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Abstract 

A density-matrix approach is used to derive the coupled Bloch equations for 
the electron spin resonance of localized moments and conduction electrons in metals, 
including anisotropy fields acting on the local moments. The equations agree with those 
obtained elsewhere by more sophisticated many-body techniques. In particular, it is 
demonstrated explicitly that relaxation proceeds towards instantaneous equilibrium. 

I. INTRODUCTION 

It is now widely accepted that the phenomenological Bloch equations proposed 
by Hasegawa (1959) provide a working description of the electron spin resonance of 
magnetic impurity spins and conduction electrons in metals (a simple discussion and 
references to experimental work are given by Winter 1971). However, Hasegawa's 
equations were purely phenomenological and only recently has a complete micro
scopic derivation been given (Langreth and Wilkins 1972, Barnes and Zitkova 1973). 
The purpose of the present paper is to provide an alternative derivation which does not 
require an extensive use of many-body theory. 

The influence of anisotropy fields on the local moments leads to considerable 
modifications in the Bloch equations. These have been charted by S. E. Barnes 
(to be published), using diagrammatic methods. Barnes's equations, which may also 
be obtained with the density-matrix methods used here, are applicable to rare-earth 
impurities in metals and also to 3d impurities in the presence of neighbouring heavy 
atoms (see Smith and Haberkern 1973 and references therein). 

II. DENSITY-MATRIX DERIVATION 

The derivation of the Bloch equations from the equation of motion of the density 
matrix is moderately straightforward but involves a number of plausible assumptions 
that are apparently not required in more sophisticated treatments. Thus the density
matrix technique, while less rigorous, may be of value because of the insight it provides 
into the microscopic content of the Bloch equations . 
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Let the total Hamiltonian at time t be written as 

(1) 

where :Yt' o(t) is the sum of the internal Hamiltonians of the conduction electron and 
local moment spin systems (usually labelled sand d respectively), including their 
coupling to magnetic fields, and :Yt'1 is the s-d exchange interaction. The mean field 
terms should be removed from :Yt'1 to :Yt' a so that the former has zero thermodynamic 
average and causes only cross-relaxation between the spin systems. We then follow a 
well-trodden route to a master equation (e.g. Abragam 1961) and write the equation of 
motion of the density matrix in an interaction representation which transfers all the 
time dependence into :Yt'1 as 

i dp*/dt = [:Yt'i(t), p*(t)] , (2) 
where 

p*(t) = U(t) p(t) U -l(t) (3) 

with a similar definition for :Yt'f(t). Here p(t) is the density matrix in the Heisenberg 
representation. The unitary transform U(t) satisfies the relation 

dU/dt = i U(t):Yt' o(t) with U(O) = 1. (4) 

By integrating equation (2) from times 0 to t and substituting the result into the right
hand side of (2), we have 

dp*(t )/dt = - i[:Yt'f(t), p(O)] - J: [:Yt'f(t), [:Yt'f(t '), p*(t 'm dt' . (5) 

Equation (5) is so far exact. We shall now assume that: 

(i) p(O) can be replaced by p*(t) in the first term on the right-hand side of (5) and 

(ii) p*(t ') can be similarly replaced by p*(t) in the second term on the right-hand 
side while the lower limit of the integration can be extended to - 00. 

Both assumptions are expected to be reasonable when the correlation time Tc of the 
perturbation :Yt'1 is small compared with the time scale of interest, i.e. for t ~ Tc• 

More precisely Tc is the characteristic time of the fluctuating component of the 
internal fields and is therefore different for the two spin systems: for the s field 
Tc '" h/kB T, where kB is Boltzmann's constant and T the absolute temperature, while 
for the d field Tc '" h/eF ~ 10- 15 s, where eF is the Fermi energy of the conduction 
electrons. In a sense, both spin systems are motionally narrowed; the s spins because 
of the band motion of the conduction electrons and the d spins because of the high 
fluctuation rate of their internal fields, which cause transitions between the Zeeman 
levels. 

In the above situation one expects that the magnetizations will relax to their 
instantaneous equilibrium values, which is the main result of Barnes and Zitkova 
(1973). Instantaneous equilibrium is described by the density matrix 

poet) = exp( - p :Yt' o(t)) /tr { exp( - p :Yt' o(t)) } (6) 



LOCAL MOMENT E.S.R. IN METALS 477 

with fJ = lJkB T. This result can be obtained from the identity 

f OO foo d{Jf*(t-r)} 
-00 [Jf1'(t-r),Jfo(t-r)] dr == -i -00 ldr dr = 0, (7) 

which follows from equations (3) and (4), and the relation 

n;;'l. (8) 

This is a generalization of (7) and follows by induction for arbitrary n from the result 
for n = 2 found by expanding the commutator and replacing t - r by t in the argument 
of that factor Jf 0 which lies outside the inner commutator; this step is merely an 
application of the assumption (ii) above. Hence we have 

(9) 

by assuming an expansion of Po in positive powers of Jf 0 or traces thereof. The 
result (9) suffices to show that the second term on the right-hand side of (5) is zero 
when p* = Po, since by putting t' = t - r and using the assumption (ii) the r inte
gration extends from ° to 00; this range may be finally changed to (- 00, 00) with an 
extra factor of 1- if imaginary terms are neglected (see equation (16) in Section III 
below). 

By incorporating all the above steps and finally reverting to the Heisenberg 
representation, we obtain the desired equation of motion 

dpJdt = -i[JfO(t)+Jf1, pet)] 

-f~ [Jf 1, [exp( - iJf 0 r) Jf 1 exp(iJf 0 't), p(t) - Po(t)]] dr. (10) 

A further approximation has been anticipated in the last term by ignoring the 
time dependence of Jf 0, which is due to coupling with the r.f. field, and using 
U(t) = exp(iJf 0 t). This is permissible in the weak-field limit (approximation (iv) 
in Section III below). 

Nothing has yet been said about assumption (i) above, which determines the 
form of the term -i[Jf1,p(t)] in equation (10). The consequences of (i) may be 
avoided completely by removing the mean field terms from Jf1, for this term then 
gives zero contribution to the Bloch equations. 

III. COUPLED BLOCH EQUATIONS 

Equation (10) can now be used to derive the Bloch equations for the total sand d 
magnetizations. It is instructive to do this in a rotationally invariant form, which is 
possible in the absence of anisotropy because the s-d exchange interaction is invariant 
under a joint rotation of sand d spins, i.e. it commutes with the total spin. 
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The localized spins, denoted by Si, are assumed to be distributed at random over 
N lattice sites of the crystal with concentration C while the g-factors gs and gd of the 
two spin systems are arbitrary. In an external field H(t) the unperturbed Hamiltonian 
IS 

comprising the band energy of the conduction electrons and the Zeeman interactions. 
Here Ck(f and ct(f are annihilation and creation operators for an electron in a Bloch 
state of wave vector k and spin (J = ± 1 with energy Gk, and s is a vector whose com
ponents are half the Pauli matrices. The s-d exchange interaction, in a form appro
priate for transition-ion impurities (Schrieffer 1967), will be written as 

£'1 = -(5JjN) I exp{ -i(k-k').R;}Pz(k.k')c5Si.s(f(f,c5(c~(fck'(f')' (12) 
ikk'GG' 

where the Ri are the localized spin sites, Pz is a Legendre polynomial of second order, 
and, for any operator A, c5A = A - <A) where <A) is the thermodynamic average in 
the presence of £'(t). These mean field subtractions, which must therefore appear in 
eq uation (11), do so in the guise of the effective fields 

Hit) = H(t) +AMs(t), Hs(t) = H(t) +AMit), (13) 

where A = 5Jjgsgd N is the Weiss field constant and the instantaneous magnetizations 
Ms and Md are given by 

Ms(t) = gs tr( ISM' C ~(f Ck(f' P(t)) , 
kGG' 

(14) 

With the definitions (14), the Bloch equations may be derived from (10). The 
calculation is helped considerably by using the identities 

tr(M[£'o,p]) == tr([M,£'o]p), (15a) 

tr(M[£'l,[£'l(-r),p]]) == tr([[M, £'1], £'l(-r)]p), (15b) 

which remove the need for an explicit representation of the density matrix. The 
required commutators will not be displayed as they readily follow from the com
mutation rules for fermion and spin operators. However, the final result requires the 
additional assumptions: 

(iii) p(t) = pit) pit), where Pd and Ps operate exclusively in the d and s 
subspaces respectively; this means that s-d correlations are neglected, as is 
to be expected from what is essentially a mean field theory; and 

(iv) Hd and Hs are very much less than kB T (where we use energy units for 
magnetic fields so that the Bohr magneton is unity); this weak~field limit is 
the usual experimental situation. 

The assumption (iv) implies that the magnetizations are small and the basic equation 
(10) may be linearized about equilibrium. In fact this need only be done implicitly. 
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When evaluating an object like 

the contribution which produces a result containing Ms can be evaluated by replacing 
Pd by its high-temperature limit (2S+ I)-eN, S being the principal quantum number of 
each local moment. Similarly, the contribution which leads to Md can be evaluated by 
using the zero-field approximation to Ps. 

In the relaxation terms there appears the time integral 

fOO exp{i(e-e')r} dT = lim i/(e-e'+i15) ~ n15(e-e'), 
o 0-->0+ 

(16) 

if the principal part is neglected. The neglected term should in principle give rise to the 
"Kondo g-shifts" proportional to In T, but these are beyond the scope of the density
matrix method (see Langreth and Wilkins (1972) for a discussion of this and related 
matters). 

In this way one arrives at the Bloch equations of Barnes and Zitkova (1973) in 
vector form: 

(17a) 

dMs = M x H(t) _ Ms -XsHs + gs Md -XdHd 
d gs sST T' t ~ & ~ 

(17b) 

where 
(18) 

and 
(19) 

Here P is the electronic density of states per atom per one spin direction. The equa
tions (17) are basically those postulated by Hasegawa (1959) but are modified to 
include g-factor ratios in the cross-relaxation terms (Brenig et al. 1970) and relaxation 
to instantaneous equilibrium in the presence of d.c. and r.f. magnetic fields (Barnes and 
Zitkova 1973). A slight generalization that is desirable to describe transmission e.s.r. 
experiments is that when the r.f. field is spatially varying a diffusion term 

(20) 

should appear in the right-hand side of equation (17b). The diffusion constant D can 
be frequency-dependent but the low-field and low-frequency limit of tv~ T, where VF 

is the Fermi velocity and T the relaxation time appearing in the electrical resistivity, is 
usually applicable for the dilute alloy systems. 

IV. EFFECTS OF ANISOTROPY 

If the localized spins see an anisotropy field then, strictly speaking, it will not be 
possible to generate Bloch equations in the form of linear differential equations in 
Md and Ms. This is because the equation of motion for <S;) will involve tensor 
averages like <S; S;) of an even number of spin operators for which additional 
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equations of motion will be required, giving 2S + 1 equations in all. This mode of 
description leads directly to the use of irreducible tensor operators and will not be 
considered here. Instead we choose a particular simple geometry for the various fields 
and confine our attention to verification of the linearized Bloch equations for the 
transverse r.f. susceptibilities first derived by S. E. Barnes (to be published). 

For simplicity consider a uniaxial anisotropy field of the form 

:Yfa = - L Sj' F.Sj , 
i 

(21) 

where the tensor F is diagonal if the crystal axes are chosen as cartesian coordinate 
axes. However, the usual experimental situation is that there is a large d.c. magnetic 
field H at some arbitrary direction with respect to the crystal axes and an arbitrarily 
small r.f. field h(t) perpendicular to H. If we have 

IFI <{ H, (22) 

which is a high-field situation with regard to anisotropy, then the energy levels EM of a 
single localized spin are given approximately by first-order perturbation theory as 

- S .;; M .;; S, (23) 

where M is an eigenvalue of SZ and the z axis is parallel to H. The anisotropy also 
mixes spin eigenstates 1M ± 1) and 1M ± 2) into the state 1M) with weights of the order 
of Fj H, producing satellite resonances at frequencies gd H ± (gd H, 2gd H) with 
intensities proportional to (Fj H)2. Thus the dominant effect is in the energy levels 
where only the diagonal matrix elements of (21) are required, and for this situation it is 
sufficient to take 

:Yfa = -FL (S;)2. (24) 
i 

Now let the r.f. field be circularly polarized in the anticlockwise sense about the 
z axis with frequency w, so that hx(t) = hcoswt and hit) = -hsinwt. Then the 
Zeeman interaction with the rJ. field is 

-!gdh L {exp( -iwt)S; +h.c.} -!gsh L {exp( -iwt)c!. Ckt +h.c.}, (25) 
i k 

where S ± = S x ± iSY as usual. We retain only the first term in each summation and 
calculate the linear responses 

where 

M!(t) = tr(gs~ctt Ck.P(t)) = xt(w)hexp(-iwt) , 

M~(t) = tr(gd ~ Sj~P(t») = x~(w)hexp( -iwt), 

with FiM = liM)(iMI, 

(26a) 

(26b) 

(27) 

F jM being a projection operator onto the state liM). Thus equation (26b) gives the 
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response of those localized spins making transitions from 1M) to 1M + 1), for which the 
resonance frequency is given by 

(28) 

This suggests that M can be restricted to the range (-S, S - 1), giving 2S + 1 Bloch 
equations in all. 

From here the calculation proceeds as in Section III. Our final results, written 
in a form as close as possible to (17), are 

(29a) 

_ aM(Mit -xMH'd) + aM(Mit+l -XM+1 Hd) + aM(Mit_l -XM- 1 Hd) 
~ 2~ 2~ 

(29b) 

where 
MtJ = S(S+ l)-M(M+ I), (30) 

The other parameters are defined, in keeping with equations (26) and (13), as 

with 

M: = X.(1 + AxJH, 

H: = H(1 + AXd) , 

Ht = hexp(-irot) (I + AXd(ro)) , 

M; = xM (1 + AX.)H, (31) 

H~ = H(1 + AXJ , (32) 

H'd = hexp( -irot)(1 +AX!(ro)), (33) 

(34) 

Finally, the definition of Mit implies the connecting relation 

LMit = M'd (35) 
M 

which closes the equations (29). Similar relations also hold for M; and XM since the 
sum of all the bM's is unity. 

The Bloch equations (29) agree with those obtained by Barnes. They are 
valid for small anisotropy and high temperatures, i.e. for F ~ H ~ kB T. It should be 
noted that more complicated forms for the anisotropy can easily be inserted, since 
these conditions imply that the relaxation rates themselves are not affected by aniso
tropy. The only place in equations (29) where F appears explicitly is in the bare d 
resonance frequency. 
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V. CONCLUDING REMARKS 

A proper discussion of the Bloch equations (17) and (29) is out of place here. 
It is sufficient to state that (17) satisfies several test conditions which are required on 
very general grounds (Brenig et al. 1970) and that the effective fields (13) are defined 
only to first order in J. A complete treatment to O(J l ) would include Kondo In T 
terms in various places, as discussed by Langreth and Wilkins (1972), but these appear 
to be well-nigh unobservable experimentally. The solution of the linearized version of 
(17) is well documented (see e.g. Dupraz et at. 1970). Approximate solutions to the 
Barnes equations (29) in various limiting cases have been given by Smith and 
Haberkern (1973) together with a discussion of the relation between equations (29) 
and (17). 

Finally, spin-lattice relaxation should be included in the Bloch equations for a 
satisfactory description of experimental results. This subject is adequately reviewed by 
Winter (1971). 
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