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Abstract 

The combined effect of an imposed rotation and magnetic field on convective 
transfer in a horizontal Boussinesq layer of fluid heated from below is studied in the 
mean field approximation. The basic equations are derived by a variational technique 
and their solutions are then found over a wide range of conditions, in the case of free 
boundaries, by numerical and analytic techniques, in particular by asymptotic and 
perturbation methods. The results obtained by the different techniques are shown 
to be in excellent agreement. As for the linear theory, the calculations predict that 
the simultaneous presence' of a magnetic field and rotation may produce conflicting 
tendencies. 

I. INTRODUCTION 

The results of an investigation into the combined effect of a magnetic field and 
rotation on thermal convection have intrinsic interest in many physical situations. 
The present study, which is primarily concerned with these effects at large values of 
the Rayleigh number, was undertaken with the field of astrophysics and the solar 
granulation problem in mind. In the case of the solar convection zone it, has been 
estimated that the Rayleigh number, which is defined in the next section, could have 
a value as high as 1020 • Overall, our principal aim was to investigate the ctlmbined 
influence of rotation and a magnetic field on the total convective heat transport and 
to establish how the parameters associated with the problem modify this quantity. 
From the linear theory (Chandrasekhar 1961) it is known that the introduction of a 
magnetic field alone, or rotation alone, actually inhibits the onset of thermal con
vection. Corresponding nonlinear studies by Van def Borght et al. (1972) and Van 
der Borght and Murphy (1973) have confirmed that an ,impressed magnetic field or 
rotation can significantly modify the total energy flux. However, contrary to expec
tations the linear theory predicts that when both a magnetic field and' rotation act 
together they may have conflicting tendencies. The results of an investigation into 
the nonlinear aspects of this problem, involving asymptotic, 'perturbation, and 
numerical techniques, are presented in this paper. 

The linear problem Was first introduced by Chandrasekhar(1961), who estab
lished the values of the critical Rayleigh number, Rc for the onset of convective 
instability either as overstability or ordinary' cellular convection; Several interesting 
features of this problem arose; in particular, it was noted that for constant rotation 
an increasing magnetic field could actually reduce the value of Rc until a minimum 
was reached but thereafter magnetic inhibition was dominant. Since this situation 
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exists for the linear problem it obviously introduces the possibility of an enhanced 
heat flux in the case of nonlinear convection. Further aspects of the linear problem 
that are relevant to the present study, together with supporting numerical values, 
are given at the beginning of the discussion of the numerical results in Section V. 

Experimental work undertaken by Nakagawa (1957, 1959) essentially confirms 
the theoretical estimates for Re and in addition provides graphic evidence of the 
predicted change in cell size, at the onset of convective instability, associated with a 
critical field strength. Unfortunately no experimental results are available giving 
values of the heat flux when cellular convection has been established in the presence 
of a magnetic field and rotation, and hence comparisons cannot be made with the 
theoretical results in this paper. 

Besides the Rayleigh number, the two other important dimensionless parameters 
of the problem are the Chandrasekhar number Q and the Taylor number Y, which 
are determined by the magnetic field strength and the speed of rotation respectively; 
both of these quantities are defined in the next section. When only a magnetic field 
is present and in the limit Q --+ 00, Chandrasekhar (1961) found Re = O(Q), while 
for rotation alone in the limit Y --+ 00, he obtained Re = 0(y2/3). The double 
limit Y --+ 00, Q --+ 00, with possible applications in astrophysics, has been considered 
by Eltayeb and Roberts (1970). They established from the linear equations that there 
are certain value ranges of the ratio Y/Q in which either Y or Q alone essentially 
determines the value of Re, and that the values quoted above for Re are then applicable. 
Moreover, within the range 0(Q3/2) < Y < 0(Q3), where the magnetic field and 
rotation are equally influential, and in particular when Y = 0(Q2), Re was found 
to be O(Y-!-). This smaller value of Re (i.e. rather than Re = 0(y2/3)) means that 
the presence of the magnetic field expedites the onset of cellular convection within 
these limits. From the present nonlinear solutions we have established that, for 
Y and Q large with Y = Q2, strong convective motions are maintained and that 
here the total heat transport attains a maximum value (see Fig. 4 below). 

In this study we have taken the axis of rotation and the direction of the gravi
tational and magnetic fields to be parallel, a situation that would be the exception 
in astrophysics. However, Eltayeb (1972) has shown for the linear theory that the 
main conclusions obtained in this case are not affected, apart from numerical factors, 
by different orientations of the rotation axis and magnetic field direction. In Section 
II below we consider the equations for convective motions in a horizontal layer of 
conducting- fluid, heated from below, and subject to the simultaneous action of a 
magnetic field and solid-body rotation about the vertical. The basic system of ordinary 
differential equations for steady convection are derived by applying the Glansdorff
Prigogine variational method. The Boussinesq approximation is adopted, although 
for astrophysical applications one should clearly consider the compressible case. 
However, at this stage the full compressible equations are too difficult to handle 
numerically and a study of the Boussinesq equations should at least yield an indication 
of the combined effects of a magnetic field and rotation on the convective processes. 

Asymptotic solutions in the cases of large parameter values are found in Sections 
III and IV, where explicit expressions for the total heat transport are given in terms 
of the relevant parameters. Details of the numerical approach and the ensuing 
results are presented in Section V. Since the solutions obtained in the previous 



ROTATION-MAGNETIC EFFECTS ON CONVECTION 619 

sections for parameters appropriate to astrophysical applications do not always 
reveal the complete interaction between the forces involved, some of the parameter 
ranges considered in Section V are intended to illustrate the difference between the 
effects on thermal convection of a magnetic field and rotation acting separately and 
in combination. 

II. BASIC EQUATIONS 

The basic equations of the problem are derived from the Glansdorff-Prigogine 
variational method (Prigogine and Glansdorff 1964, 1965), which states that the 
actual flow evolves in such a way as to keep the generalized entropy production a 
minimum with respect to arbitrary variations from it. A modified form, which is a 
generalization of the one given by Unno (1969) and takes into account the combined 
effect of rotation and magnetic field, can be written as 

(jtfr = III dxdydz {;(~~ + v.(PU») 

( ~ ~H ) +(ju. P at +pu. Vu+ Vp-pF+4it x (V x H)-,u{V2u+tV(V .un 

+P~If. ea~ +'1 V x (V x H)- V x (u x H»)}, (1) 

where the body force F is given by 

F = - vrjJ-n x (n x r)-2(n x u)-!l x r (2) 

and ,u, K, Cv , 1}, and ,u* denote respectively the viscosity, conductivity, specific heat 
at constant volume, resistivity, and permeability of the fluid. 

In the following work we make some simplifying assumptions and consider 
only: 

(i) steady solid body rotation about the z axis, i.e. 

n. = (0, 0, .00) ; 

(ii) stationary solutions, 

ap = aT = ° at at ' 
aH = ou = o. 
at at ' 

(iii) the incompressible case, 
V.u = 0, 

(3) 

(4) 

(5) 

and therefore p = Po = const. everywhere except in the buoyancy term; since 
we also neglect density variations coupled with the centrifugal acceleration, the 
following analysis is only valid if the Froude number FR = .o~L/g is small, 
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where L is some characteristic length scale of the fluid (e.g. the thickness of the 
convective layer; Greenspan 1968); and 

(Iv) negligible viscous dissipation, i.e. 

cp. = O. (6) 

With these assumptions the variational principle can be written as 

01/1 = IIf dxdydz {OU. (POU. VU+ V]J+P v4>+po{n x (n x r)-2(!l xu)} 

*H ) + J14n X (V x H) - J1 V 2u 

It is convenient to adopt the following expressions for the velocity u and the 
strength of the magnetic field H (Chandrasekhar 1961), 

(8) 

and 

(9) 

where D == dJdz. This choice ensures that the continuity equation (5) and the Maxwell 
equation 

V.H= 0 (10) 

are satisfied. In expressions (8) and (9), Ho represents the z component of the constant 
impressed magnetic field, W, Z,. h, and X a~e function~ of z to be determined, and 
J satisfies the differential equation 

(11) 

where k is the horizontal wave number giving the horizontal extent of the convective 
cells. It should be noted that , = ZJ is the z component of the vorticity while 
(XJ4n)Jis the z component of the current density. 

For the temperature we adopt the expression 

T= To+FJ, (12) 

where To and F are functions of z to be determined, and for the density 

(13) 

where Po and P are also functions of z. 
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Let 

(14) 

where 

M1 = Pou. Vu, 

and 

(16) 

where 
N 1 = 1'/ V x (~ x H), N 2 = - V x (u x H). (17) 

On substituting the expressions (8), (9), and (12) for u, H, and T into the variational 
principle (7), it is easily seen that the corresponding Euler-Lagrange equations are 

(pCvu. VT-KV2T) = 0, 

(f(pCvu. VT-KV2T» = 0, 

_k-2D<~~ Mx+ :~My)+(fMz) = 0, 

_k- 2 D<~~ N x + ~~ Ny) + (fNz ) = 0, 
<~~ N x - ~~Ny)= 0. 

Here the angle brackets denote the horizontal averages 

() = A·II () dxdy, 

where the constant A is determined by the normalizing condition 

(P) = A f I 12 dx dy = 1. 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

The averages contained in equations (18)-(23) can be determined in a somewhat 
lengthy but straightforward way. Only the main resu,lts will be given here. 

Introducing the notation '. . 

(26) 
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it can be shown that 

(i) (27) 

where 
2C = <p>; (28) 

which gives C = 0 for rolls and square or rectangular planforms of the convection 
cells and C = 1/J6 for hexagonal cells; and also that 

(ii) 

(iii) 

O(M2) = 0, 

O(M3) = gk2 P . 

Now, for an incompressible fluid the equation of state is 

(29) 

(30) 

(31) 

where a is the coefficient of volume expansion. Using equations (12) and (13), we 
then have 

Pf= -aPoFf, 

and multiplying by f and averaging gives 

P = -apoF. 

Substituting this expression into equation (30) then shows that 

We further find 

(iv) 

(v) 

(vi) O(M6) = -(.u*/4n)C{2Dh(D2_k2)h+hD(D2_k2)h-3XDX} 

- (.u* /4n )Ho D(D2 - k 2)h , 

(vii) 

In arriving at the above expressions, use has been made of the averages 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 
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From equations (27), (29), and (34)-(38) it now follows that the relation (20) 
can be written as 

f1(D2 - k 2)2 W = + rxg Po k 2 F 

+ Po C{ WD(D2_k2) W +2DW(D2 _k2)W +3ZDZ} +2po Qo DZ 

-(f1*j4n)C{2Dh (D2 -k2)h+h D(D2 _k2)h- 3XDX} 

(42) 

If we use the notation 

(43) 

it can be shown that 

(i) Q(Ml) = CPo(WDZ-ZDW); (44) 

(ii) Q(Mi) = 0, j = 2,3,4; (45) 

(iii) Q(MS ) = -2PoQoDW; (46) 

(iv) Q(M6) = (f1*j4n)C(XDh-hDX)-(f1*j4n)Ho DX; (47) 

(v) Q(M7 ) = - f1(D2 - k2)Z . (48) 

With the help of these expressions, equation (21) can be written as 

+ (f1*j4n)C(XDh-h DX)-(f1*j4n)Ho DX. (49) 

Using a similar procedure, the remaining Euler-Lagrange equations (18), (19), (22), 
and (23) can be shown to reduce respectively to 

KD2To = Po Cv D(FW) , (50) 

K(D2_k2)F = Po Cv WDTo+Cpo Cv(FDW+2WDF) , (51) 

17(D2-k2)h-C(WDh-hDW)+HoDW = 0, (52) 
and 

17(D2-k2)X = -C{2(ZDh-XDW)+(hDZ- WDX)}-HoDZ. (53) 

The dimensionless form of these equations is obtained by making the substitutions 

D ~ Djd, k 2 ~ a2jd2 , 

To ~ To(fl,.T) , 

W ~ (Kjd)W, } 

F ~ F(AT) , 
(54) 

where d is the thickness of the layer, K = Kjpo Cv is the thermal diifusivity, and AT 
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is the temperature drop across the layer. In addition 

x -+ (Ho/d)yt X, (55) 

where the Taylor number Y is defined by 

Y = 4d4Q5/V2, (56) 

v = /1/ Po being the kinematic viscosity. If we also introduce the Rayleigh number 

(57) 

together with the Chandrasekhar number Q = /1*d 2 H1;/4TCflYl, the Prandtl number 
(J = V/K, and the magnetic Prandtl number r = 1J/K, the fundamental equations of 
the problem can be readily written as 

(D2-a2)Z = (Cj(J)(WDZ-ZDW)-DW+ QrC(XDH-HDX)- QrDX, (58) 

(D2_a2)2W = Ra2F+(Cj(J){WD(D2-a2)W+2DW(D2-a2)W+3YZDZ}+YDZ 

-CQr{2DH(D2-a2)H+HD(D2-a2)H-3YXDX} 

- Qr D(D2 - a2)H , 

r(D2-a2)H = C(WDH-HDW)-DW, 

r(D2-a2)X = -C{2(ZDH-XDW)+(HDZ- WDX)}-DZ, 

(D2-a2)F = WDTo+C(FDW+2WDF), 

D2TO = D(FW). 

(59) 

(60) 

(61) 

(62) 

(63) 

In this paper' we only consider the problem of thermal convection with square or 
rectangular. planforms (C = 0), in which case the above equations assume the con
siderably simplified forms 

DTo = FW-N, 

(D2 - a2)F = WDTo, 

(D2-a2)X = -DZ, 

(D2~a2)H = -DW, 

(D2-':a2)Z = -DW-QDX, 

(DZ_a2 )2W = Ra2F+YDZ- QD(D2 -a2 )H, 

where we have now made the substitutions 

H -+ rH and X -+ rX. 

The constant Ninequation (64) is known as the Nusselt number. 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 
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The system of equations (64)-(69) has been solved by asymptotic, perturbation, 
and numerical methods subject to the boundary conditions: 

W=D2W=F=DZ=X=0 at z=O and z = 1, (71) 

To =0 at z=O and To = -1 'at z = 1, (72) 

DH-aH= 0 at z=O and DH+aH = 0 at z ="1. (73) 

III. ASYMPTOTIC METHOD 

We shall now derive an expression for the Nusselt number N for large values 
of the Rayleigh number R when the Taylor number .r and the Chandrasekhar 
number Q are of order unity. 

Substitution of equation (67) into (69) yields the expression 

If we now multiply this equation by Wand introduce the notation 

we obtain 

Combining equations (66) and (68) we have 

(D2_a2)2Z = -D(D2-a2)W+ QD2Z 

or, using equations (75), 

(D2 _ a2)2x = - D(D2 - a2)tjJ + Q D2X . 

We now expand tjJ and X in the forms 

00 00 

tjJ = L: Ak sin knz , X = L: Bkcosknz. 
k= 1,3 k=l,3 

These expansions satisfy the "free" boundary conditions 

at z::::' 0 and 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

and are in fact the boundary conditions on Wand Z required by (71). Substituting 
the expansions (78) into equation (77), we obtain 

(80) 

Now equation (76) can be written in the form 

(81) 



626 R. VAN DER BORGHT AND J. O. MURPHY 

Retaining only the first two terms in the expansion of ljJ, we have 

ljJ-l _ 1 (1- A3 sin3nz ) 
- Al sin nz Al sin nz'" , 

(82) 

and substituting this expression together with the expansions (78) into equation 
(81), mUltiplying both sides by 2 sin knz, and integrating with respect to z from 0 to 1 
we find 

{(k2n2+a2)2+Qk2n2}Ak = 2 e ~in.knz (1- A3(1+1cosnz») dz 
Jo 1 sm nz 1 

+ 2.r Jol (sin knz)( - nBl sin nz - 3nB3 sin 3nz) dz. (83) 

Evaluation of the integrals in equation (83) for k = 1 and 3, making use of 
the expression (80) for Bk , leads to two equations in Al and A3 which are found to 
have the solutions 

A3 (n2 + a2)2 + Qn2 + n2.r(n2 + a2)j{(n2 + a2)2 +n2Q} 

Al = (9n 2 + a2)2 +9n2Q +9n2 .r(9n2 + a2)j{(9n2 + a2)2 +9n2Q} 
(84) 

and 

A 2 _ 2 
1 -

(n2 + a2)2 + Qn2 +n2.r(n2 + a2)j{(n2 + a2)2 + n2Q} 

x (1- (n2+a2)2+Qn2+n2.r(n2+a2)j{(n2+a2)2+n2Q} ) 

(9n 2 + a2 )2 +9n2Q +9n2 .r(9n2 + a2 )j{(9n2 +a2 )2 +9n2 Q} . 
(85) 

In the boundary layer we have 
(86) 

and it follows from the expansion for ljJ in (78) that 

(87) 

As shown by Howard (1965) 

N = (2 '124) -4/3 k~/3 (a2 R)l/3 , (88) 

and making the appropriate substitutions we obtain the following expression for the 
Nusselt number 

A comparison between the values of the Nusselt number obtained by this asymptotic 
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formula and those derived by numerical integration is given in Figures and 3. 
It can be seen that the agreement at high Rayleigh number is quite good, as long as 
the Taylor number is not too large. 

IV. PERTURBATION METHOD 

The asymptotic result (89) was derived in the previous section under the assump
tion that both :T and Q were of order unity and, as can be seen from Figures 1 and 3, 
it does not yield values of N in good agreement with the numerical results for large 
values of these parameters. It is therefore important to derive expressions for N 
as a function of R when either :T or Q is large in order to find solutions in the near
linear case for large Rayleigh numbers. 

(a) Rand:T Large, Q of order Unity 

The linear stability theory (Chandrasekhar 1961) predicts that the critical 
Rayleigh number, under the combined effect of magnetic field and rotation, is given 
in the case of free boundaries by 

the parameter n indicating the order of the mode. For the fundamental mode solution 
with:T large and Q = 0(1), we have 

n2:T 
R = a2{1+Qn2/Cn2+a2)2}' (91) 

From the fundamental equations (64)-(69) one can derive the expression 

(D2_a2)3W = W2{(D2-a2)2W_:TDZ+ QD(D2-a2)H} 

-Ra2NW-:TD2W_:TQD2 X+ QD2(D2_a2)W. (92) 
If we let 

R=A:T, (93) 
with 

n2 

A> a2{1 + Qn2/Cn2 +a2)2}' 
(94) 

and 
(95) 

it then follows that for R large and Q = 0(1) equation (92) can be written as 

(96) 

We now introduce the following expansions for the current density X, vorticity 
Z, and vertical velocity W 

00 00 00 

X = I ¢k sin knz , Z = I 'k cos knz , W = I Wk sin knz , (97) 
k= 1,3 k= 1,3 k= 1,3 
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all of which satisfy the boundary conditions (71). Substitution of theseexpansio:p.s 
into equations (66) and (68) then leads to the expressions 

(98) 

and 

(99) 

Introducing the expansions (97) into equation (96), making use of the expres
sions (98) and (99), and multiplying by sinknz and integrating from 0 to 1 with 
respect to z, we finally obtain two equations in WI and W3 by successively taking 
k = I and 3. The ratio W3/WI is then given by 

W3/WI = [3-2HK-{(2HK-:-3)2+4HK}t]/2H, (100) 
where 

(101) 

and 

(102) 

while the value of WI becomes 

(103) 

Combination of equations (64) and (65) with the substitution 

l/J = F/N, (104) 
gives the equation 

(105) 
and using the expansion 

l/J = L l/Jksinknz (106) 
k=I,3 

it is easily seen that 

l/J3 wi(1-4w3/WI)+(W3/wI){4(n2 +a2)+ wi(3 -2w3/WI)} 
l/JI = 4(9n2+a2)+2wi+wi(W3/WI) 

(107) 

and 

(108) 
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The Nusselt number is finally given by 

(109) 

The results obtained by this formula agree very well with those deriyed by numerical 
integration for large Rand :T (but Q of order unity), as can be seen from Figure 1. 

(b) Rand Q Large, :T of order Unity 

A similar analysis to the above in the case when both Rand Q are large but 
:T is of order unity yields the following expressions for W3!Wi and Wi 

(110) 
and 

(111) 

where 

(112) 

The value of N is then given by the transcendental equation (109), keeping in mind 
that in this case 

(113) 

A comparison between the results obtained by these formulae and those predicted 
by the numerical integrations is given in Figure 3. 

V. NUMERICAL METHOD AND RESULTS 

The critical Rayleigh number Re , as a function of Q and :T, and the associated 
wave number ae have been calculated by Chandrasekhar (1961) from the linear 
equations when instability sets in as ordinary cellular convection in the case of free 
boundaries with g, B, and n all parallel. For R ~ Ro ~ R e , the range of wave 
numbers that support convection are determined by the condition y ~ 1, where 

The R(a) curve is of particular interest when both rotation and a magnetic field 
are present, because in certain cases two minima for Re result. For example, when 
:T = 108 our results show that, for Q = 103, R has a minimum value of 3·82 X 106 

at a = l'On and also 1'89x106'at a = 8·8n, while, for the case when Q = 104 , 

minimum values of R of 5'74x105 and 1'78x106 occur at a = 1·2n and 7·9n 
respectively. In the first ex.ample at the onset of cellular convection the cells would 
be narrow and elongated, but in the second case we would expect large cells corre
sponding to the lower wave number for Re. The nonlinear solutions for N(a), which 
are displayed in Figures 5(a) and 5(b), reflect these features of the linear problem. 
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We also note from the linear problem that at a particular wave number when 
Y is large, e.g. when a = nand T = 108 , an increase in strength of the applied 
magnetic field from Q = 0 to 104 actually decreases the value of Ro for the onset 
of thermal instability. However, a further increase in Q results in a larger value of 
Ro. The corresponding results of the nonlinear calculations given in Figure 4 when 
R = 107 confirm that an increase in field strength can facilitate convection. 

5 (a) R=2·25xI06 

Q=104 

4 

3 

N 

2 

o 2 

12 

log 10 Q 

N 

8 

(b) Q=103 

12 

Figs. 5(a) and 5(b) (above).-Dependence 
of N on IX = aln when :Y = 108 for 
the indicated values of Rand Q. 

Fig. 6 (opposite).-Contour values of 
N as functions of :Y and Q when 
R = 107 and a = n. The cross-hatched 
region corresponds to convection with 
values of N > 1. 

Chandrasekhar (1961) has given a summary of the theoretical and experimental 
results for Ro when a rotating layer of mercury heated from below is sUbjected to 
an impressed magnetic field. The experimental work undertaken by Nakagawa 
(1957, 1959) generally confirms the theoretical predictions for the onset of instability 
and the resulting type, namely overstability or cellular convection. The transition 
from overstability to cellular convection and the predicted decrease in the Rayleigh 
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number with increasing magnetic field strength were also demonstrated by the experi
ments. However, it should be noted that the theoretical values used in the above 
comparisons were based on two free boundaries for the fluid layer. A study of the 
streak photographs of the convective motions obtained from Nakagawa's experi
mental investigation also showed that, when Q is increased, a change in cell size 
accompanies the instability change from overstability to cellular convection. Again 
this is an interesting confirmation of the theoretical predictions in the case of fluids 
with low Prandtl numbers. 

In the previous sections solutions of the basic equations have been obtained 
for special ranges in values of the parameters a, R, Y, and Q. Numerical solutions 
of these equations will now be considered, over the parameter ranges that support 
steady convection, in order to show in more detail the effects of rotation on the total 
heat transfer across a fluid layer in the presence of a magnetic field. Of particular 
interest will be the variation of N with respect to a and the value of a for Nmax, as 
well as the nature of the solutions for the dependent variables. 

Writing equation (64) in the form 

D2TO = D(FW) (115) 

and eliminating in turn Hand Z from equation (69) using (66), (67), and (68), we find 

On introduction of the expansions 

M 

W(z) = L w"sin{(2n-l)nz}, (117a) 
n=l 

M 

F(z) = L fn sin{(2n-l)nz}, (117b) 
n=l 

M 

To(z) = L tn sin(2nnz)-z (117c) 
n=l 

into (115), (116), and (65), we then obtain the system of equations: 

M 

{(2n-l)2+cx2}fn = Wn -n L ptp{wn+p+ Y(2n-1-2p)W.tI2n-1-2pl+t} , (119) 
p=l 
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M 

ntn = in I wp{Jn+p+ Y(2p-1-2n)f-t12n-2p+ll+-t}, (120) 

where 

and 

p=l 

Yen) = 1 

o 

= -1 

rx = aln, 

for n> 0, 

n = 0, 

n < O. 

The above expansions (117) account for the symmetry of the solutions about 
z = t, when C = 0, and also for the free boundary conditions which are considered 
here. The generalized Newton-Raphson method has been used to solve the system 
of nonlinear equations (118)-(120) for values of the Rayleigh number up to R = 107 

with M = 90 to ensure constancy of the Nusselt number. 
Now turning to the solution of equation (67) for H(z) , with (A) the boundary 

conditions (73), we find 

HA(z) = l¢*(O)[exp{a(z-I)} -exp( -az)] + ¢*(z) , (121) 

where 

¢*(z) = f Wn(2n-1)cos{~2n~1)nz}. 
n=l n{(2n-1) +rx } 

(122) 

From the differential equation for the vorticity Z(z), namely 

(123) 

we obtain, in the case of free boundaries, 

In addition, X(z) can be computed from the solution of the equation 

(125) 

subject to the conditions (71), to yield the result 

(126) 

An alternative set of boundary conditions (B) applicable to this problem (Chan
drasekhar 1961) are 

H(O) = H(1) = DX(O) = DX(I) = O. 

In this case the boundaries are taken to be conducting and the solutions that result 
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for H(z) and X(z) are 

HB(z) = ( )¢*(O) ( ) ({exP( -a)+ l}exp(az)-{exp(a)+ l}exp( -az)) +¢*(z), 
exp a -exp -a 

(127) 

XB(z) = { (r(O) ( n({l+eXp( -a)}exp(az) + {1 +exp(a)}exp( -az)) +I/I*(z) 
a exp a -exp -a 

(128) 
with 

I/I*(z) = 
M (2n -1)2Wn sin{(2n -l)nz} 
n~l n2{(2n _1)2 +CX2}2 + Q(2n _1)2· 

(129) 

The numerical results for the behaviour of the Nusselt number with respect 
to the Taylor number are compared in Figure I(a), for several values of the Rayleigh 
number when a = nand Q = 10, with the analytical solutions obtained from the 
previous sections. It can be seen that agreement is very good at high Rayleigh 
numbers; in fact at R = 107 the results from Sections III and IV give a very good 
representation of N over the whole range of 3 for this value of Q. Figures I(b) and 
1 (c) illustrate the changes in the log N versus log 3 dependence for increasing magnetic 
field strength. An increase in Q clearly reduces the maximum value of N but at the 
same time the range of 3 supporting convection is substantially increased. In 
Figure I(b) when Q = 103 an initial constancy of N with respect to increasing 3 
can be seen, and this behaviour is extended through to Figure I(c) where we have the 
very interesting situation that N is constant for values of the Taylor number from 
I to roughly 107 when R = 107 and Q = 104 • This is a case when a strong magnetic 
field is present and increasing 3 does not affect the convective flux across the layer. 
Further, these values of 3 and Q in the asymptotic formula (89) for N certainly 
predict this behaviour. Associated with this feature we have the surprising circum
stance that the analytic results from Sections III and IV are still in very good agree
ment with the numerical values. A summary of the numerical results for R = 107 

and a = n is given in Figure 2, which shows the inhibiting effect on the heat flux 
of a magnetic field and rotation acting simultaneously. 

Figures 3(a)-3(c) illustrate the variation of N with respect to the magnetic 
field strength Q when a = n for various values of R and increasing values of 3. 
As before, the numerical results are compared with the analytic values for N obtained 
from Section III and, in this case, Section IV(b), and good agreement is observed for 
R = 107 • These results show that increasing the value of 3 to 103 has little effect 
on the N-Q dependence. However, for larger 3, an increase in Q has the effect 
of actually enhancing the convective flux across the layer. The maximum values 
of N in Figure 3(c) occur when Q/3t ::;:: 1, and from the definition of these two 
quantities this ratio is independent of d and v. Also of particular interest in Figure 3(c) 
is that when R = 107 and 3 = 108 convective heat transport is initially established 
at Q = 3·5 x 102 , a maximum value of N is reached at Q = 104 , and thereafter at 
large values of Q the high rotation rate ceases to influence the convective processes. 
Overall this effect is probably best seen in Figure 4, which is a summary of the depen
dence of N on Q at R = 107 , when all the solutions for different 3 have the same 
value of N for Q ~ 6 X 104 . 
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Figs. 7(a)-7(d) 
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Figs. 7(a)-7(h).-Numerical results (continuous curves, and dot-dash curve in (b)) showing the 
variation with R of N, Wmax> Zma" H A , XA , and XB for a = rc and the indicated values of or and Q. 

The dashed extensions to the curves are the asymptotic solutions from Section III. 
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Figs. 8(a)-8(p).-Numerical results for W, F, To, Z, H A , H B , XA , and X B as functions of z 
(0 .;; z .;; 1) when a = TC and .r = 104 for the indicated values of Rand Q. 
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Figs. 9(a)-9(f) (Caption over page.) 
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Figs. 9(a)-9(h).-Numerical results for W, F, To, Z, H A , H B , X A , and XB as functions of z 
(0 ~ z ~ 1) for the indicated values of Q when ::T = 104 and y = O· 85 with a ;.:. n, where y is 

defined by equation (114). 

The dependence of N on the wave number a for large R, :Y, and Q is illustrated 
in Figures 5(a) and 5(b). Here the computations show that for certain values of the 
above parameters two distinct ranges of wave numbers support convection and that 
also there are two values of the horizontal wave number for which the Nusselt number 
has a maximum. These features are unique to this problem and were not observed 
in the earlier studies that dealt with the effect on thermal convection of either a 
magnetic field alone (Van der Borght et al. 1972) or rotation alone (Van der Borght 
and Murphy 1973). Two separate cell sizes are a possibility, although for the values 
of the parameters given in Figure 5(b) it can be expected that thin convective cells 
would be the most likely to be established. 

An alternative way of displaying the dependence of the total heat flux on Q 
and :Y is presented in Figure 6, for R = 107 and a = n, where contours of constant 
N are given as functions of:Y and Q. The cross-hatched region corresponds to the 
pair of Q,:Y values that support convection for the given R and a values with N > 1. 

The variation with respect to R of the Nusselt number N, the maximum value 
of the vertical velocity WmaX' the maximum value of the vorticity Z(z), the value of 
HA(z) (nonconducting boundaries) at z = 0, the value of the current density XA(z) 
at z = t and XB(z) (conducting boundaries) at z = 0 for a = n and the indicated 
values of:Y and Q are given in Figures 7(a)-7(h). Here the numerical results are 
indicated by the continuous curves while the dashed extensions correspond to the 
asymptotic results from Section III. It can be observed that the agreement between 
all these results is very good at high values of the Rayleigh number. An interesting 
feature to note is that an increase in Q has a substantially greater effect on Wm• x 

than would be expected from the corresponding values of N: on comparing N for 
R = 107 , a = n, :Y = 104 , and Q = 10 or 102 , we find values of 38·57 and 40·28 
respectively while the corresponding values of Wm • x are 1060·6 and 1478·5. 
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Figures 8 and 9 show the variation of W, F, To, Z, HA , H B, XA , and XB as 
functions of z across the fluid layer, 0 ~ z ~ 1, and the effects of the basic param
eters on these quantities. The solutions possess the same general characteristics as 
those found in the previous studies (Van der Borght et al. 1972; Van der Borght 
and Murphy 1973). In the present work we now have solutions for the current 
density X(z) in addition to solutions for both Z(z) and H(z). 

One feature of the y = 0·85 solutions displayed in Figure 9 is worth brief 
comment. For these values of the wave number, corresponding to thin elongated 
cells, the solutions obtained show that Z, H, and X all have values near zero over the 
central regions of the fluid layer but strong variations near the upper and lower 
boundaries. Physically, this means that over the central regions the vorticity does 
not modify the velocity field, given by equation (8), and that the fluid motion is 
essentially vertical. Likewise we note from equation (9) that under such circumstances 
the magnetic field in these regions will correspond to the applied field in strength 
and direction. 
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