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Abstract 

Snell's law is put in such a form that the bending of wave trajectories in inhomo
geneous media can be compared with the bending due to a mechanical force field as 
deduced in an earlier paper (Cole 1971). Two experiments are proposed to detect this 
bending effect. Though small in terrestrial conditions, the effect may be significant in the 
vicinity of some massive celestial objects such as pulsars. It is shown that the Coulomb 
law in ~ cold plasma is of Yukawa form in which the scale distance is c/(fJp where (fJp is 
the plasma frequency. This distance is the Compton wavelength of the particle defined 
by wave quanta in the plasma. 

I. INTRODUCTION 

In a previous paper (Cole 1971, hereinafter referred to as Paper I) a wave quantum 
in a material medium was represented as a particle with finite rest mass and this 
approach led to the calculation of a new form of bending of a photon trajectory in a 
homogeneous medium due to the presence of a gravitational field. The present work 
furthers the application of this idea with a theoretical consideration of the observation 
of the effect in more realistic inhomogeneous media. For this purpose Snell's law is 
restated in a form suitable for comparison with the new bending of trajectories. 

It has been shown in Paper I that a quantum of any form of wave energy 
specified by 

E= liw and p = lik (la, b) 

can be considered for some purposes to be a particle in a vacuum with velocity 

v = en, (2a, b) 

where n = ek/w is the refractive index of the medium and e is the invariant speed of 
light. The particle has a rest mass mp given by 

(3) 

These definitions of the parameters for the particle are consistent with the special 
theory of relativity which specifies that 

(4) 

The movement of photons in a uniform plasma in a gravitational field was discussed 
in Paper I using these concepts in conjunction with the dynamics of the problem. 
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We now consider a general dynamical analysis of the movement of wave quanta in a 
medium of variable refractive index under the influence of a mechanical force field. 
Consistency with existing theory is found but some new effects are delineated. 

Although the basic equations of the theory are identical in form with those of 
de Broglie (1929), the present application and emphasis are different. de Broglie was 
concerned with obtaining a wave representation for what had been hitherto known as 
particles in the form of "matter waves", which have never been observed directly, 
and he wrote of "the refractive index of the vacuum n for these waves". The view of 
the present work is that there is a particle representation in material media of well
known and directly observable waves, e.g. elastic and electromagnetic waves, for 
which one refers to the refractive index n of the medium. Within the context of wave
particle duality the present work complements that of de Broglie. 

Lucas (1969) has discussed the propagation of electromagnetic waves in media 
from a photon point of view. Although similar in spirit to the present approach, 
his analysis followed the work of Greenberg and Greenberg (1968), which was 
referred to in Paper I and with which the present author disagreed in the definition 
of velocity of the particle associated with the photon. Later Lucas (1970) took the 
appropriate velocity to be the group velocity instead of the phase velocity and de
duced an energy of interaction for electromagnetic waves with media. There are 
important differences between the work of Lucas and the present analysis. Firstly, the 
group velocity and the velocity (2a) are only identical under certain circumstances (see 
Section II). Secondly, the energy of interaction is expressed in the present work by 
mp c2 (see equation (3)), this being the amount of energy of the wave quantum not 
associated with its momentum, i.e. the energy that is not kinetic. This expression is 
different from that found by Lucas. Further, the present work relates to wave quanta 
other than just electromagnetic ones. 

The last feature mentioned in the preceding paragraph also distinguishes the 
present work from that of Treder (1971). There is, however, another important 
difference. Treder's analysis has its origins in the fact that for a certain approximation 
the space-time metric can be presented in the form of a law of propagation of light in 
Euclidean space (see Fock 1964). It is then possible to define an "effective refractive 
index" of a vacuum in the presence of a gravitational field and to discuss the bending 
of light trajectories in terms of this effective refractive index. Treder's paper extends 
this analogy by invoking a nonlinear interaction of light with a radiation field pro
posed by Freundlich (1954) and then generating a modified metric to obtain a modified 
expression for the effective refractive index. This is in contrast to the present work 
which is a linear theory, does not involve modification of the metric, and adopts the 
approach that light travels on a null geodesic in a vacuum but on an ordinary geodesic 
in a medium (see Paper I). 

II. SNELL'S LAW 

Consider initially a medium of variable refractive index that is not in a field of 
force. It is presupposed that the wavelength of the waves concerned is very much less 
than the characteristic distance over which the refractive index shows appreciable 
change, i.e. 

2njk ~ njVn. (5) 
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The usual expression of Snell's law is 

(6) 

where n1 and n2 are the refractive indices on opposite sides of a given plane and e is 
the angle between the wave direction and the normal to that plane. Since no change in 
frequency occurs during refraction, equation (6) can be restated as 

(7) 
We also have 

(8) 

and, from equations (7) and (8), for the case where n2 = n1 + dn with dn small it is 
readily shown that 

dk = k(Vnjn)ds, (9) 

where ds is an element of length measured in the direction of k. The alternative form 
(9) of Snell's law is now suited to our purpose. 

Instead of considering a wave quantum in the medium we replace it by an 
equivalent particle in a vacuum (as in Paper I) so that in equation (9) ds is an element 
of length travelled by the equivalent particle according to equation (2a). From 
equation (9) we then have 

d(hk)jdt = hckVn. (10) 

The movement of the wave quantum therefore can be considered to be that of the 
equivalent particle of constant mass m (= hwjc2 ) in a field of potential N given by 

(11) 
for in this case we have 

dpjdt = -mVN (12) 

which is equivalent to equation (10). Since m is constant, equation (12) may be 
written as 

dvjdt = -'liN = cnVn. (13) 

The constancy of m here is in contrast to equation (14) in Section III below, in which 
a "mechanical" force F may be derivable from a potential. Equations (11), (12), and 
(l3) then are the forms that Snell's law takes in the present particle formulation of 
wave properties. 

Maupertuis's principle of least action states that the trajectory of a particle 
between two points P1 and P2 in a stationary force field is such that 

fP2 J = p.ds 
Pi 

is a minimum, where ds is an element of length along the trajectory. If we replace p by 
(hwjc2 )v in this integral and use the expression (2a) for the velocity of the particle 
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associated with the quantum, then Fermat's principle follows, for we have 

f P2 fP2 
J = (hO)/c) n ds = hO) dt. 

P1 P1 

de Broglie (1929) established the equivalence of these principles in his treatment of 
matter waves, and this result is also seen to be implicit in the context of the present 
work. In discussions on geometrical optics these two principles are often quoted as 
being analogous (see e.g. Born and Wolf 1965). As a particular example, when a 
refractive medium is spherically symmetric I n x r I is constant along a ray, where r is 
the radius vector from the centre of symmetry. This result, known as Bouguer's 
formula, is quoted by Born and Wolf (1965) as "being the analogue of a well-known 
formula in dynamics, which expresses the conservation of angular momentum of a 
particle moving under the action of central forces". In terms of the present theory 
this result follows, not as an analogue, but as a direct consequence of the "particle" 
nature of the wave propagation. 

It is of interest to note that Weinberg (1962) has extended the eikonal method of 
Hamilton to discuss the propagation of electromagnetic fields in general media and he 
has suggested that the group path is identical with the path described by Fermat's prin
ciple only when the dispersion relation D(O), k) = 0 is such that D(aO), ak) = amD(O), k), 
that is, when it is homogeneous in 0) and k. However, it is suggested here that this 
condition is too restrictive and that a more general condition is that 80)/8k be parallel 
to k. This happens, for example, in the case of electromagnetic waves in a cold 
plasma (see equation (21) in Section III), a case explicitly excluded by Weinberg. 

A further point of interest is the relation between the velocity v of the particle 
specified here and in Paper I and the group velocity 80)/8k. From equations (2a) and 
(4) this is found to be 

v = c2k/0) = 80)/8k -(mp c4 /h 20)8mp/8k. 

Therefore only when 8mp /8k "1= 0, where mp is defined by equation (3), does the 
trajectory defined by Fermat's principle not correspond to the group path. In all 
cases, however, the Fermat trajectory corresponds to the Maupertuis trajectory of the 
particle defined by equations (1)-(4). 

III. MOVEMENT OF WAVE QUANTA IN MECHANICAL FORCE FIELDS 

(a) Uniform Media 

Consider now a wave quantum moving through a uniform medium in the pres
ence of a mechanical force field. In terms of its particle representation we may write 

dp/dt = mF = -VU, (14) 

where U is a scalar potential function and F is the mechanical force per unit mass 
acting on the particle. In the case where m changes very little over the trajectory, to a 
good approximation we have 

dp/dt = -mV¢ or dkjd( = -(O)jc2)V¢. (15a, b) 



FINITE REST MASSES OF WAVE QUANTA 363 

As an example, equations (I S) will be very good approximations for movement in a 
gravitational field defined by the Schwarzschild metric when mila ~ 1, where m' is 
half the Schwarzschild radius and a is the actuaf radius of a celestial object. It should 
perhaps be pointed out that adopting an equation such as (1Sa) in the case of a 
gravitating particle produces an advance in the perihelion of the orbit of only one
sixth that in the full general relativistic treatment. However, we are not concerned 
here with this second-order effect but are primarily interested in the first-order change 
in the basic trajectory itself (i.e. in the basic ellipse). 

Equations (1S) allow a simple explanation of the large bending oftrajectories of 
radio photons near the plasma frequency in a gravitational field (Paper I). For these 
photons, v as defined by equation (2b) is very small (comparable with or less than the 
escape velocity in the gravitational field, because n --+ 0 near the plasma frequency), 
so that the trajectory may have considerable curvature. 

It is to be noted that equation (ISb) implies that OJ changes as k changes, which 
is distinct from the situation described by equation (10). However, the changes in OJ 

will generally be extremely small. In the special case when mp = 0 (v = c) equation 
(ISb) yields for radial propagation from a star 

or (16) 

where the subscripts r and a denote values of the parameters at radial distances r and a 
in the gravitational field (assumed spherically symmetric). 

(b) Variable Media and Weak Fields 

In the situation where the quantum responds not only to variations in the 
refractive index but also to a weak mechanical force, the two effects in equations (10) 
and (1Sb) are superimposed so that the particle moves as if subjected to a potential 
¢-1,c2n2 • Thus 

(17) 

It is assumed that changes in OJ and hence in m due to Y' ¢ are relatively small so that 
any dependence of n on OJ can be neglected, as will be the case in weak gravitational 
fields. From (I b), equation (17) may be written as 

(18) 
or 

In(klko) = - rs 
(kl c2n2 ) Y'( ¢ - 1,c2n2 ) ds, 

Jso 
(19) 

where the integration is performed along the path of the particle. Equations (17), (18), 
and (19) may be considered to be general forms of Snell's law. 

The relative importance of refractive effects and mechanical force effects on the 
trajectory may be gauged by comparing Y' ¢ and c2n Y'n. The potential ¢ could arise, 
for example, in a gravitational field or from a centrifugal force (as in a laboratory 
experiment with a rapidly rotating material medium). In the case of gravitation, if 
g is the local acceleration due to gravity then the gravitational component in the 
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deformation of the trajectory is significant for 

(20) 

In particular the gravitational deflection is dominant for Vn2 = O. In the case of 
electromagnetic waves propagating in a plasma without a magnetic field 

(21) . 
where 

(22) 

e and me being the electronic charge and mass and ne the electron density. For this 
example Vn 2 = 0 would imply Vne = o. If there were an altitude region over which 
Vne = 0, such as a peak or "valley" in the ionosphere, it is conceivable that the 
particle associated with· the photon, if of correct frequency, would move in a circular 
satellite orbit in this region under the influence of gravity. This would require 

that is, 
(23) 

In many cases of interest, such as the Earth's ionosphere and the solar corona, 
equation (23) virtually implies W = wP' as it is clear that in these cases gr is very much 
less than c2 • This further implies n2 = gr/c2 ~ O. Now Stix (1962) has shown that if 
a general magnetic field exists in a plasma then n2 = 0 not only when W = wp but 
also when 

where Wce is the angular gyrofrequency of the electrons, that is, when 

(24) 

Thus the theoretical possibility exists for a gravitational field to have a significant 
influence, in comparison to refraction effects, on the trajectory of a radio photon 
through a plasma. For the Earth and the Sun, where gr/c2 has values of 6 x 10- 11 and 
3 x 10 - 7 respectively, the experimental consequences of the effect would not be great, 
but they could be significant in the gravitational fields of more massive celestial 
objects such as pulsars and quasars. 

IV. POSSIBLE EXPERIMENTAL TESTS OF THE BASIC THEORY 

(a) Laboratory Experiment 

There are virtually only two types of mechanical force fields available for 
experimentation in the context of this theory, namely gravitation and the pseudo
forces such as centrifugal and coriolis forces, although there is perhaps an exotic third 
class involving gradients of pressure in a photon gas. Let us consider the propagation 
of any form of wave through a medium which manifests a resonance for the wave 
(e.g. electromagnetic waves often in the ultraviolet range in a dense medium; Born 
and Wolf 1965). If the waves are emitted horizontally into the medium then under the 
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influence of gravity the wave trajectories will bend downwards an amount z given by 

z = !g(ljv(w))2 , (25) 

where v(w) is the speed of the particle associated with the wave of frequency w 
(equation (2a)) and I is the length of the medium traversed. It is supposed initially 
that the medium is homogeneous, but this condition is reconsidered below. It then 
follows that 

g ( I )2 
Z = 2c2 new) or l(g)t new) = - -

c 2z 
(26) 

For electromagnetic waves in a dense medium with, say, z = 100 A and I = 120 cm, 
equation (26) would require new) '" 10- 4 • This means that the frequency w would 
be extremely close to the resonance frequency, and could also be in a region of much 
absorption, although the latter difficulty could be avoided if the experiment were 
conducted at a temperature near absolute zero. Such an experiment would appear to 
be difficult to perform. In principle equation (26) also illustrates how new) may be 
found experimentally in the region of resonance, i.e. by measurement of z. 

There remains an experimental problem regarding the sensitivity of the trajectory 
to variations in the refractive index (see the inequality (20)). A possible solution 
could be as follows. With the apparatus first oriented so that the waves travelled 
vertically between a suitably aligned source and receiver, the bulk of the trajectory 
variation would be related to Vn2 and gravity would have little effect. If the whole 
apparatus were then rigidly rotated so that the waves passed through the same region 
of the material but in a horizontal direction, presumably the necessary change in 
alignment of the source and receiver would be dominantly due to gravity. The 
difference between deflections in the possible horizontal positions should be 2z. 
A systematic gravitational deflection could then be averaged out from the effects of 
Vn2• 

(b) Ionospheric Experiment 

An analogous experiment might be performed with radio reflection from the 
Earth's ionosphere. When the frequency of a transmitter equals the plasma frequency 
at a region in the ionosphere where Vn2 = 0, abnormal transmission over longer than 
usual distances may be obtained. Although it could be difficult to positively identify 
this propagation under conditions where anomalous transmission may occur by many 
other means (e.g. scattering from irregularities), an electron density profile of the 
ionosphere taken at about midway between transmitter and receiver at these times 
could assist in the identification. The experiment would be difficult owing to the lack 
of control over ionospheric conditions but nevertheless could possibly yield results 
with proper statistical analysis. The laboratory experiment suggested in subsection (a) 
above, however, appears to be more feasible because of the possibility of performing it 
near the absolute zero of temperature. 

v. COULOMB LAW IN COLD PLASMA WITHOUT MAGNETIC FIELD 

It is of interest to note that the Coulomb law appropriate for a medium may be 
deduced from the form that the dispersion of electromagnetic waves takes as the 
frequency approaches zero. Thus, in the simple case of a cold plasma, replacing w by 
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i%t and k by -i%r in equation (21), the field is defined by the Klein-Gordon 
equation 

(27) 

This equation has the spherically symmetric static solution (a/at = 0) 

cp = (q/r)exp( - rwp/c) , (28) 

which shows that the appropriate form cp of Coulomb's law in a cold plasma is a 
Yukawa type potential with characteristic distance c/wp. It is to be noted that this is 
the Compton wavelength of the particle as defined by equations (22) and (3). The 
characteristic distance may also be written /1/mp c, where mp is the rest mass of the 
photon in the plasma (see Paper I) given by mp = nWp/c2.* Expressed in this way the 
Coulomb law is similar to the Yukawa law for a particle of rest mass mp. Equation 
(28) also reduces to the correct vacuum form when wp = O. 

The expression (28) for cp should not be confused with one of similar form which 
occurs in Debye shielding and has a characteristic distance Lo = Vth/w P' where Vth 
is the thermal speed in a plasma. The quantity Lo is derived by applying Maxwell's 
equations and allowing only for thermal motions of the particles. This is in contrast 
to (28) which is derived from Maxwell's equations while allowing only for charac
teristic collective oscillations in the cold (T = 0) plasma. It is noted that Lo is very 
much less than c/wp for most terrestrial plasmas except of course those in regions 
near the absolute zero of temperature. A simple application of Debye theory when 
T = 0 would suggest that electrostatic fields have a zero characteristic length Lo and 
there would be no penetration of fields into a cold plasma. 

The shielding implied by equation (28) may be considered to be due to the fact 
that photons of frequency less than wp do not propagate in the plasma. It is to be 
noted that the parameter c/wp has emerged in earlier work concerning the potential 
for the magnetic field due to a moving electron in a cold plasma (see Bekefi 1966, his 
equation (5.5)). The origin of this effect in the analysis of the disturbance magnetic 
field from an electron in a cold plasma not pervaded by a magnetic field is the same, 
namely the cutoff in propagation for photons of frequency below wp. In fact, the 
result given by Bekefi (1966) is the Lorentz transformation of equation (28) above, as 
it should be. However, the present author believes that the interpretation in terms of 
a departure of the Coulomb law from its form in a vacuum, or alternatively in terms 
of the finite rest mass of a photon in the plasma, is new. This represents a point of 
consistency between accepted theory and the approach in Paper I and the present 
work. Of course, it has been known for a long time that if photons had a finite rest 
mass in a vacuum then this would show up as a Yukawa type modification of the 
Coulomb law (see Goldhaber and Nieto 1971); but such a possibility is not the 
concern of the present paper, in whose terms the rest mass of photons in a vacuum is 
taken to be zero. 

It is of interest to note that, when a magnetic field pervades a plasma, hydro
magnetic waves extend the possible spectrum of electromagnetic waves to zero. 
In this case the dispersion equation yields two Klein-Gordon equations (one for each 
mode) which, under static conditions, can be combined to produce Laplace's equation. 

* Equation (19) in Paper I is incorrect in that h should be replaced by Ii. 
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It follows that the addition of a magnetic field to a plasma restores the Coulomb law 
to its vacuum form. 

A final point of interest is the similarity between this analysis of the Coulomb 
law in a cold plasma and that of the phenomenon of superconductivity in solids (see 
e.g. Kittel 1967). The parameter that distinguishes a plasma without a magnetic field 
in a superconducting state from a plasma with an internal magnetic field (the normal 
conducting state) is c/wp, which occurs in the solid state literature and is known as the 
London penetration depth. Thus, as in the superconducting state, the decrease of the 
Coulomb interaction from its vacuum value is associated with the absence of a 
magnetic field. It may be inferred from equation (28) that an external magnetic field 
penetrates a cold plasma without a magnetic field to a depth of c/wp in the steady state. 

VI. CONCLUSIONS 

By restating Snell's law in an alternative form it has been possible to compare 
directly the bending of wave trajectories by mechanical force fields and by inhomo
geneities in the medium. Although the bending due to mechanical force fields may be 
difficult to observe on Earth, two possible experiments have been proposed. This 
bending could be of interest in some cosmological problems. 

The theoretical implications of this work could also be of wide interest. The 
analyses in Paper I and in the present paper have shown that dynamics can be applied 
to the particle equivalent of the wave quantum to solve a range of problems in wave 
propagation. In particular, the velocity of the medium and velocities with respect to 
it retain physical significance in a way that is consistent with the special theory of 
relativity (see Paper I). Finally, these methods lead to the implication that the 
Coulomb law in a cold plasma without a magnetic field is of Yukawa form. The 
addition of a magnetic field restores the law to its vacuum form. 

VII. ACKNOWLEDGMENTS 

The author wishes to thank Dr. A. P. Roberts, Monash University, for the 
references to the work by Lucas, and the editorial referees who drew his attention to the 
papers by Bekefi and Treder. 

VIII. REFERENCES 

BEKEFI, G. (1966).-"Radiation Processes in Plasmas." (Wiley: Sydney.) 
BORN, M., and WOLF, E. (1965).-"Principles of Optics." 3rd Ed. (pergamon: London.) 
DE BROGLIE, L. (1929).-Nobellecture. Reprinted (1965) in "Nobel Lectures, Physics 1922-1941". 

(Elsevier: New York.) 
COLE, K. D. (1971).-Aust. J. Phys. 24, 87l. 
FocK, V. (1964).-"The Theory of Space-Time and Gravitation." 2nd revised Ed. (Pergamon: 

London.) 
FREUNDLICH, E. F. (1954).-Phil. Mag. 45, 303. 
GOLDHABER, A. S., and NIETO, M. M. (1971).-Rev. mod. Phys. 43, 277. 
GREENBERG, J. M., and GREENBERG, J. L. (1968).-Am. J. Phys. 36, 274. 
KITTEL, C. (1967).-"Introduction to Solid State Physics." 3rd Ed. (Wiley: Sydney.) 
LUCAS, R. (1969).-C. r. hebd. Seanc. Acad. Sci., Paris B 268, 1128. 
LUCAS, R. (1970).-C. r. hebd. Seanc. Acad. Sci., Paris B 270, 1597. 
STIX, T. H. (1962).-"The Theory of Plasma Waves." (McGraw-HilI: New York.) 
TREDER, H. J. (1971).-Annln Phys. 27, 17l. 
WEINBERG, S. (1962).-Phys. Rev. 126, 1899. 






