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Abstract 

A systematic method for obtaining the scalar product with respect to which a 
given Vlasov-Maxwell operator is self-adjoint is illustrated by considering the operator 
introduced by Shure (1964) to describe one-dimensional longitudinal oscillations in 
a bounded plasma. By separation of variables the problem is reduced to the solution of a 
singular integral equation for the weight function of the scalar product. The solution 
of this equation is not explicit but is in the form of a simple linear Fredholm integral 
equation of the second kind which is easily solved. The method should be applicable to 
similar operators in this field. 

1. INTRODUCTION 

Lanczos (1961), for example, showed that any second-order linear differential 
operator can be regarded as self-adjoint provided the weight function in the scalar 
product is chosen appropriately. In the present paper consideration is given to the 
possibility of finding scalar products with respect to which the linear integro
differential Vlasov-Maxwell operators which occur in plasma physics can be regarded 
as self-adjoint, and it is shown that such a scalar product can be found for a 
particular case. The method can be generalized to deal with other operators in this 
field. 

The problem can be stated as follows. Instead of starting with an arbitrary 
scalar product <,), usually with weight function unity, and finding the adjoint 
operator Lt with the same spectrum as the original operator L such that 

(1) 

where l/It, and l/Iv are the eigenfunctions of Lt and L respectively, we would like instead 
to find, for the given operator, the scalar product ( , ) for which 

(2) 

Using such a scalar product with respect to which the operator is self-adjoint avoids 
the introduction of the adjoint operator and the derivation of the adjoint eigen
functions. Also the derivation of the scalar product is constructive as it leads 
immediately to a weighted orthogonality property of the eigenfunctions of the given 
operator, which allows the expansion coefficients in an eigenfunction expansion of 
an arbitrary vector to be obtained. 
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Work along the above lines has been done in neutron transport theory by 
Zweifel (1967) and Kaper (1969). Cercignani (1969) has studied operators in the 
kinetic theory of gases while Case (1965) has discussed the analogue of the spectral 
theorem for transport operators in plasma physics when considering constants of the 
motion. In plasma physics the situation is slightly more complex than in neutron 
transport theory since the operator usually includes, besides a transport equation, 
Maxwell's equations for the electric and magnetic fields, and thus the scalar product 
must also contain additional terms due to the presence of these fields. 

II. PHYSICAL MODEL AND MATHEMATICAL FORMULATION 

The general procedure to be followed in plasma physics can be conveniently 
described by considering a particular problem. Perhaps the simplest boundary value 
problem in this topic is the one-dimensional problem of penetration of an electric 
field into a plasma. This has been considered by many authors (e.g. Aamodt and 
Case 1963; Shure 1964; Case 1967) and the same physical model as described in 
those papers will be used here. The perturbationl(x, u, t) in the electron distribution 
function no 10 and the electric field E(x, t) are given by the linearized equations 

of + u of + no e E(x, t) dF = 0 
at ox m du 

(3) 

and 

oE/ox = 4ne f ~oo f(x, u, t) du, (4) 

where e and m are the electronic charge and mass respectively and 

(5) 

The electron velocity Vx in the x direction has been denoted by u to simplify the 
notation and the equilibrium distribution function no 10 is assumed to be isotropic 
in velocity space, i.e. to be a function of the square of the velocity. Also, for 
simplicity, 10 is assumed to be nonzero for finite velocities and to tend to zero 
"sufficiently rapidly" as the velocity tends to infinity. 

Shure (1964) has shown, using a slightly different notation, that with time 
dependence exp( -iwt) and spatial dependence exp(iwz/v) equations (3) and (4) can 
be rewritten in the operator form 

Ll/Iv = (iw/v)p l/Iv' (6) 
where 

L = [ iw 
4ne S:oo du 

-(noe/m)dF/dU] _ [U 0] . _ [f(V,U'W)] 
, p - ,l/Iv - • 

o 0 1 E(v,w) 
(7) 

Although (6) is not exactly in the form of an eigenvalue equation, l/Iv will be referred 
to as the eigenfunction of L corresponding to the eigenvalue v. The spectrum and 
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eigenfunctions of L have been derived by Shure (1964) and Case (1967) and are 
listed in the Appendix, together with a definition of the function A(z, w) and its 
properties. 

Two separate problems are considered. When the boundary condition on the 
distribution function is other than the specular reflection boundary condition, a 
superposition of eigenfunctions with· eigenvalues in the set 9'+ = {[O, 00], - vo} is 
usually considered. To deal with such superpositions of eigenfunctions, half-range 
orthogonality and completeness properties have to be established. We therefore 
try to find a scalar product ( , )h of the form 

(!/Iv,,!/Iv)h = too W(u)f(v',u,w)f(v,u,w) du +woE(v')E(v) (8) 

such that 
for all v', V E 9'+ . (9) 

Alternatively when the boundary condition on the distribution function is the 
specular reflection boundary condition, the problem can usually be solved by con
sidering a superposition of eigenfunctions with eigenvalues in the set 9' = {[ - 00, 00], 
-Vo, +vo} and, in order to deal with such superpositions, full-range orthogonality 
and completeness properties have to be established. Therefore the second problem 
considered is to find a scalar product ( , )f of the form 

(!/Iv,,!/Iv)f = f:oo W(u)f(v',u,w)f(v,u,w)du +woE(v')E(v) (10) 

such that 
for all v', V E 9'. (11) 

Now the expansion coefficients in an eigenfunction expansion depend only on 
the ratio of scalar products (see equation (65) in Section IV below). Thus in each 
case the scalar product need only be determined to within an arbitrary constant. 
The coefficient Wo of E(v')E(v) can therefore be taken as unity, and this wiIl be done 
here. 

Once the scalar products have been obtained, orthogonality properties 
immediately follow. Omitting the subscripts on the scalar products, we have in 
each case from equation (6) 

(!/Iv"L!/Iv) = (iw/v)(!/Iv" p!/lv) (12) 
and 

(L!/Iv" !/Iv) = (iw/v')(p!/lv" !/Iv) = (iw/v')(!/Iv"p!/lv) , (13) 

since p is diagonal. Subtraction of (13) from (12) then gives 

° = (l/v -l/v')(!/Iv" p!/lv)' (14) 

If the above-mentioned eigenfunction expansions are valid then the expansion 
coefficients can be obtained immediately from these orthogonality properties. 
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III. HALF-RANGE ORTHOGONALITY 

In this section, only the first problem formulated in Section II will be considered 
and the weight function of the scalar product with respect to which L can be regarded 
as self-adjoint for eigenfunctions with eigenvalues in the set y+ will now be obtained. 
Consider first (t/lv/ Lt/lv)h for v, v' E [0, cor. We have by (7) and equation (AI) of 
the Appendix 

Lt/lv = [iOJf(V'U'~) -(VOJ;/iOJ)dF/dU] = [iOJf(V,U,OJ) -(VOJ;/iOJ)dF/dU] , (15) 

4neL oo f(v,u,OJ)du 4ne 

in which the normalization condition (A2) has been used. Thus, using the definition 
(8) of the scalar product ( , )h' we get 

(t/lv / Lt/lv)h = iOJ 50'" W(u) f(v', u, OJ) f(v, u, OJ) du 

_ OJ; V fOO W( ) dF f ( , ) d (4ne) 2 v' . U d v , U, OJ U + . 
@ 0 U @ 

(16) 

and 

OJ;V'f OO dF (4ne) 2 V --.- W(U)-d f(v,u,OJ)du + . . 
10J 0 U 10J 

(17) 

Suppose now that both v and v' are nonzero. Then subtracting (17) from (16), 
rearranging terms, and dividing through by iOJvv' gives 

0"2 f 00 . dF, fJ 0"2 f 00 dF fJ - W(u) -d f(v ,u,OJ) du - - = - W(u) -d f(v,u,OJ) du --, 
v' 0 u v' v 0 u v 

(18) 

where fJ = (4ne/iOJ)2. The left-hand side of equation (18) is a function of v' only 
while the right-hand side is a function of v only. If (18) is to hold for all values of 
v and v' belonging to ]0, cor then each side must equal a constant, !X say. Thus W(u) 
must satisfy, for v E ]0, cor, 

0"2 too W(u) (dF/du)f(v, u, OJ) du - fJ = !Xv. (19) 

Also, W(u) must satisfy equation (19) for v = 0. To see this we put v = ° in 
equations (16) and (17), equate, cancel like terms, and finally obtain 

V'( 0"2 Saoo W(u)(dF/du)f(O,u,OJ)du -fJ)=o. (20) 

For this equation to hold for all admissible values of v', equation (19) with v = ° 
must be satisfied as claimed. Thus using equation (AI) for f(v, u, OJ), we obtain the 



SELF-ADJOINT VLASOV-MAXWELL OPERATORS 305 

singular integral equation for W(u) 

u2(dF/du) A(V, w) W(v) 

4 2 fOO W(u)(dF/du)2 du +P +uv =O(v, 
o u-v 

o:s;;;v<oo. (21) 

Now equation (9) must hold for v' = 00, 0 :s;;; v < 00 and v = 00, 0 :s;;; v' < 00, 

while using equations (7), and (A8) for t/I 00' we have 

(22) 

as F vanishes at infinity. Thus the condition which W(u) must satisfy in this case is 

(23) 

As (Lt/lv' t/I oo)h == (t/I oo,Lt/lv)h this is the only condition. 
Using (A8) for t/I 00' equation (23) becomes 

u2 Saoo W(u)(dF/du)f(v,u,w)du -p= -vu4 Saoo W(u)(dF/du)2du. (24) 

Comparison of equations (24) and (19) shows that we must take 

(25) 

Now, as the discrete eigenvalues ± Vo are absent from the spectrum for 
w2 > w;, in this case g+ = [0, 00]. Therefore there are no more conditions to be 
satisfied when w2 > w; so that the required weight function then is obtained by 
solving the singular integral equation (21) with 0( given by (25). 

When w2 < w;, however, the discrete eigenvalues ± Vo exist. As - Vo is con
tained in g+, the following two further conditions must be satisfied 

VEg+ , 

Condition (26a) gives 

(26a) 

(26b) 

fOO dF v (fOO dF ) u2 0 W(u) du f(v,u,w)du -p = - Vo u2 0 W(u) du f(-vo,u,w)du -p . 

(27) 
Using equation (A9) for f( -Vo, u, w) and comparing (27) with (19) gives 

-1( 4 2fOO W(u)(dF/du)2du p) 
0( = - Vo u Vo + -. 

o u Vo 
(28) 
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Consider now the condition (26b). Using equations (7) for L, (A9) for l/J -Vo' and 
(A8) for l/J w' we obtain for this condition 

-1( 4 2fW W(u)(dFjdu)du f3 2 2fW (dFjdU)dU) 
- Vo (J Vo - (J Vo 

o u+Vo -w u+Vo 

(29) 

Since A( - vo) = 0, we have (see equation (A4» 

(J2V~fW (dFjdu)du = 1. 
-w u+vo 

(30) 

Putting equation (30) into (29) merely gives us the condition we would obtain by 
equating the right-hand sides of (25) and (28), and we can conclude that (26b) 
therefore gives us no new condition on W(u). Thus for 0)2 < 0); the required weight 
function is obtained by solving the singular integral equation (21) together with the 
relations (25) and (28). That both (25) and (28) are necessary is seen in subsection 
(ii) below. 

The two cases 0)2 > 0); and 0)2 < 0); have to be treated separately. 

(i) 0)2 > 0); 

Let 

cP (z) = ~ f W W(u) (dFjdu)2 du. 
1 2m 0 u-z (31) 

The Plemelj formulae (Muskhelishvili 1953) give for 0 ~ v < 00 

W(v)(dFjdu)2 = cPi(v)-cPi(v), (32a) 

1 fW W(u) (dFjdu)2 du _ .m+() .m-() 
--; - "'1 V +"'1 V . m 0 u-v 

(32b) 

Thus by equation (21), cP1(z) must be a solution which vanishes at infinity of the 
nonhomogeneous Hilbert boundary problem 

o~v<oo. (33) 

Division by A -(v) is possible as it is shown to be nonzero in the Appendix. Con
versely, Muskhelishvili (1953) shows that any sectionally holomorphic solution of 
(33) which vanishes at infinity leads to a solution of the original singular integral 
equation (21). To obtain such a solution of (33), we introduce the fundamental 
solution X(z) of the corresponding homogeneous Hilbert boundary problem 

(34) 
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This is the solution of (34) which is holomorphic in the whole plane except for a 
cut along the positive real axis and which does not vanish anywhere in the finite 
plane. If we take logarithms of both sides of (34) and apply the Plemelj formulae 
we see that (Muskhelishvili 1953) 

[ If 00 (A + ( u ») dU] Xo(z) = exp -2' log -_- --
1r1 0 A (u) u-z 

(35) 

is a solution of (34), that branch of the logarithm being chosen which vanishes at 
infinity. It remains to examine the behaviour of Xo(z) at the origin and this can be 
done using an argument similar to that of Mason (1972). We have 

X z = ex - 10 -- -10 -- +10 -- --[ If 00 { (A +(U») (A +(0») (A +(O»)} dU] 
o( ) p 2ni 0 g A-(u) g A-CO) g A-(O) u-z 

= Y(z) Z-(1/27ti)log(A+(O)/A-(O)) , (36) 

where Y(z) takes a definite nonzero value at z = O. We can express this in terms of 
N, the number of zeros of A(z) in the upper (or lower) half-plane, in the usual way 
by considering the continuous change in the argument of A(z) around a contour 
consisting of the whole real line from - 00 to + 00 and a semicircle at infinity in the 
upper half-plane. We have, as there is no change in the argument of A(z) on this 
large semicircle, 

(37) 

where ,1_ ro ,ro denotes the value at + 00 minus the value at - 00, the difference being 
due to a continuous change along the real axis from - 00 to + 00. Thus 

N = (1/4n)L1_ 00 ~arg(A+(U») 
,~ A-(u) 

as 

= (lj4ni)L1_ ~ ro log (A + (u ») 
~, A-(u) 

as 10 I A + ( 00) I = 10 I A + ( - 00) I 
gA-(oo) gA(-oo) 

= (lj2ni)L1 o ~ log (A +(U») 
,~ A-(u) 

as 

= -(lj2ni)10g~:~~~) (38) 

as that branch of the logarithm for which log( A + ( 00)/ A - ( 00») = 0 was chosen. Thus 
XoCz) behaves like zN at the origin. We therefore take as the fundamental solution 
Z-N Xo(z). This function does not vanish anywhere in the finite plane. As N = 0 
for OJ2 > OJ;, the fundamental solution in this case, which we denote by X 1(z), is just 

(39) 
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Now using (34), equation (33) becomes 

tPt (v) tPl (v) (av + 13) dF jdv --=--+ , xi (v) Xl (v) (j2 A (v) Xi (v) 
o~v<oo. 

R1(z) = _1_ f 00 (au + f3)(dFjdu) du . 
2rci(j2 0 A (u)xt (u)(u-z) 

(40) 

(41) 

Applying the Plemelj formula (32a) to R1(z) allows us to write equation (40) as 

tPt(v)jxt(v) -Rt(v) = tPl(v)jXl(v) -Rl(v) , o~v<oo. (42) 

Thus the function 
(43) 

is holomorphic in the whole plane and vanishes at infinity. By Liouville's theorem, 
it must be identically zero so that 

(44) 

As X1(z) tends to unity as z tends to infinity, the right-hand side of (44) vanishes at 
infinity as required. Using equations (AS) and (A6) to express dFjdu in terms of 
A+(u) and A-(u), and also equation (34), R1(z) can be rewritten as 

(4S) 

The integrals in (4S) can be evaluated using contour integration in the complex plane, 
the contour consisting of a large circle at infinity, a small circle round the origin, 
and two lines from zero to + 00 joining the two circles, with one line just below and 
the other just above the positive real axis. The result is 

(46) 

where the prime denotes differentiation with respect to z. Thus 

(47) 
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Applying the Plemelj formula (32a) to equation (47) gives 

W(u) (dF)2 = __ cx_ xi (u)-Xl (u) 
du 2niu4 u Xl (0) 

309 

+ _13_ (X~(O) _ 1 ) (x+ (u)-X- (U)) (48) 
2niu4 u xi (0) u2 Xl (0) 1 1 • 

Now cx depends on W(u) through equation (25) so that the relation (48) is a 
simple linear Fredholm integral equation of the second kind for W(u) , which can 
be solved immediately. If equation (48) is integrated from zero to infinity with 
respect to u and the integrals involving X 1(z) are evaluated by the contour used to 
obtain equation (46) then, taking account of the relation (25), we obtain 

(49) 

Substitution of (49) back into equation (48) gives 

(50) 

which can be simplified using equations (34) and (A5) and (A6) to 

(51) 

(ii) OJ2 < OJ; 

At first sight it appears that this case is overdetermined as there are two 
expressions, (25) and (28), for cx. It turns out, however, that both are needed. The 
analysis proceeds as for OJ2 > OJ; and equation (42) (with suffix 1 replaced by 2) is 
again obtained. This time, however, since N = 1 the fundamental solution X2(z) 
is given by 

(52) 

This solution behaves like Z-l at infinity. Thus 

lim (x4>i(Z)) -Riz)) = - 21. foo W(u)(dF/du)2 du 
Z"'oo 2 Z nl 0 

(53) 
by equation (25). 

Consider now the function 

(54) 

By equation (42) it is holomorphic in the whole plane and by (53) it vanishes at 
infinity. Therefore because of Liouville's theorem it must be identically zero. It 
then follows that 

(55) 
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The right-hand side of this expression vanishes at infinity and so leads to a solution 
of the original singular integral equation (21). Evaluating R2(z) in the same way as 
for R1(z), we get 

Riz)=-- -------1 DC (1 1 ) 
2niq4 z Xiz) z X 2(0) 

+ _P_ ( 1 + X ~(O) _ 1 ) . 
2niq4 Z2 Xiz) zX~(O) Z2 X 2(0) 

(56) 

Substitution of equation (56) into (55) and use of the Plemelj formula (32a) then gives 

W(u) (dF)2 = _ _ DC_ Xi (u)-X2" (u) 
du 2niq 4 u X 2(0) 

+ _P_ (X;(O) _ 1 ) (x+ (u) _ x- (U») (57) 
2niq4 u X~ (0) u2 X iO) 2 2 • 

Equation (57) is again a linear Fredholm integral equation of the second kind for 
W(u). If we try to solve it as before by integrating from zero to infinity with respect 
to u, merely an identity is obtained and we must therefore make use of the remaining 
condition (28). Operating on both sides of equation (57) by 

and using the condition (28) leads to the expression 

(58) 

Substitution of (58) into (57) and simplification as before gives the result 

W(u) = _ 4nm(u+vo)Xi (u) 
no voXiO)A +(u)dFjdu 

(59) 

Thus both expressions (25) and (28) have been required, the first to determine the 
behaviour of the unknown function at infinity and the second to solve the final 
integral equation. 

To summarize, the weight function for the inner product (8) is given by 
equation (51) for OJ2 > OJ~ and by equation (59) for OJ2 < OJ~, the constant Wo being 
taken as unity in each case. 

IV. HALF-RANGE COMPLETENESS 

We now consider briefly how the results derived above can be used con
structively. The orthogonality relations (14) can be written for v', v E [1'+ as 

(t{!v" Pt{!v)h = N(v) c5(v -v'). (60) 
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For the scalar product derived in the previous section it can be shown that for both 
0)2 > 0)2 and 0)2 < 0)2 

p p 

and also 
N(v) = (t/t.,Pt/tv)h = v W(v)A+(v)A-(v) , 

N(w) = (t/too,Pt/too)h = {X1(0)}-1, 

= {VOXz(O)}-l, 
while for 0)2 < 0); 

(61) 

(62a) 

(62b) 

(63) 

The Poincare-Bertrand formula (Muskhelishvili 1953) has been used to obtain the 
relation (61). These results lead to a proof of the following completeness property of 
a particular subset of the eigenfunctions of L. 

Theorem 1 

Any vector t/to defined by 

where go(u) is "sufficiently smooth", can be expanded for u ~ 0 in the form 

(64) 

for some c(v), Coo, and c, the latter expansion coefficient being zero for 0)2 > 0);. 

Proof If such an expansion is possible, then by the orthogonality relations 
expressed in (60) the expansion coefficients must be 

(t/t - Vo' pt/t 0) 

(t/t -Vo' pt/t -vJ . 
(65) 

With this clue the proof merely consists in substituting these values for the expansion 
coefficients in the right-hand side of (64) and verifying that the expansion does in 
fact give t/to. The Poincare-Bertrand formula must be used when interchanging the 
order of integration of integrals defined as Cauchy principal values. 

This completeness property gives an alternative method of solution to, for 
example, the problem discussed by Aamodt and Case (1963) of penetration of an 
electric field into a plasma confined to a region x > 0 by a diffuse reflecting wall. 
Analogous orthogonality and completeness properties can be established for the 
eigenfunctions of L with eigenvalues in the set Y- = {[ - 00,0], vo}. 

V. FULL-RANGE ORTHOGONALITY AND COMPLETENESS 

Proceeding as in Sections III and IV above, it can be shown that for condition 
(11) to be satisfied the weight function of the scalar product must be 

W(u) = -4mJno(dFJdu) (66) 
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for both 0)2 > 0); and 0)2 < 0);. The analysis is simpler as the function X(z) need 
not be introduced. Equation (66) gives basically the same scalar product as that used 
by Shure (1964) and by Case (1967). 

Orthogonality relations of the form (60) (with the suffix h replaced by f) hold 
for v', v E .7 with, for both 0)2 > 0); and 0)2 < 0);, 

- 00 < v < 00, 

and, for 0)2 < 0);, 

These results can be used to prove the following completeness theorem. 

Theorem 2 

Any vector l/Io defined by 

(67) 

(68) 

(69) 

where go(u) is "sufficiently smooth", can be expanded for ~ 00 .;;; u .;;; 00 in the form 

(70) 

for some c(v), c"" c+, and c, the latter two expansion coefficients being zero for 
0)2 > 0);. 

This theorem can be established in the same way as Theorem 1. As l/I - '" = l/I "', 
only one expansion coefficient c'" need be considered. Theorem 2 leads to an 
alternative solution to the slab problem considered by Shure (1964) and the half
space problem with a specular reflection boundary condition considered by Case 
(1967). 

VI. CONCLUSIONS 

The method described here can be used to derive the scalar products with 
respect to which similar operators in plasma physics may be regarded as self-adjoint. 
This avoids the introduction of adjoint operators and the derivation of their eigen
functions. When working with either initial value or boundary value problems 
requiring full-range orthogonality conditions, however, the desired scalar product can 
usually be obtained most simply by inspection. Otherwise, the present procedure 
or a similar method will have to be used. Although the derivation of the scalar 
product can be complicated, it is constructive, for besides giving properties of the 
operator it also leads immediately to the solution of physical problems. 
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ApPENDIX 

Spectrum and Eigenfunctions of L 

(i) - 00 < v < 00 

The corresponding eigenfunction 1/Iv is 

1/1 = [f(V,u,OJ)] = [a2V2(dF/dU)/(U-V) +A(V,OJ)t5(U-V)], (Ai) 

v E(v, OJ) (4ne/iOJ)v 

where a2 = OJ;jOJ2 and the electron plasma frequency OJp is equal to (4nnoe2jm)t. 
The "eigendistributions" f(v, u, OJ) satisfy the normalization condition 

f~oo f(v, u,OJ) du = 1. (A2) 

Also 

the Cauchy principal value of the integral in (A3) being understood. The quantity 
A(V, OJ) is related to the function 

A(z) = 1 _a2z2 f_oo~ (dF/du) du (A4) 
~ u-z 

by the equations 

A + (v) = A(V, OJ) -ina2v2 dFjdv, 

A -(v) = A(V, OJ) +ina2v2 dFjdv, 

-00 0;;; V 0;;; 00, 

-00 0;;; V 0;;; 00, 

(AS) 

(A6) 

where the plus and minus indices denote the limits of A(z) as z approaches v on the 
real axis from above and below that axis respectively. We note in passing that Backus 
(1960) has shown that if it is assumed that the equilibrium distributionfo is isotropic 
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in velocity space, i.e. is a function of the square of the velocity, then 

dFjdv = - 2nv foev2). (A7) 

As we have further assumed that fo is nonzero for finite velocities, it is easily seen 
that A + (v) and A -(v) are both nonzero for - 00 ~ v ~ 00. 

(ii) v = ± 00 

The corresponding eigenfunctions ljJ + ex; and ljJ _ ex; are the same and are 

_ [f(± 00, U, OJ)] _ [(no e/miOJ)dF/dU] 
ljJ+ - - • 

_ex; E(± oo,OJ) 1 
(AS) 

(iii) v = ±vo 
For OJ2 < OJ~, the function A(z) has two purely imaginary zeros ±vo where 

Vo = iy, say, y being real and positive. The corresponding eigenfunctions ljJ ±vo are 

(A9) 

It should be noted that A(z, OJ) has no zeros for OJ2 > OJ~ so that the ljJ ±vo exist only 
for OJ2 < OJ~. 




