll V2 12) ~ (11 m1 11f.l12 m2) E~1) (106) 
/L 

and 
°b(V'~~ = (rxe/mno)E~1/ bv10 blt1 . (107) 

The m-dependence of these equations can be eliminated by making use of the fact 
that all tensors 0jJ(v) must be constructed from the vector E which is the only vector 
occurring in these equations. If we set 

0jJ(V2(E) = 01"1(E) ID~)(E) (l08) 

and use equations (61) and (68) in (105), we obtain the following coordinate
independent equations for oj, 

~ M V, /
"

v212 °r2h = (4nj3)t <&' bv,o b,b1 , 
v2h*OO 

(109) 
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where 
Mvtl1,V212 = J~:V2 (j12lt + g DVtl1 ,V2l2 (110) 

and 
g = rteE/no m . (111) 

Equation (109) is essentially the same as Kihara's (1953) equation (43) with the 
correspondences 

and 

J~v' = {v! r(v'+l+i)/v'! r(v+l+i)}tavAZ) , 

°r l = {2n3/2 v!/r(v+Z+i)}(l/J\V) , 

g = ,J2 g (Kihara). 

(112) 

(113) 

(114) 

The formal solution of equation (109) can be written in terms of the inverse 
of the matrix M 

°r l = (4n/3)tg(M- 1)vl,01' (115) 

From the definition of the drift velocity (71), (15), and (43a) and equation (l08) 

W~l) = (4n/3)-!-oc-lg(M-1)01,ollfJ~1)(E) 

= (e/nom)(M- 1)ot,DlE};), 

so that the mobility K is given by 

K = (e/nom)(M- 1)01,Ol' 

Experimental results are often expressed in terms of the reduced mobility.%, 

.% = (no/ns)K, 

(116) 

(117) 

(118) 

where ns = 2·69 x 1019 cm- 3 is Loschmidt's number (i.e. the gas density under 
standard conditions of temperature and pressure). Another quantity of physical 
interest that is accessible in this approximation is the effective temperature of the 
charged particles defined by their average kinetic energy, equation (73): 

Tefr/To = l-t,J2g(M- 1)lO,Ol' (119) 

As a function of e the distribution function in this approximation is given by 
(from equations (56), (59), and (108» 

°f(e) = nw(oc,c) ~ ~ {(21+1)/4n}Or I Rvlocc)Plc.E). (120) 
v=OI=O 

The mobility and effective temperature given above depend only on the param
eter g2, as can be seen, for instance, by introducing a matrix 

M - Jlt g2(v2-Vd (j +D 
Vl11,V2lz- \'1V2 ltlz vtil,V2Zz· (121) 
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In terms of this matrix 

(M- 1) = @,,2v+l-l(M- 1) vl,Ol vl,Ol , (122) 

°r' = (4n/3)t@"2v+I(M-l)VI,01' (123) 

K = (e/mno)(M- 1)01,01' (124) 

Teff/To = I-t-J2@,,2(M- 1)10,01' (125) 

The advantage of using M is that it is independent of @" when J is diagonal. 
It is convenient to visualize the matrix M as partitioned into blocks labelled 

by I indices, the elements within each block being labelled by v indices, as indicated 
below. 

12 = 0 2 

It = 0 I JO Cd~ 0 0 0 

Cd:" J1 Cdi 0 0 

2 0 Cd:' J2 0 

0 0 

0 0 0 

The blocks along the diagonal are the matrices JI (with elements J~v' given by equatIOn 
(79» which contain all the information about the interaction, while the field dependence 
is carried in the off-diagonal blocks of the matrix D (represented by d~vv" equations 
(98) and (99». It is evident that for sufficiently strong fields the off-diagonal terms 
become very large, and this leads to difficulties in inverting the matrix. 

The above arrangement of the elements is by no means the only possible one 
(see e.g. the arrangement according to p, I indicated in subsection (b) (ii) above). 
In numerical calculations the matrices and blocks are truncated and it is clear that 
truncated versions of different arrangements wi11lead to different approximations. 

(d) Equation for Diffusion and its Solution 

The matrix equation corresponding to (39) is obtained by introducing the 
expansion as in subsection (c) above, 

(n -1 at n)OlJ(Vl~~ + IX-I ~ (VIII IllXc[1] II v212)[ n -10n(1) x °lJ(v2lz)]~:) 
v2lz 

-(lXejm) ~ (vIII IIK[1] IIV2 12) [E(I) x llJ(v2lz)]~:) = -no~J~:v21lJ(V2~~. (126) 
nlz n 

The procedure for eliminating the time derivative and for removing the redundant 
part was explained in Section lIed). It leads to the equations 

~ M 1 (1;(V2) 1 blVd 
V,V2 0 , VI -=f=. 0, (127) 

V2*0 
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where 

lb(Vl~~ = (no Ct)-l( ~3 0lY(Vl~nn-l 8n(1) x 0lY(Ol)]~O) 

- }: (Vl 111ICtc[1lllv212)[n- 18n(l) x OlY(V2h)]~:»). (128) 
v2h 

In the inhomogeneous term the zero-order solution is assumed to be known from 
the solution of (105). Equation (127) may also be converted into a coordinate
independent form, but it is somewhat more convenient to choose the z axis to lie 
along the electric field. Using equations (94) and (95) we have 

}: p('m') 1~(v2h) --en Ct)-l k(m)V'lt 
Vllt,V2lz 0 m 0 , (129) 

v2lz '" 00 
where 

P(m)v,!, ,v2h = J!~V2 151,12 +i@"(ll m 110/2 m) (V1/l II K[llil v2 /2 ) (130) 
and 

k(mY'Z, = 0lY(v'~) 0lY(O~) bmo 

+ }:(llmI1m120)(vlI11ICtc[1lllv2[2)0(5'(V2~). (131) 
~lz ' -

The formal solution is 

llY(v~ = -(no Ct)-l (}: [P(m)J~,~T k(mY'I')n- 1 8n~1) . 
v'I' 

(132) 

In the coordinate system used here the tensor f!fi (= 0)2 of equation (30» has 
the form 

l ~T 0 0 ~ 
f!fi = 0 ~T 0 , 

o 0 ~L 

(133) 

where rows and {:olumns are labelled by x, y, and z axes. This identifies the trans
verse (EdT) and longitudinal (EdL ) diffusion constants. Defining the symbol ~I' 

(/1 = 0, ± 1) by 
~±l = ~T' ~o = ~L' (134) 

we observe that the diffusion contribution to the convective velocity (see equations 
(15) and (43b» is given by 

15 W~l) == -(0)2 .n- 1 an)~l) = ~in-l an)~l) = (J(-lllY(O~). (135) 

Thus from equation (132) 

Edm = (no C(2)-1 }: [P(m)]Ol~v'I' k(m?'I' . (136) 
v'z' 

For a given m, the matrix P(m), defined by equation (130), has an analogous structure 
to that of M in subsection (c) so that the procedure of inversion is similar and no new 
questions of principle arise. 
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IV. EVALUATION OF FORMULAE: SPECIAL CASES AND NUMERICAL PROCEDURE 

In this section some special cases are discussed where the formulae for transport 
coefficients simplify and the results can be obtained without recourse to numerical 
calculations. It is shown how the results of earlier investigations in this field appear 
as special cases of the present, more general treatment. The intended area of appli
cation is mainly that of experiments with alkali metal ions in rare gases. The potential 
needed for reproducing these results is more complicated than the model potentials 
mentioned below, and it becomes necessary to perform the computations numerically. 
Furthermore, because the ionic and atomic masses are comparable, many terms an. 
needed in the spherical harmonic expansion of the distribution function. The formulae 
derived in the previous sections allow a systematic approach to this aspect of the 
problem by successively increasing the size of the matrix whose inverse gives the 
transport coefficients. The physical implications of the comparison between experi
mental and theoretical results are discussed in Part II. 

(a) Zero Field and Weak Fields 

The earliest treatment of mobility using the Boltzmann equation was given by 
Langevin (1905). He assumed the field strength to be infinitesimally small (or, more 
explicitly, drift energy very much less than thermal energy) and took the distribution 
function to be 

fCc) = n(1X2/n?/2 expHIX2(c- W)2}. 

With the approximation 1X2 W 2 ~ 1, this reduces to 

fCc) ,:::; nW(IX,c){l+(lXc).(IXW)}. (137) 

The coefficients in the expansion (59) are therefore 

(5'(vg) = (>vo, (5'(v~) IX w~l) 6vo , (5'(V) = 0 (all other v). (138) 

Langevin (1905) considered the balance equation for momentum, which is the 
vector equation corresponding to v = 0, I = 1, J1 = ± 1,0 in (105), 

(lXeimn )E(1) = ~ J1 0'1:(v1) o I' Ov 0 I' ' (139) 
v=o 

or from (138) 
(lXe/mn )E(1) = J1 IX W (1) o I' 00 1" (140) 

The Langevin relation is usually expressed in terms of the momentum transfer cross 
section, which enters through J60 (see equations (80), (84), and (86)). We thus obtain 
the Langevin formula W = KL E, with 

KL = e/mnoJ60 = e(m+mo)/mmono V60' (141) 

On the other hand, from the general expression (117) the zero-field mobility Ko is 
given by 

Ko = (e/mno)(J1)r;l, (142) 
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where the inversion is with respect to the v indices only. Off-diagonal elements of 
J~v' are usually small compared with the diagonal elements and hence the first approxi
mation to Ko in equation (142) is the Langevin expression (141) for KL. For the types 
of potential encountered in practice Ko and KL usually agree to within 1 %. 

Kihara (1953) improved upon Langevin's treatment by considering the field 
to be nonzero, and the theory was further developed by Mason and Schamp (1958). 
We may regain these expressions by expanding the matrix in equation (117) in powers 
of the field: 

00 

M- 1 = (J -GfD)-1 = ~ rl( -GfDJ-1)j. 
j=O 

(143) 

It can be verified, for example, from the block structure of the matrix M (Section 
III(e», that the matrix element (M-1)Ol,Ol contains only even powers of Gf. This 
series in powers of Gf2 will converge only at sufficiently low values of the field. A 
further approximation (Mason and Schamp 1958) is that only the elements of J~v' 
at most j units off the diagonal occur in the coefficient of Gf2j in the above expansion. 
That is, the (j + l)th approximation to mobility is a polynomial in Gf2 of degree j 
involving only those J~v' for which I v' - vi ~j. The first Kihara approximation, 
j = 0, is seen to be the same as the Langevin expression (141) above. Higher approxi
mations of this type can be obtained from the expansion (143) as indicated. This is, 
however, unnecessary since one can deal directly with equation (117), which is more 
compact and makes no assumptions about the magnitude of the field. 

Further properties of Ko emerge from those of V6o. Thus, because of the 
identity 

To dV6o/dTo == -,Ji- V61' (144) 

which is a special case of the more general identity derivable from the definition of 
the V's, namely 

To dV~v·/dTo = (v - v') V~v' +{ v'(v' +1 +m-!-V~,v'-l -{(v + l)(v +1 +i)}~Y~+I,v" (145) 

it follows that 
dKo = ~_e_m+mo~ J ' 1 

dTo 2 no To mmo (V60)2' 
(146) 

Thus, the sign of dKo/dTo is the same as that of the integral V~o. One can calculate 
the initial slope of the K versus Gf curve in the second Kihara approximation. It 
turns out that at a given temperature To the slope is fixed by the sign of V}o or 
dKo/dTo at that temperature. This has interesting implication in those temperature 
regions where Ko exhibits an extremum (Kihara 1953, Figs. 4 and 5; Mason and 
Schamp 1958, Fig. 2). 

For a power law potential of the form r- 2N (N > 2) the interaction integrals 
have the properties 

V~v > 0, V~v'<O (v'#v), V~v' ~ T-!--l/N , (147) 
so that 

Ko ~ T6/N - t . (148) 
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One may expect to observe such a power law dependence at high temperatures where 
the effects of the hard core in ion-molecular potential dominate, if, as is often assumed, 
the hard core can be represented by a power law potential. 

For the case of diffusion at zero field, we note that 

o'ij(.~ = c5.o c510 c5po , 

[P(Jl)]~~"I'= (JI);) c511" 
and 

k{Jl yl = c5.o c5 11 , 
so that 

f!) p = (kTo/mno)( J1 )ol = f!)L = f!)T == f!). 

Using equation (142) one can verify the so-called Einstein relation 

f!)/Ko = kTo/e. 

(b) Maxwell Interaction and Heavy Ions in Light Gas 

(149) 

(150) 

(151) 

. (152) 

(153) 

For the Maxwell model of interaction, that is, an r- 5 force law, it can be shown 
(see e.g. Chapman and Cowling 1970, Ch. 10) that (Jig) is proportional to g-1. 
From the definition of V!.' in equation (80) and the orthogonality properties of the 
polynomials R. I , it follows that in this case the interaction integrals are diagonal in 
v and also independent of temperature. Similar properties hold for the collision 
matrix J!." as may be deduced from equation (79), that is, 

J!., = J!. c5'" (154) 

and J!. is independent of temperature. If J!., is diagonal, then M is independent of 
cff and can be inverted exactly, in particular 

(M- 1)01,01 = (M- 1)o1,o1 = l/J~o. (155) 

The mobility is then independent of field strength, being given by equation (141) 
again. Note that it is also independent of gas temperature for this model. 

On the other hand, for very heavy ions in a light gas (mo/m < 1), it can be 
shown from equation (79) that, to first order in mo/m, the collision matrix is diagonal 
in v no matter what the form of the interaction. Explicitly, we have 

J!., = (mo/m)(2v+l)V~oc5.,. +O(mo/m)2, (156) 

so that equations (155) and (141) hold once again. Hence, for heavy ions, the mobility 
is independent of the field strength. However, in contrast to the Maxwell model, 
K may now be a function of gas temperature, with the nature of this dependence 
determined by V~o. 

For a diagonal collision matrix, it can also be shown from equations (125) 
and (73) that the formula 

m<c2) = (m+mo)W2+ 3kTo (157) 

holds exactly. This equation has also been deduced by Wannier (1953) for the case 
of the Maxwell interaction. 
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For diffusion in the case of a diagonal J, 

[p(I1)]ol,v1 = 0vo 0I1/J 60 (158) 
and 

i!J/l = {(0l'r(01»20/l0 +0l'r(00) -,l~°l'r(lO) +../13° (111111120)°l'r(02)}/a2noJ60, (159) 

where we have inserted explicit forms of the matrix elements. In order to get a physical 
interpretation of the right-hand side of (159), we use equation (60) for the coefficients 
with the explicit forms of ¢(V) given by equations (53)-(56). The results are 

i!JL = {<c;>-<cz>2}/noJ60, 

i!JT = {<c; + c;>}/2noJ60 . 

(160) 

(161) 

Hence the ratio i!JL/i!JT is equal to the ratio of the mean random energies parallel 
and perpendicular to the field. Wannier (1953) derived this result for the Maxwell 
interaction and conjectured that it should hold generally. From the derivation 
given above it is clear that it is a result of the rather special circumstance that J 
is diagonal. We do not expect this to hold for cases other than the Maxwell model 
and heavy ions in a light gas. In fact, the electron case provides a counter example 
toWannier's conjecture. Here the distribution function is nearly spherically sym
metric so that 

<c;> = <c;> ~ <c;> (162) 
and 

<c;> ~ <cz >2 . (163) 

The conjecture would then suggest i!JL ~ i!JT, which is in general not correct, as 
shown by the recent calculations of Lowke and Parker (1969), Skullerud (1969), and 
Robson (1972a, 1972b). 

(c) Electrons 

In the theory of electron swarms one retains only the first two terms in the 
spherical harmonic expansion of the distribution function. This is equivalent to 
retaining only the blocks corresponding to I = 0 and I = 1 in the M matrix (see 
Section III(c». One can obtain corrections to this approximation by including 
blocks of higher ['s, as was discussed by Robson and Kumar (1971). Equations 
(8a)-(8d) of that paper are another representation of the block structure of M. 

The formulae for J quoted by Robson and Kumar (1971, equations (11)-(13» 
are obtained from equations (79)-(83) by retaining terms of the lowest order in 
m/mo' Thus 

J~V2 ~ (2m/mo)(v1 V2)-!- Vv~-1'V2-1' 

J I ~ Vi 
V1V2 I""V V1V2' I> 1. 

(164) 

(165) 

The success of the two-term approximation depends on the extraordinary smallness 
of the J O block compared to the others. Considering other cases which may be 
treated by matrix equations this is rather an extreme approximation, although quite 
adequate for the electron case. It may be noted that the usual approximation using 
two coupled differential equations in c is more effective at high fields. On the other 
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hand, the present method being more systematic and detailed enables us to estimate 
higher anisotropies. When masses are comparable, as for ions, such effects become 
much more important. 

(d) Truncation of Matrices: Numerical Approximations for Realistic Potentials 

Potentials which describe ion-atom interactions usually have a strong short
range repulsion, a weaker medium-range attraction, and an r- 4 polarization potential 
in the outermost regions. A potential of such a shape will have three parameters. 
No analytic approximation is adequate in this case, although some estimation can 
be made for the very high and very low temperatures and the qualitative form of the 
mobility as a function of g can be inferred (Kihara 1953; Wannier 1953, 1970; 
Mason and Schamp 1958; Creaser 1969). 

The formulae derived above may be evaluated numerically in these cases: 
for a given potential one determines the cross section a(g, X) numerically and con
structs the interaction integrals V!v' at a given temperature To. The collision matrix 
J!v' is then obtained from equations (79)-(83). The matrices M and P(Jl) can subse
quently be formed for different values of the field parameter g and inverted to obtain 
the transport coefficients (Section III (c), (d)). 

To carry out this scheme we select a maximum value./max of I thus restricting 
the number of blocks. Then within each block we limit the values of v to a maximum 
value Vmax' This gives a square matrix of dimension {(lmax+l)(vmax+l)-1}. The 
procedure is equivalent to approximating the distribution function by a finite number 
of terms, i.e. 

Vtnax IITlax 1 

fee) ~ n w(C;(, e) ~ ~ ~ ~(v~ 4>[V~(C;(e). (166) 
v=o 1=0 m=-I 

In the zeroth order 
l.max ..... 

of (e) ~ n w(C;(, c) ~ °P(c) Pte. E), (167) 
1=0 

with 
Vlllax 

°P(c) ~ {(21+1)/4n} ~ °rIRvzCC;(c). (168) 
v=o 

Except for the electron case where Imax = 1 is sufficient, the distortion from 
spherical symmetry is in general quite substantial at high fields, and hence many 
Legendre polynomials are needed to accurately represent the angular dependence 
by equation (167). At the same time, the distribution is also rather far from being in 
equilibrium at temperature To, so that a large number of terms are needed in equation 
(168) also. Thus in general we expect to have to invert a rather large matrix. This 
indeed has been the experience in the sound problem (Pekeris et al. 1962), whose 
similarity to the present problem was pointed out in Sections II and III. 

Turning to the manner of truncation indicated above, we note that it is not the 
only possible one. It appears quite natural in view of equations (166)-(168), and 
one might say that the angular anisotropies represented by successively higher l's 
are successively more difficult to establish, and hence less important. This is not a 
strong argument in either the physical or mathematical sense. It may be noted that 
this manner of truncation was used in the sound problem by Wang-Chang and 
Uhlenbeck (see de Boer and Uhlenbeck 1970). On the other hand, it is possible to 
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arrange the matrix according to p = 2v +1, which is the degree of polynomials in c, 
and for each p according to I. This arrangement suggests a different scheme for 
truncation. In their extensive calculations in the sound problem, Pekeris et al. (1962) 
have used a truncation based on v + I. Indeed, neither the formulae nor the physical 
intuition provides any strong reasons for preferring one manner of truncation over 
another. 

In order to obtain a reliable determination the results must be shown to be 
independent of the manner of truncation in some sense. For any given value of 
If one can successively enlarge the matrix to be inverted and see if the transport 
coefficients tend to a limit. That is to say, one goes on enlarging the matrices until 
there is no change in t-he values by further enlargement. This need not be strict 
mathematical convergence, but if it can be achieved within some given percentage 
it will be quite convincing. When such a situation is reached it is no longer very 
important how successive truncations were performed (barring pathological choices). 

It is expected and has been confirmed by calculations, that as If increases 
larger and larger matrices are needed to achieve a convergence of the transport 
coefficients. From this it also follows that for any given size of the truncated matrix 
the results are not expected to be good over the entire range of If. A value of If 
will be reached beyond which the error due to truncation will be large enough to 
mask even the qualitative character of transport coefficients as functions of If. This 
is a serious drawback. It not only necessitates rather long calculations to establish 
convergence but beyond a certain point the matrices pecome very large and it is 
difficult to keep all quantities (e.g. cross sections and V~v,) sufficiently accurate. 
Still, by using this procedure and without making the computing too formidable 
it has been possible to obtain results over a physically interesting range of If (Robson 
and Kumar 1971; Part II). 

The special cases and the numerical procedure described here do not exhaust 
the possibilities of the formulae we have derived. For instance, one might attempt 
to estimate the elements of the inverse matrix by some asymptotic method or by 
some manipulation of series expansions. We have not explored such possibilities. 
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