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Abstract 

Following the work of Bloch, the Thomas-Fermi model is extended to collective 
oscillations. The eigenfunctions and frequencies for radial and nonradial I = 1 
modes are found. The calculated static polarization is compared with experiment, 
both for ions and neutral atoms, and the classical oscillator strengths are computed. 

I. INTRODUCTION 

Once it is realized that the Thomas-Fermi model of many electron atoms is 
equivalent to the hydrostatic equilibrium of a degenerate electron gas in the Coulomb 
field, it is natural to generalize the model to include collective motion. This idea is 
the basis of Bloch's (1933) hydrodynamic model of the atom. Bloch applied his 
model, with remarkable success, to the problem of the slowing down of fast moving 
ions in a scattering medium. Because the determination of the eigenfrequencies of 
oscillation was then a difficult numerical problem, Bloch contented himself with 
estimating their contribution from the experimental results for a single element. 
Jensen (1937) used a crude model to estimate Bloch's parameter and found fortui
tously good agreement with experiment. An analysis of the slowing down problem 
by Linhard (1954) confirms the usefulness of Bloch's model. 

The motivation for the present paper is the need, in certain astrophysical 
problems (Michaud 1970), to determine the radiation pressure exerted on ions of 
high atomic number (typically > 40) by the radiation field of a star. The oscillator 
strengths for the spectral lines are known only very approximately or not at all. In 
this context the Bloch model may be useful since, as in the case of the slowing down 
problem, a sum over a large number of frequencies is required and the model appears 
to estimate this sum quite accurately. The plan of the paper is to derive and solve 
the equation of hydrostatic equilibrium, to examine the radial and nonradial modes 
of oscillation, and to apply the results to the determination of"the static polarization 
coefficient and the classical oscillator strengths. 
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II. HYDROSTATIC EQUILIBRIUM 

The electrons are assumed to form a completely degenerate electron gas with 
pressure P and density p. In the absence of external forces, the equation of hydro
static equilibrium takes the form 

(1) 

where a is the radial coordinate, p. the electron mass, Ze the charge on the nucleus, 
and M (a) the mass within a sphere of radius a with the nucleus as centre. Since 

M(a) = 4n f: pa2 da, (2) 

we can eliminate M(a) from equation (1) to obtain 

(3) 

The above results apply to any barytropic fluid. For a strongly degenerate electron 
gas we have 

so that, with new variables x and ¢ defined by 

a = xfJ, p = (Zp./4np)(¢/x)3/2, 
where 

we find 

which is the Thomas-Fermi equation. 

(4) 

(5) 

(6) 

(7) 

The direct use of the hydrostatic equation enables us to make an easy generali
zation of equation (7) to other problems. For example, if the atom is rotating, a 
centrifugal term must be added to equation (1) and then, recalling that thermo
dynamic equilibrium requires the rotation to be rigid, the equation of Sessler and 
Foley (1954) is easily deduced. 

The boundary conditions on equation (7) are 

¢(O) = 1 ; ¢(xo) = 0, xod¢/dxo = -(n+l)/Z; (8) 

where Xo is the radius of the atom, n is the number of times it has been ionized, and 
A:maldi's correction has been used. 

Fermi (1931) has integrated equation (7) with the boundary conditions (8) 
using a perturbation method. However, there is no difficulty, and a better agreement 
with experiment, if the direct equation is integrated. The radii for various values 
of (n+ 1)/Z are given in the second columns of Tables 1 and 2. 
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III. OSCILLATIONS 

(a) Radial Modes 

599 

Although the radial modes are only of marginal interest in the problems to be 
considered, they are included here primarily because they can be used to estimate 
the error in the approximation adopted in subsection (b) for the nonradial modes. 
For the radial modes the Lagrangian description is the simplest to use. The equation 
of motion for the oscillating atom is 

r = _ ~ dP _ _ 1_(ze2 _ M(r)e2 ) , 

p dr p.r2 f.l 
(9) 

where r denotes the radius of a spherical shell whose equilibrium radius is a. For 
small amplitude oscillations we set 

r = a+C P = Po+AP, p = Po+Ap, (10) 

where" AP, and Ap are small perturbations and the zero subscript denotes a quantity 
obtained from hydrostatic equilibrium. Since the matter lying in the shell between 
a and a+da lies in the shell between rand r+dr, we find 

(11) 

Further, for the fully degenerate gas we have 

APjP = fApjp. (12) 

Manipulation of the foregoing results finally leads to the expression 

(13) 

an equation that is well known in the literature of pUlsating stars (see e.g. Rosseland 
1949). Introducing the equation of state and the variables x and ¢, together with an 
assumed time dependence exp(iwt), we find 

(14) 

where the prime denotes differentiation with respect to x, and v is related to w by 

(15) 
or 

hw = vZx1·518 rydbergs. 

The boundary condition on equation (14) is that ( is finite everywhere. At the centre 
of the atom this implies, oc x 2 , while at the surface 

(' + ((3xv2 - 5¢')j12· 5 ¢' = o. (16) 
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Equation (14) with the boundary conditions defines a linear eigenvalue problem of 
the Sturm-Liouville type. The eigenvalues (v 2) are real and discrete. Denoting the 
eigenfunctions by (k and the eigenvalues by Vk, the orthogonality condition 

Ixo 

</J3/2 X 1/ 2 (k (j dx = Fk (jkj 
o . 

(17) 

can be established for nondegenerate eigenfunctions. 
The values of Vk for four values of (n + I )jZ are given in Table 1, while the first 

three eigenfunctions for (n + 1 )jZ = 0·20 are plotted in Figure l. The eigenfunctions 
show that only the low density outer regions participate significantly in the classical 
oscillation. This feature severely limits the accuracy of the model, for not only must 
the number of electrons in the atomic volume be large but also the number near 
the surface must be large enough to define the modes. 

TABLE 1 

FREQUENCIES FOR RADIAL MODES 

Xo P is the radius 0f the at0m and Vk is the frequency of the kth mode in units 
of 3 ·139 x 10 '6 Z S -1 (see equation (15» 

(n+ l)/Z Xo V, V2 V3 

0·20 6·986 0·108 0·178 0·245 
0·15 8·528 0·0709 0·116 0·159 
0·10 10·97 0·0404 0·0657 0·0903 
0·05 16·11 0·0166 0·0268 0·0367 

A quantum formulation of the nonradial modes is easily made since the equation 
of motion (9) can be obtained using Hamilton's equations of motion with the 
Hamiltonian (see e.g. Rosseland 1949) 

H = SaM {y2+ U(p)_ r~(ze2- M~)e2)}dm, (18) 

where dm is an element of mass and U(p) is the internal energy. 

(b) N on radial Modes 

In the absence of viscosity and external forces, the Eulerian equation of motion 
is 

pavjat+p(v.V)v = -VP+pl, (19) 

with the equation of continuity 

apjat +V.(pv) = O. (20) 

In these equations v is the velocity and pi is the force per unit volume due to the 
Coulomb interaction. We assume that the motions are small and denote the Eulerian 
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perturbations by (jP, (jp, and (jf The equations for the small perturbations become 

and 

For the fully degenerate gas 

Fig. l.-Eigenfunctions 'k for 
the first three radial modes 
k = 1, 2, and 3 with 
(n+l)/Z = 0·20. The results 
show that only the low density 
outer regions participate 
significantly in the classical 
oscillation. 

(21) 

(22) 

(23) 

and, using equations (21) and (23) and the equation of hydrostatic equilibrium, it is 
readily shown that 

Vxv=o, 

if it was zero initially. We can therefore write 

v = ViP. (24) 

Since the eigenfunctions show that it is mainly the outer low-density regions which 
participate in the motion, it is reasonable to suppose that the (jfterm in equation (21) 
may be neglected. This approximation is equivalent to that of Cowling (1942) in 
the theory of oscillating stars. In the present context it evidently should improve 
as (n+ l)/Z increases since the Coulomb forces near the surface are then dominated 
by the contribution from the interior. An estimate of the error can be conveniently 
made by applying the approximation to the radial modes. 

The equations of motion now become 

oiP/ot + W(jp = 0, 

o((jp)/ot + V • (Po ViP) = 0, 

(25) 

(26) 
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where 
W = 5P/3p2. (27) 

A typical oscillatory solution will take the form 

(2Sa, b) 

in which case we have 

(29a, b) 
so that 

(30) 

If we replace P t by P t Y1m, where Y1m is a spherical harmonic and Pk is now a 
function of radius alone, equation (30) then becomes 

d2 pk dPk (3¢' ~) P (3XV~ _1(l+1)) = 0 
dx2 + dx 2¢ + 2x + k 5¢ x 2 ' 

(31) 

where Vk is defined as in equation (15). Differentiating equation (31) with respect to 
x and taking I = 0 (radial modes), we find 

(32) 

where C = dPk/dx. From a comparison of equations (32) and (14) we see that the 
Cowling approximation has introduced the term 3¢"/2¢ in the coefficient of C. The 
numerical integration of (32) shows that the approximation results in values of Vk 

which, for the fundamental, are too low by about 15 %. The error decreases as the 
mode number increases. 

Jensen (1937) has given the surface boundary condition on the equations of 
motion as the vanishing of the radial component of the velocity. The correct boun
dary condition is that the density variation following the motion (the Lagrangian 
variation) shall vanish at the surface. This condition is satisfied by requiring P 
to be finite at the surface. At the centre P must also remain finite. For the nonradial 
modes this implies that P vanishes at the centre. 

Sturm-Liouville theory shows that equation (31) possesses an infinite number 
of discrete real eigenvalues (vD. The orthogonality condition is easly shown to be 

(33) 

Other orthogonality relations involving '1k can be found using equation (29a). Finally 
we note that certain sum rules can be established using equation (31). These are 
derived in the Appendix. 

The eigenvalues for the dipole (l = 1) modes are given in Table 2. It can be 
seen that the quantity Vk varies with the mode number k approximately as k, and 
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this enables the higher eigenvalues to be estimated quite accurately. By using an 
approximate analytical solution of equation (31) it can be shown that 

which is confirmed by the numerical results. 

TABLE 2 
FREQUENCIES AND OSCILLATOR STRENGTHS FOR NONRADIAL 1= 1 MODES 

The radius Xo and frequency Vk are as defined in Table 1 while qk = fk/Z where fk is 
the oscillator strength 

(n+l)/Z Xo Vi Vz V3 qi qz q3 

0·200 6·99 0·0705 0·140 0·208 0·210 0·092 0·060 
0·175 7·76 0·0567 0·112 0·166 0·203 0·092 0·061 
0·150 8·53 0·0458 0·0908 0·134 0·1~6 0·087 0·058 
0·125 9·59 0·0353 0·0699 0·103 0·171 0·082 0·057 
0·100 11·0 0·0260 0·0513 0·0758 0·151 0·076 0·054 
0·075 13·0 0·0177 0·0350 0·0516 0·127 0·067 0·048 
0·050 16·1 0·0106 0·0208 0·0307 0·0976 0·054 0·041 
0·025 22·7 0·00455 0·00894 0·0132 0·0588 0·035 0·028 

IV. POLARIZATION 

We assume that the system is perturbed by a uniform oscillating electrical field 

E = Eo exp(iwt) . 

The equations of motion (25) and (26) are now replaced by 

Since we can write 

orfJ/ot + Wbp +(E.r)e//l = 0, 

o(bp)/ot + V • (Po VrfJ) = O. 

(34) 

(35) 

(36) 

(37a,b) 

where Bk and Ak are functions of t, we find, on substituting these expansions into 
equations (35) and (36) and using the orthogonality conditions, 

Bk +wkAk + (Ik;k/l)E. f r11k dv = 0, 

Ak -wkBk = 0. 

On eliminating Bk and solving the resulting equation, we then obtain 

Ak = - ~I 2 1 2 (f ZI1k dV)Eo exp(iwt) , 
/l k wk-w 

(38) 

(39) 

(40) 
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where the direction of E has been taken as the z axis. The dipole moment p is given by 

p = -(e/p,) f z(jp dv, 

which from equation (37b) becomes 

p = -(eJp,) ~ Ait) f ZI'/k dv. 

Substituting for Ak from equation (40) we find 

The polarization factor rx is then 

e2 1 (f )2 rx = 2 L I (2 2) rlk Z dv , 
P, k k OJk-OJ 

and for a static or slowly varying field 

In terms of the variables x and ~ 

(41) 

(42) 

(43) 

(44) 

where llo is the radius of the first Bohr orbit (0· 529 x 10- 8 em) and u = xJxo. From 
the sum rule (AS) in the Appendix 

Q( = a3 __ X 9 / 2 U 7/2 ,A,.1/2 du ( 27n) 51 
o 210 Zoo 'Y , 

or 

_ (0.0123 x 10-24) 9/251 7/2 ~1/2 d rx - Z Xo 0 u u cm3 • (46) 

Values of Zrx for selected values of (n+ 1)/Z are: 

(n+1)/Z 0·200 0·175 0·150 0·125 0·100 0·075 0·050 0·025 
Zrx (l0-24 cm3) 3·03 4·62 6·54 10·1 16·9 30·8 67·8 226 

The theoretical values are compared in Figure 2 with experimental results for ions 
(Gombas 1956) and neutral atoms (Teachout and Pack 1971). It is evident that the 
results for ions are considerably better than those for the neutral atoms. 



COLLECTIVE OSCILLATIONS. I 605 

The classical oscillator strengths are 

fk = ivf Z X6/ 2 (I ifJk ¢1/2 U 5/2 du r / I ifJf ¢1/2 U 3/ 2 du = Zqk' (47) 

Using equation (A6) of the Appendix we find for the dipole moment 

"Ifk = Z-(n+l). (48) 
k 

Values of qk for the first three modes are given in Table 2 for each value of (n + 1 )/Z 
considered. The complete calculations have been extended to k = 10, and these are 
available from the author on request. 
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ApPENDIX 

Consider the Sturm-Liouville eigenvalue equation 

where H, p, and g are known functions of x. The orthogonality condition is 

(AI) 

(A2) 

If we multiply equation (AI) by x, integrate over the domain of x, and assume that 
xH dYn/dx and HYn vanish at both limits, we find 

f (px + dH/dx)Yn dx + An f XYng dx = O. (A3) 

Multiplying equation (A3) by f XYng dx and summing over all modes, 

~ (f (px +dH/dx)Yn dX) f XYng dx + ~ An(f XYng dx r = o. (A4) 

But 

f Fx dx = ~ (f FYn dx f XYn dX) , 

where we assume that the eigenfunctions are normalized so that In in equation (A2) 
is unity. Equation (A4) then becomes 

provided xH vanishes at both limits. Since for equation (31) 

the conditions for equation (A5) to hold are satisfied, and therefore 

Moreover 

In terms of the eigenfunctions of equation (31), and with F = x, we find 




