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Abstract 

An investigation is made of the relation between scattering lengths and resonances in a two-nucleon 
system. For resonances Eo near zero energy the usual determination of an effective optical potential 
in mesonic atoms is limited, and it is shown here that the scattering length can only be represented 
usefully as a sum over resonances of the compound system if the condition IEolDI ~ (PDo)! is 
satisfied, where D is the average spacing of s-wave states, p the density of target nucleons and Do the 
Compton volume of the reduced system. This condition is seen to be valid for mr:, nK and KK 
interactions and these systems are considered in some detail. It is shown that knowledge of the level 
shifts of each of these examples can help resolve present uncertainties in associated boson structure. 

Introduction 

Scattering lengths of 1C - N, K - N or p N interactions are generally used to estimate 
an effective nuclear optical potential that produces level shifts in the corresponding 
atomic levels. Ericson and Sheck (1970) discuss the method and cite references to 
earlier work, while Bardeen and Torigoe (1971) give a very straightforward derivation 
of the effective optical potential, or 'pseudopotential'. Since the heavy particle in a 
Coulomb orbit has a very low momentum on a nuclear scale, s-wave scattering 
lengths are sufficient, although p-wave effects have been considered for scattering of 
1C mesons from complex nuclei. Difficulties arise with this treatment in practice, 
however. The KN system with 1= 0 has a resonance at 1405 MeV, only 27 MeV 
below threshold, which severely complicates the analysis. Some doubts are also 
expressed at the end of a p-atomic study about the efficacy of the scattering-length 
approach for this case (Backenstoss et al. 1972). 

The present work investigates the relation between scattering lengths and reson
ances in a two-body system. It concludes that the scattering length can be represented 
as a sum over resonances, as in any standard non-relativistic treatment of nuclear 
reactions, with the inclusion of a constant term. From this it follows that for a given 
density p of scattering centres the effective potential approach can be used in a 
simple linear way only if the s-wave resonance energy Eo nearest to zero satisfies 

I Eo liD ~ (pDo)! , (1) 

where D is the average spacing of s-wave resonances and Do is of the order of the 
Compton volume of the reduced two-body system. For nuclear densities, equation (1) 
is not even approached for KN with 1= 0; theinequality is not attained for pN with 
1= 1, if the reported state at Eo ~ -80 MeV (Gray et al. 1971) is an s-state; and 
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the inequality may be barely satisfied for nN with I = 1, although the parameters of 
the S11 resonances are somewhat uncertain. 

As instances where the condition (1) is sure to be satisfied, since pi: is about 10- 3 

that of nuclear matter, we consider level shifts in nn, nK and KK atoms (L. Rosenson, 
personal communication). 

Scattering Length Formulation 

For easy comparison with standard Breit-Wigner forms it is convenient to deal 
with the complex conjugate of the scattering amplitude, 

A* = {l-exp( -2io)}/2ik -+ -a, 
k-+O 

where a is the s-wave scattering length. Using the expansion 

kcoto = _a- 1 + tk2ro + ... , 
we have 

A* = 1 =! tir 
kcoto +ik ik E-Eo+tir' 

where 
E = k 2/2jl, Eo = 12/ 2a, 12 = 2/Wo, 

(2) 

(3) 

r = k'l/. (3a) 

Here jl is the reduced mass of the two-body system and h = c = 1 throughout. 
The relations (3a) show how a resonance close to E = 0 dominates the scattering 
length, since a -+ ± 00 for Eo -+ o± where E = O. Equations (2) and (3) imply the 
correct i:nJ.aginary part for the amplitude: 

r -Eo-tir . 
-a = A* -+ 2k .... 2 • f1 ,..,,2 = -ao-Ib. 

k-+O 
(4) 

This shows a necessarily positive imaginary part for the scattering length as well as 
for the scattering amplitude, 

1 r 2 _ ku 
ImA = Ima = 4k E~+Hr)2 - 4n (5) 

For pure scattering we take r = r.; in the case where the resonance has other 
channels that lead to effective absorption, Eo -+ Eo-Mra, so that as k -+ 0 

n r.(r.+r J n r.r 
U = k2 E~+:Hr.+r J2 = k2 E~+(tf?' (6) 

which is the usual Breit-Wigner form. For bound levels, if E < 0 then k -+ i" and 
tiro -+ -t"12 , which represents a level shift: Eo -+ EO+tKY2. 

A nuclear reaction amplitude can be expanded as a sum over resonances, so that a 
generalization of equations (2) and (3) is (Feshbach et al. 1947) 

tiro 
-A* = a = R -(ik)-l L J 

j E-Ej+tirj 
(7) 

Here R is a remanent "hard-sphere" term when no resonances are present. We now 
adopt the suggestion of equation (7), that the scattering length for any angular 
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momentum can be expressed in terms of resonances in the two-body system. As an 
example, for p-waves, we begin with the expansion 

k 3 cotc5 = _a- 3 + k2/rl + ... 
and obtain 

!ir. 
2 3 ('k) - 1 '\' J. , -A* .... k 2a3 = lk R - 1 7" E-Ej+!irj k ... O 

(7a) 

with 
rj = ky;(kr1)2, Ej = (y2 /2a)(r l/a)2 . (7b) 

Effective Optical Potential 

The effective optical potential is derived by comparing a many-centre scattering 
amplitude with the Born approximation. If there are N scattering centres in a volume 
Q, the first-order scattering amplitude as k .... ° is 

a = Jl An .... J ANd3r/Q = J Ap d3r, (Sa) 

where A is the average amplitude and p = N/Q is the density. The Born approxi
mation, or first-order scattering amplitude for an optical potential Vat zero energy, is 

a = -(4n)-1 J 2MVd3r, (Sb) 

where M is the particle-nucleus reduced mass. Comparison between equations (Sa) 
and (Sb) yields the standard relation 

V = -2npA/M = 2npa/M (9) 

for homogeneous scatterers with A = A = -a. 
It is always desirable at this point to verify signs by checking that the imaginary 

potential is correctly given to first order by equation (9): For s-waves, 1m A = ku/4n 
and if we write equation (9) as V .... Vo - i W then 

W = k(pu)/2M = (k/A)/2M, (10) 

where A = l/pu is the mean free path for removal from the beam by scattering 
centres. For nonzero energy, 

k 2 = 2M(E- V) .... 2M(E- Vo +iW) = k6 +ik/A, 
or hence 

k ~ k o+i/2A. (11) 

The plane wave'" '" exp(ikz) then has I'" 12 exp( - z/A), representing correctly the loss 
of beam intensity in passing through the scatterers. 

Returning now to (approximately) real V, the validity of the first-order optical 
approximation depends on the implicit assumption that equation (3) is not sub
stantially disturbed by putting E -+ E - Vo. Since the application to atomic systems 
involves E ~ 0, the requirement is that 

1 Vo 1 ~ lEo I, (12) 
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or hence 
E~ ~ npy2/M. (13) 

If condition (13) is not satisfied, the scattering-length approach will require a number 
of iterations with an uncertain rate of convergence, and thus an alternative approach 
may be better. 

For low energies the states of a meson-nucleon system appear to be adequately 
counted by simple, even non-relativistic, quark models. For any such model it will be 
true that y2 = D/nK, where D is the mean spacing between resonance levels and K 
some momentum internal to the two-body system. The above condition then becomes 

I Eo/D I ~(p/DKM)t. (14a) 

In terms of the reduced mass Jl of the two-body system, elementary resonances have 
D "'" Jl, M "'" Jl and. K ;S Jl; then with the Compton volume Do = (4/3)nJl- 3 

(PIDKM)t "'" (PDo)t "'" (Ji"IJl) 3/2 , (14b) 

where Jl" is the pion Compton wavelength, and the last form is for nuclear densities p. 
In almost all elementary two-body systems with Coulomb binding where one 

particle is a nucleon, at least one isospin seems hardly to satisfy the conditions (14). 
The most obvious instance is KN (J = 0) where the Y*(1405) has I EolD I ;S 0·1 
which is less than {Ji"IJl.J3/2 ~ O· 3; for pN (I = 1), the bound state (Gray et al. 1971) 
has I Eol D I "'" O' 15 ~ {Ji,,1 Jl)3/2, which does not satisfy the much greater- than con
dition. Even for nN scattering, the I:=;1- system seems to have s-wave resonances at 
I EolD I "'" 1 ~ (Jl"IJl)3/2. 

The p-wave potential condition turns out to resemble equations (14). Here the 
potential (Kisslinger 1955) is energy-dependent: 

V' = (2nIJl)pa(ka)2 = 4npa3E. (15) 

A condition for applicability is surely that 

1 ~ IdV'/dEI = 14npa31 = 2npy2d/lEol. (16a) 

Again taking y2 = DinK, we have 

I EolD I ~ 2prVK "'" pDo, (16b) 

which is the same as equations (14) except for an insignificant change of power. 
For pion-nucleon scattering, pDo is of order unity and the 1= 3/2 resonance 

A(1236) violates equation (16b). 

Equivalence with Second-order Perturbation 

The effective optical potential provides a means to check the statement above that 
the scattering length is expressible entirely in terms of a sum over resonances. Suppose 
again that we have N identical, independent scattering centres in a volume D; a 
particle impinges on this collection, and we compute its second-order energy shift AE 
due to excitation of resonant states. For a single resonant state at energy Eo this is 

AE = NI Hint 12/(E-Eo)· (17) 
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Here the interaction energy Hint induces the transitions between a compound resonant 
state at energy Eo and two free particles. Hence, for the resonance level. 

2 Qd3k = / Hint /2 2/lkQ 
r = 2n / Hint / (2n)3 dE 2n (18) 

so that 

AE = ((N/Q) (1/2/l)2n(T/k)) = 2np(~). 
E-Eo /l E-Eo 

(19) 

The last factor on the right-hand side of (19) immediately generalizes to a sum over 
many levels, 

n ( -!YJ ) foo dE' ( -!y2 (E') ) 
j~l E-Ej+!irj + En D(E') E-E' +!ir(E') . 

(l9a) 

Here the integral is a sum over far-away resonances. It is essentially a constant for 
variations in the neighbourhood of E = 0 and stands in place of hard-sphere terms in 
equation (7). 

It only remains to note that since V and E appear in the Schr6dinger equations 
with opposite signs, the equivalent A V = - AE. One then reverses the multiple
scattering versus Born approximation argument to obtain 

a = -!:!:.. AE = - L zYj l' +R'(En). n ( 1 2 ) 

2n P j=l E-Ej+ zlrj 
(20) 

This is just equation (7) with the hard-sphere term R' (En) representing the integral in 
(19a). On a full relativistic treatment of elementary-particle interactions this term 
contains all the contributions of physical cuts as distinct from poles. Although there 
is no deductive proof for the magnitude of this term, we assume throughout that it is 
quite small; all the examples considered in the next section indicate that it modifies 
any resonance contributions by / Aa / < o· I fm in the scattering length. 

Meson-Meson Potentials 

If quasi-atomic states of positive and negative mesons are considered, similar energy 
shifts will arise from the optical potential associated with meson-meson scattering 
lengths. In that case, however, the densities are not nuclear but are instead associated 
with Coulomb orbits, so that the limits of equations (14) on / Eo/D / are lower by 
factors of order 103 and hence certain to be satisfied. Accordingly, we reverse the 
approach used above and try to estimate some meson-meson scattering lengths from 
what is known of boson resonance structure. The effective optical potential is then 
as accurate and reliable as the scattering lengths. The general conclusion will be 
that 'nearby' resonances induce scattering lengths / a / of order /l;; 1; conversely, 
/ a / :> O· 1 /l;; 1 will indicate the absence of nearby resonances. 

For s-waves we take the scattering length as 

ao = r/2Eok = y2/2Eo, (21) 

where Eo is the energy of the nearest resonance relative to the two-meson threshold, 
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and k is the momentum for decay of the resonance into two mesons. For a bound 
state, Eo is negative and y2 must be estimated independently. 

Consider first the nn system for I = O. If there were really a broad 'resonance' 
(Banaigs et al. 1972) at around Eo+2f11t"'" 400 MeV with !r,..., 100 MeV, the 
scattering length from equation (21) would have the relatively large value 

ao('DEF meson') ,..., 0·8f1;1. (22a) 

For an e resonance with the extreme parameters Eo+2f1" = 700 MeV,!r = 300 MeV, 
we obtain 

ao(e) ,..., 0·3f1;1. (22b) 

This is within the range of values, ao ~ (0· 16-0· 5)f1: 1, that is currently being con
sidered as a result of KZ4 measurements (Ely et af. 1969; Basile et al. 1971; Auvil 
1972; Sirlin and Weinstein 1972). 

The values in equations (22) can be inserted in the model-independent relationship 
(Weinberg 1966) 

- 2 3 -1 /F2 ~ 2 0'1- 1 a2 - sao -yon m" ~ sao - f1" (23) 
to yield 

a2 ~ 0'2f1;1 or a2 ~ O. (24a, b) 

The first implies suspicion of an I = 2 resonance only slightly weaker than the very 
strong e, while the second implies absence of any nearby I = 2 resonance. This is of 
course another argument for rejecting the DEF meson as a nn resonance. 

For the K + n- or K - n+ system there are no resonances expected in I = 3/2 
states, so that 

a3/2 ~ O. (25) 

For 1= 1/2, if there is a K resonance at EO+f1K+f1" ~ 1200 MeV with !r ,..., 200 
MeV, then 

a1/2 ,..., O' 1 f1; 1 . (26a) 

If there is an s-wave nK resonance under the K*(890) with a width !r ,..., 100 MeV, 
we would have 

a1/2 ,..., (0·2-0' 3)f1; 1. (26b) 

This suggests a possible opportunity to investigate the presence of a K resonance near 
the Kn threshold. 

The most interesting and intensely studied meson system with regard to scattering 
lengths is the KK, which is often produced near threshold in meson reactions. Both 
the I = 1 and I = 0 systems appear to have resonances near the threshold, 
Eo+2JlK = 990 MeV. The decays of the isoscalar mesons D,E -+ KK assure the 
production of an I = 1 KK state, which has been exhaustively analysed in terms of 
the KK scattering length (Astier et al. 1967) with the result 

lall ~ (2·5±1)f1;1. (27) 

The sign was not determined. Since the associated resonance seems almost certain to 
be the (j or nN(975), the scattering length is therefore negative in sign and, if we take 
the (jo mass as 975 MeV, we obtain y2((j -+ KK) = 2Eoao = (75±30)MeV f1;1. 
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Comparison with equation (22b) yields a ratio of coupling constants 

y2(D --+ KK)jy2(e --+ nn) ~ 0·3 ± 0·1 

which seems satisfactory. 
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(28) 

The widths reported for D --+ n'1 (Particle Data Group 1972) can be summarized 
as r = 45 ± 25 Me V, whence y2(D --+ n'1) ~ (20 ± 1O)Me V /1;; 1. This suggests for the 
D resonance a ratio 

y2(n'1)jy2(KK) = R ~ 0·3±0·2. 

The I = 0 s-wave KK system, signalized by K~ K~ decays, has been analysed in 
terms of both scattering lengths and resonances (Hoang et al. 1969; Protopopescu 
et al. 1972). In each analysis it was found that either description seemed adequate
which should of course be true if they are equivalent as maintained here. Hoang et al. 
obtained a resonance at 1·02-1·06 GeV, well above the KK threshold so that a is 
positive, 

ao = (0·8±0·2)/1;;1. (29) 

Protopopescu et al., on the other hand, obtained an S* resonance slightly below the 
KK threshold and, consistent with this, a negative scattering lengtht 

ao = -(0·4±0·1)/1;;1. (30) 

The difference between equations (29) and (30) is so large that it is tempting to 
suggest the possibility of a decision between them by measurements on the K + K
system. 

Conclusions 

This analysis of the relation between scattering lengths and resonances in two
nucleon interactions has shown that an effective optical model approach of rep
resenting scattering length as a simple sum over resonances can be used only if the 
s-wave resonance energy satisfies the condition (1). The standard linear treatment is 
then not valid for KN interactions and is problematic for pN. However, for such 
systems as nn, nK and KK, where the density due to Coulomb attraction is some 
10- 3 below the level at which the strong forces producing the scattering lengths are 
distorted, the present analyses have indicated that useful information can be obtained 
from a knowledge of the level shifts in each of these mesonic systems. In particular, 
the small nn scattering length for I = 0 argues against a DEF meson but is compatible 
with the e; an s-wave Kn resonance closer to threshold than the K*(890) should reveal 
itself in a sizable scattering length; and the very sign of the KK scattering length will 
help to determine the position of a nearby resonance. 
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