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Abstract 

Angular distributions have been calculated for the reactions NN -+ NN and 
NN -+ 2 pseudoscalar mesons by assuming the formation of an intermediate isolated 
state. The scattering distributions are only found to have the characteristic oscillatory 
shape for unnatural parity resonances whereas those for natural parity states are smooth. 
The annihilation distributions display an exact degeneracy with respect to the interchange 
of orbital and total angular momenta. For both reactions, the width of the forward 
and backward peak is approximately inversely proportional to the resonance spin. 

I. INTRODUCTION 

The spin of intermediate resonant states in two-body reactions is reflected in the 
angular distribution of the decay products, to an extent which depends on the channel 
spin multiplicities. In the simplest example of spinless particles, the resonant ampli
tude is proportional to the Legendre polynomial P I( cos e), where I is the relative 
orbital angular momentum and the spin of the resonance. In the scattering of two 
spin-! particles, however, in general there is interference between singlet and triplet 
spin states as well as between the various magnetic substates, so that the dependence 
on the resonance spin J is obscured. This paper considers the angular distributions for 
two cases of practical interest: (a) elastic scattering of two spin-! particles and (b) the 
production of two spinless particles from spin-! projectiles. The distributions are 
calculated assuming that the intermediate state is a pure two-particle state, but the 
effects of some possible mixing mechanisms are also discussed. 

II. ANGULAR DISTRIBUTIONS 

The distribution, in the centre of mass system, of polar angles e about the 
incident direction and proceeding through an intermediate state of spin J and definite 
isospin may be expressed as 

Wee) = L, IAmm,12. 
m,m 

(1) 

The amplitudes are given by 

Amm,(e) = L YIsYI, • .(lsOmIJm)(/'s' m-m' m'IJm) y{!,-m'(e, ¢) (2) 
1,1'; 8,8' 

where I, I' and s, s' are the orbital angular momenta and channel spins respectively of 
the incident and outgoing systems, m,m' are the components of s,s', the constants Y 
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measure the coupling strengths of the resonances to the appropriate channels, and 
the quantities in parentheses are Clebsch-Gordan coefficients. The dependence on 
the unknown coupling constants can be removed by assuming the dominance of 
single two-particle states in both channels so that only one term ofthe sum in equation 
(2) remains. 

TABLE 1 
ANGULAR DISTRIBUTIONS FOR SPIN-t PARTICLES IN RESONANT SCATTERING AND ANNIHILATION 

The coefficients a of the Legendre polynomials in the distributions 

W(8) = Ao{1+ La2,P2,(cos8)} 

are given for resonant scattering of spin-t particles (where the summation is from r = 1 to J) and for 
the annihilation of a spin-t fermion-antifermion pair into two scalar or pseudoscalar bosons (sum

mation from r = 1 to K = min(l, J)) 

s=o s = 1 
state a2 a4 a6 as alO state a2 a4 a6 as alO 

(1) Scattering with J = I 
ISO 0 
IPI 2·0 3Pi 0·5 
ID2 1·43 2·57 3D2 0·357 1·143 
1F3 1·33 1·64 3·03 3F3 0·750 0·045 1·705 
IG4 1·30 1·46 1·82 3·43 3G4 0·938 0·364 0·004 2·193 
IHs 1·29 1·39 1·57 1·98 3'78 3HS 1·038 0·615 0·141 0·079 2·626 

(2) Scattering with J = I ± 1 (3) Annihilation 

s = 1 1.1 
state a2 a4 a6 as states* a2 a4 a6 as alO 

3S1 0 3S1> 3PO 0 
3PO 0 3P2,3DI 1·0 
3DI 0·5 3D3 ,3F2 1·143 0·857 
3P2 0'7 3F4,3G3 1·190 1·052 0·758 
3F2 0·914 0·286 3GS , 3H4 1·212 1·133 0·970 0·685 
3D3 0·980 0·449 3H6,3Is 1·224 1·175 1·070 0·902 0·630 
3G3 1·063 0·676 0·189 
3F4 1·091 0·760 0·316 
3H4 1·131 0·881 0'517 0·137 
3GS 1·146 0·927 0·599 0·237 

* States in fermion-antifermion system. 

(a) Scattering of Spin-! Particles 

Such reactions allow both singlet and triplet scattering states and link states of 
equal intrinsic parity, so that the orbital angular momenta I and I' must differ by 0 or 2. 
Both unnatural and natural parity resonances can be formed via the couplings J = I 
and J = l± 1 and the respective angular distributions have significantly different 
shapes. 

Fig. 1 (opposite).-Normalized angular distributions for the resonant scattering of spin-t particles 
with J = I in (a) the singlet state (s = 0), (b) the triplet state (s = 1), and (c) a mixed singlet and 

triplet state (J = 3). 
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(1) J = I 

The singlet and triplet distributions in this case are given respectively by 

Ws(8) = lPicos8W (3a) 
and 

Wt(8) = I, 1(J1 OmIJm)(JI m-m' m'IJm) y;-m'1 2 • 
m,m 

(3b) 

They are listed in section (1) of Table I as series of Legendre polynomials and are 
displayed in Figures lea) and l(b) for J ~ 5. The distributions are dominated by the 
highest order Legendre polynomial P 2J and consequently display a sharp peaking at 
cos 8 = I which is followed by an oscillating structure. The triplet case has maxima 
and minima slightly shifted in phase from the maxima and zeros of IPJ I2 , and hence of 
the singlet distribution, and also shows secondary maxima approximately twice the 
height of those in the singlet distributions. 

1'0 

0'8 

0·6 

---~ 
S 

0'4 

0·2 

0 
1·0 0·8 0·6 0·4 

Icos 01 
0·2 

Fig. 2.-Normalized angular distributions for the resonant scattering of 
spin-j- particles with J = l± 1 in the triplet state (s = 1). 

If spin mixing of the resonance is accounted for, the singlet, triplet, and spin-flip 
(s #- s') amplitudes are added coherently and the distribution depends on the param
eter R = Y~/Yi which expresses the relative strengths of the singlet and triplet 
channels. Figure l(c) shows that the general features of the distributions are not 
significantly changed except for the transition region near R = 0·3 where the structure 
is weakened. 

(2) J = l± I 

F or this coupling, only triplet states are permitted and, in general, the orbital 
angular momenta will be equal in the in going and outgoing channels. The distri
butions are given in section (2) of Table 1 and Figure 2, where it can be seen that, in 



ANGULAR DISTRIBUTIONS FOR NN REACTIONS 445 

contrast to the previous case, they are dominated by the polynomial P 2 and thus are 
quite smooth and less sharply peaked. It is also evident that the distributions are 
weakly grouped into (I, J) interchange pairs, such as 3p 2 (3,2) and 3D3 (2,3), in 
analogy to a corresponding case with exact degeneracy in the two spin-zero final state 
as discussed in subsection (b) below. Amplitudes calculated by allowing mixed 
I values (I' = I ± 2) give very similar distributions and the main effect of such inter
ference is to weaken the pairing effect observed in Figure 2. 

--- K=O 

-.- K=l 

-+- K'"'2 

0'2 

0~1'0~--~0'~8--~0~'6~--~---~--~ 
I cos 81 

Fig. 3.-Normalized angular distributions for the annihilation of a spin-t 
fermion-antifermion pair into two scalar or pseudoscalar bosons. The spectro
scopic notation refers to the fermion-antifermion pair and K is the minimum 
value of I and J. ( Note that the reaction NN -+ 211:0 can only proceed through 

even J states.) 

(b) Formation 0/ Spinless Particles/rom Spin-t ProJectiles 

Por these reactions the intrinsic parity of the initial and final states may be the 
same or opposite. The former case is relevant to a few nuclear reactions (e.g. 
28Si(Q(, p )31 P and the inverse reaction) and includes channel spins s = 0, 1 for the 
spin-t projectiles with J = I = I', giving the following (unnormalized) distributions 

W(lJ) = lPicoslJ)12, S = 0; W(lJ) = IP}(coslJW, s = 1. (4) 

When the intrinsic parities of the ingoing and outgoing channels are opposite, 
the orbital angular momenta must differ by one unit, so that J = I' = I ± 1 and s = 1. 
The distribution is then given by 

Wu(lJ)'= L 1(11 OmlJm) Y;1 2 = ~ L (11 Om IJm)2 2J
2+ 1 ~J-:m:~: IP~12. (5) 

m 211: m J+ m . 
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Using the recurrence formulae (Minami 1954) 

P}+l = {(/+ 1)/sinO}{(PI -(COSO)P1+ 1)} , 

pl = {(/+ 1)/sinO}{(cosO)P1 -Pl+1)} , 

(6a) 

(6b) 

equation (5) leads to the expressions 

1 (/+ 1)(2/+3) 2 2 2 
WI 1+1 = - 1 cosec O{P1 -2(coSO)P1P1+1 +Pl+d, (7a) 

, 4n 2 + 1 
and 

1 (/+ 1)(2/+ 1) 2 2 2 
Wl+ 1 I = - 1 cosec O{P1 -2(coSO)P1P1+ 1 +Pl+d, (7b) 

, 4n 2+3 

and so the distributions are equal in shape under the interchange of 1 and J. (Minami 
(1954) has pointed out a similar ambiguity in nN scattering.) The distributions are 

TABLE 2 
PEAK WIDTHS FOR SCATTERING AND ANNIHILATION DISTRIBUTIONS 

K = min(/,J) 

8=0 cosOt °t (J+1)Ot 8 = 1 cosOt °t JOt 
state (deg) state (deg) 

(1) Scattering with J = I 
ISO 
IP1 0·705 45·1 90·2 3P1 0 90 90 
1D2 0'900 25·9 77'7 3D2 0'865 30·1 60·2 
1P3 0·950 18·2 72·8 3P3 0·938 20·3 60·9 
1G4 0·968 14·5 72·5 3G4 0·964 15·6 62·4 
1H5 0·975 12·9 77·4 3H5 0·979 11·8 59·0 

(2) Scattering with J = / ± 1 (3) Annihilation 

8 = 1 K cosOt 0 ... JOt t(J+K)Ot /,/ K cosOt °t (K+1)Ot 
state (de"g) states* (deg) 

3S1 0 3S1o 3PO 0 
3PO 0 3P2,3D1 1 0'580 54·6 109·2 
3D1 1 0 90 90 90 3D3,3P2 2 0·834 33·4 100·2 
3P2 1 0·440 63·9 127·8 95·9 3P4,3G3 3 0'905 25·1 100·4 
3P2 2 0·700 45·7 91·4 91·4 3GS,3~ 4 0·938 20·3 101·5 
3D3 2 0'760 40'5 121·5 101·3 3H6 ,315 5 0·959 16·5 99·0 
3G3 3 0·844 32·4 97·2 97·2 
3P4 3 0·866 30'0 120'0 105·0 
3H4 4 0·901 25·9 103·6 103·6 
3GS 4 0·915 23·8 119·0 107·1 

* States in fermion-antifermion system. 

given in section (3) of Table 1 and Figure 3, where they are labelled by the single 
parameter K which is defined as the minimum value of 1 and J. The mild oscillations 
arise from more equally contributing Legendre polynomials than were observed in 
subsection (a) above. Note also the contiguous turning points in the consecutive 
distributions. 
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III. APPLICATIONS 

Resonance contributions with angular momenta I' ;;:. 1 to an experimental 
angular distribution will often be discernible above the background yield only by 
means of the strong peaking at (J = 0° and 180°. It can be seen in the figures that the 
width of the peak depends systematically on the angular momenta concerned, so that a 
measurement of the slope can be used to restrict the resonance parameters to a narrow 
range of possibilities. Table 2 lists the values of the angle (Jt at the half-height of the 
peak (that is, u«(Jt) = !umaJ for each of the three classes of reactions discussed above. 
It can be seen that (Jt bears an approximate inverse proportionality to the resonance 
spin with the proportionality constant dependent on the reaction type. Furthermore, 
in the scattering case, the constant also depends independently on the parity and 
intrinsic spin (or G-parity for mesonic resonances) of the resonance. In principle, the 
level of the resonant term away from the cos (J = 1 peak, and the intensity of the 
oscillations there, are indicative firstly of the reaction type and secondly of the 
resonance spin. However, in general such parameters are immeasurable because of 
the background. 

TABLE 3 

OBSERVED PEAK WIDTHS NEAR RESONANCES IN PP ANNIHILATION 

Data from Nicholson et al. (1969) 

Reaction pmomentum cosOt Possible spins 
(GeVjc) K J 

pp -> n+ n- 0·70 O·SS±O·01 (2),3 (2),3,4 
1·99 0·96±0·01 5 5,6 

pp-> K+K- 0·70 0·90±0·01 3 3,4 
2·40 0·90±0·01 3 3,4 

We shall now apply the above results to observations of heavy boson resonances 
in nucleon-antinucleon annihilation near 1930 MeV (the so-called S region). There 
are no scattering data available which show peaking at 180°, while (J = 0° is totally 
dominated by diffraction and Coulomb scattering effects. (Although the data of Cline 
et al. (1968) do display an energy-dependent peaking in the backward hemisphere, 
the cross section does not increase monotonically to 180°, but in fact peaks at 
cos (J = 0·8, and thus the above analysis appears to be violated and a peak width (J t 

cannot be defined.) 
Nicholson et aZ. (1969) have published angular distributions for the reactions 

pp ~ n + n - and pp ~ K + K - over a range of energies which, they claim, embraces 
two resonances. The above formulae are applicable only where interference is 
minimized, i.e. on the high and low energy extremes of the resonant region. Table 3 
shows that the n+ n- case suggests spins of J = 3,4 (lower resonance) and J = 5,6 
(higher resonance) in agreement with the results of Nicholson et al., while the kaon 
final channel data are more consistent with J = 3,4 for both resonances. 

IV. CONCLUSIONS 

The above results show that single resonance angular distributions for nucleon
antinucleon scattering have an oscillating shape like P 2J( cos (J) only for unnatural 
parity states, while interference between Legendre polynomials removes the structure 
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for natural parity states and P z( cos 8) becomes the dominant term. In the case of 
nuc1eon-antinuc1eon annihilations into two pseudoscalar mesons, where only unnatu
ral parity states can be formed, the distributions are exactly degenerate with respect to 
interchange of I and J and, furthermore, consecutive non-degenerate distributions 
have opposite phase with respect to turning points. 

All the distributions are peaked at 8 = 0° and 180° and the peak width, as 
measured by 8t , is inversely proportional to the spin. However, the proportionality 
constant for N N scattering further depends on the parity and intrinsic spin of the 
resonance. 
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