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Abstract 

It is shown that a method proposed for determining one single-channel potential 
from a real scattering phase shift using resonance parameters allows the determination 
of an energy-independent potential. 

The non-uniqueness of single-channel potentials is now well established both 
analytically (Bargmann 1 949a, 1949b; Clayton 1972) and numerically (Sabatier 
1966a, 1966b, 1967; Sabatier and Quyen Van Phu 1971; Clayton 1972) for both 
energy-dependent and energy-independent forms. Therefore, given a set of data on a 
particular reaction there is no such thing as a "physical" potential but rather a class of 
such potentials, infinite in number and varying in shape, which reproduce a given set of 
phase shifts. This is true for any number of channels regardless of whether the 
potentials are dependent or independent of energy. Once this situation is recognized, 
it becomes clear that in quantum mechanics a potential is merely a device for repro
ducing data and the criterion for selecting one member of an infinite class is a matter 
of individual choice. We should try therefore to select a definition of a potential 
which possesses the least number of hypotheses. -One such definition, which would be 
applicable if resonance parameters have been obtained from experiment, was pro
posed by Cook (1972), namely that the resonance reduced widths should be related to 
the free-particle reduced widths by a bilinear transformation. This hypothesis was 
sufficient to define a potential uniquely, but yielded an energy-dependent potential. 
In this note, an alternative method which gives an energy-independent potential is 
considered. 

Using the notation of the previous paper (Cook 1972; hereinafter referred to as 
Paper I), we expand the wavefunction Ut into an orthonormal set of states Uir) 
such that in each eigenstate of I (omitting the I suffix) 

U(E, r) = I A).(E) Uir) , (la) 
A 

and the Uir) into free-particle states Wir), 

U;.(r) = I BAil Wir) , (lb) 
P 

such that the potential is 

1'(E, r) = I A;.(E) VAil WIl(r) I I A;.(E) BAil Wir) , 
AP AP 

(2) 
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where 2mE = k 2 , m being the reduced mass of the two-particle system, and 

(3) 

with E;., and gil the eigenvalues of energy corresponding to Uir), and Wir) respec
tively. As in Paper I, we define 

with (4) 

and a matrix of constants 

(5) 

We see from equations (3) and (4) that "I/(E, r) will be independent of energy pro
vided that 

Vir) = "I/(r) for all A. (6) 

Equations (2) and (4) then yield 

"I/(r) U = I AiE) Vir) Uir) = I AiE)Z;.,v Uv(r), (7) 
;., AV 

and so by equating coefficients of the energy-dependent terms A;.,(E) we get 

I Z;.,v Uver) = Vir) Uir) = "I/(r) Uir) , (8) 
v 

or in matrix notation 
Z U(r) = Vir) U(r) = "I/(r) U(r) , (9) 

from which it follows that "I/(r) is an eigenvalue of the infinite matrix Z which has an 
eigenvector U(r). However, Z is a constant matrix. In practical calculations we must 
always consider only a finite number of poles at each E = E;., in the reaction matrix, 
and therefore a finite number of A's. This proves to be an excellent approximation 
when reproducing phase shifts (Clayton 1972). It follows that Z has to be a finite 
matrix as well and therefore that it must have constant eigenvalues. We are now 
faced with the problem of how to overcome this apparent discrepancy with Paper I, 
in which equation (9) cannot hold unless Vir) = "I/(r) = const. It can be shown 
from equations (2) and (7) that 

Z=vW (10) 

where Bt denotes the transpose of matrix B. Specification of B and V therefore 
determines Z. 

We define a set of mutually orthogonal constant eigenvectors U).(u) by evaluating 
the finite matrix V from equation (3) and letting UM be the eigenvectors of the matrix 
Z derived from equation (10). Since the expected infinite number of poles and 
residues in the reaction matrix cannot be obtained from experiment, we seek an 
alternative equation to (9). This equation must suffice to yield an energy-independent 
potential and to permit its complete evaluation with a knowledge of only M values of 
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E" and )'2. To this end we define M simple functions 4>a (0' = 1, ... , M) such that 

for 

=0 

ra +1 ~ r ~ ra , } 

otherwise, 
(11) 

and the interval 0 :so; r :so; a has been divided into M, not necessarily equal, intervals. 
Such functions obey the relation 

(12) 

Since they can be expanded in terms of the orthonormal set Wir) as 

co 

4>a = L Wall WIl(r) , (13) 
1l=1 

substitution of this expansion into equation (12) gives 

(14) 

so that W is an orthogonal matrix. It also follows from equations (12) and (13) that 

We can likewise use the definition for B",. in Paper I and define 

Multiplying equation (lb) by 4>a and integrating over 0 :so; r :so; a, we get 

while the same operation on equation (8) yields 

Since Wand B are both orthogonal matrices, U is also an orthogonal matrix. 
We now postulate that "f/(r) is a simple function, i.e. 

"f/(r) = L Vp 0(rp+l -r) 0(r-rp) , 
p=1 

where 0(x) is the Heaviside function. Equation (18) then yields 

L Z"v Uva = Va UM • 
v 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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Since Z is a finite constant matrix, equation (20) can be interpreted as the equation for 
the M eigenvalues V" of Z and eigenvectors U". The method is therefore to define Z 
by equation (10) and evaluate its eigenvalues and eigenvectors. Substitution of the 
eigenvalues into equation (19) give us an energy-independent potential over the energy 
range considered. 

In the above method we have only fitted to M poles and the energy-independent 
eigenvectors Uir) cannot reproduce the continuous energy term in the Schrodinger 
equation for a finite sum because the relation 

M M 

L E"A;.CE) Uir) = E L A,,(E) Uir) (21) 
'<=1 '<=1 

does not hold, for the well-known reason that the series as M tends to infinity is not 
uniformly convergent and equation (21) is only possible in this limit. Therefore, we 
must somehow include the infinity of other poles determined by the simple potential 
(19). This is done by integrating the Schrodinger equation using (19) so that the 
infinities in the reaction matrix 

R(E) = peE, a)/ {a p'(E, a) -b peE, a)} (22) 

are at the positions of the infinite number of poles. In equation (22), peE, a) is the 
total wavefunction at r = a, a is the nuclear radius, and b is the boundary condition 
parameter. The more poles one chooses to use, the closer 1/ tends to a smooth 
function. However, since the choice of the B matrix remains arbitrary, the choice of 
Z and hence of 1/ is also arbitrary, subject to the constraints mentioned above. 

The observable M poles in R(E) have now all been taken into account with 
correct residues, but the potential (19) will probably not give the correct constant term 
in the fitted R(E), representing the sum over distant poles. One can allow for this by 
splitting R(E) into two contributions as 

where 

M 

R(E) = I yJ./(E,< - E) + Ro , 
,1.=1 

00 

Ro ~ L yX/(E" - E) ~ const. 
,1.=M+1 

(23) 

and the first few residues outside the energy range considered are adjusted to give the 
correct Ro. This implies a deviation from the evaluated potential (19) in distant energy 
regions, but ensures that the correct phase shift is always obtained. Clayton (1972) 
gives a more detailed discussion of this point. 

A final point is that it may seem strange that both an energy-dependent and 
energy-independent potential can be evaluated from the same B matrix. However, it 
should be recalled that the method in Paper I which yields a unique energy-dependent 
potential uses a 1/(r) that is always a continuous function of r from 0 to a, while in the 
present paper 1/(r) is explicitly discontinuous in the above interval but is a simple 
function of r. The latter condition is sufficient to permit the calculation of an energy
independent 1/ even though the same B is used in both cases. 
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