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Abstract 

Recent work on the mobilities of alkali metal ions in the noble gases has indicated that there is a 
pressure dependence of the zero-field reduced mobility. The possibility of temporarily bound dimers 
being responsible for this pressure dependence is examined here by quantum mechanical methods for 
the case of potassium ions in argon and it is shown that the conditions needed for a small pressure 
dependence do exist at room temperature. 

Introduction 

In the preceding paper Elford and Milloy (1974, present issue pp. 211-25) have 
suggested that the cause of an anomalous dependence on gas number density of the 
mobility of alkali ions in a number of gases is the formation of ion-atom complexes 
with lifetimes of the order of the mean time between collisions at gas pressures of a few 
torr. This effect is not included in classical mobility theory based on the Boltzmann 
equation which assumes that the collisions occur in a time very much less than the 
mean time between collisions. If this assumption can be shown to be invalid the 
mobility would be expected to become an explicit function of the gas number density. 
The purpose of this paper is to examine this assumption by calculating the lifetimes of 
the ion-atom complexes formed by quantum tunnelling through the centrifugal 
potential barrier of the system. Although similar calculations have been performed 
for atom-atom systems (Roberts et al. 1969) and the significance of these complexes 
examined in such phenomena as recombination, there have been only two calculations 
for ion-atom systems: those of Catlow et al. (1970) and Dickinson et al. (1972). The 
system chosen for study was K + ions in argon because both a reliable interaction 
potential is available and the Ar-K + problem is a severe test of the proposal. 

Nature of Ion-Atom Complexes 

In the centre of mass frame of reference two colliding particles, if spherically 
symmetric, move in an effective pair potential 

¢eff(r) = ¢(r) +h2/(/+ 1)/2W2 , (1) 

where f.l is the reduced mass of the colliding pair, / is the angular momentum quantum 
number and ¢(r) is the potential energy of interaction of the two particles. Two 
interaction potentials were considered for the Ar-K + problem, one described by 
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Kumar and Robson (1973) and the other by Skullerud (1973). -Both potentials were of 
the form given by Mason and Schamp (1958), 

¢(r) = e{A(rm/r)12-B(rm/r)6- CCrm/rt} , (2) 

where e is the depth of the potential at its minimum position r m' and had param
eters determined by fitting to experimental mobility data as a function of E/ N. The 
Skullerud potential was also fitted to high energy beam data at small distances, the 
potential being described by an exponential form in this region. However, the calcu
lations reported here do not depend significantly on this region. The coefficients in 
equation (2) together with the well depths and positions of the zeros in the potentials 
were as follows. 

<p(r) 

Kumar-Robson 
Skullerud 

A 

0-61 
0·33333 

B 

0·44 
0·2 

C 

1·17 
1·0 

e (eV) 

0·114 
0·137 

rm (m) 

3'07x 10-10 

2.86x 10-10 

Fig. la shows the effective pair potential in the Ar-K + system for four values of 1, 
the potential energy being given by the Kumar-Robson (1973) potential. At low 
values of 1 it is possible for particles to be trapped in the negative well of the effective 
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Fig. 1. Effective pair potential <Peff(r) for the Ar-K + system using the Kumar-Robson model: 
(a) form of the potential for four values of the angular momentum quantum number I; 
(b) loci of the maxima and minima of the potential as a function of the rotational energy <Pem. 

potential, leading to permanently bound Ar. K + molecular ions. At intermediate 
values of 1 the effective pair potential can support both permanently bound dimers, 
whose total energy is negative (treating the energy of the separated particles as the 
zero), and virtual bound states, whose total energy is positive. The virtual states may 
be dissociated by the process of quantum tunnelling through the rotational barrier, and 
it is these virtual states that are thought to be responsible for much of the pressure 
dependence observed in the experimental mobilities. At high values of 1 there is no 
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well in the effective pair potential and neither type of bound state can exist. Fig. Ib 
shows the loci of the minima and maxima in the effective potential as a function 
of the rotational kinetic energy CPcm = 11,2 /(/+ 1)/2W2, with the indicated regions in 
which permanently bound and virtual bound states are found. 

The lifetimes of the virtual states depend upon the width of the rotational barrier. 
States of very low positive energy will have very long lifetimes but will be very difficult 
to form and poorly populated. On the other hand, states near the top of the barrier 
will have very short lifetimes but will be heavily populated. If the pressure dependence 
of the mobility of potassium ions in argon is to be explained by the formation of 
virtual bound dimers, there must be a number of such states populated at room 
temperature whose lifetimes are similar to the mean time between collisions. If the 
lifetimes are very much longer than the mean time between collisions, there will be a 
very good chance of permanently bound states being formed by deactivating collisions. 

Quantum Mechanical Calculations 

The low energy elastic scattering of an ion and atom is described by solutions to 
the radial wave equation 

- 2~rl")" + [h21(l~1) +cp(r) -E](rt/l) = 0, 
/l 2/lT 

(3) 

where t/I is the radial wavefunction and E is the total energy of the colliding pair. When 
the interaction potential is zero everywhere the solution to this equation is given by the 
half-integer Bessel functions and in particular at large distances we have 

rt/ll(r) '" k-1 sin(kr-!-In) , (4) 

where the wave number k = (2/lE/h2)t. For a nonzero interaction potential that is 
short ranged, as in the current problem, the asymptotic form of the wavefunction is 
given by 

rt/ll(r) '" k- 1 sin(kr+ '7/-!ln) , (5) 

where '71 is the phase shift. Once the phase shifts have been determined for a number of 
values of k and I, several properties of the system may be calculated, including the 
diffusion cross section 

CC 

Qd(k2) = 4nk- 2 L (1+1)sin2('7/-'7l+1) (6) 
1=0 

and hence the first-order (Dalgarno et af. 1958) reduced zero-field mobility 

"0 = (e/16 No)(6/kB T)t p-l , (7) 

where e is the electronic charge, No = 2·687 X 1019 cm- 3 is the number density of a 
gas at 273 ·16 K and a pressure of 760 torr, T is the temperature and kB is Boltzmann's 
constant. The function P is given by 

P = !- focc x 2 Qd(k2)e-x dx, (8) 

with x = h2k 2/2/lkB T. 
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The radial wave equation was solved numerically using the standard Numerov 
method. It was assumed that rI/I(r) was zero for r < 0·75 Ro, Ro being the position 
of the minimum in the potential energy. Mter integrating as far as r = 5Ro using a 
step size of 0·05 Ro, the step was progressively doubled until it reached a value close to 
(2n/10k)Ro, this being about 0·1 of the period of the asymptotic form given by the 
relation (5). Integration was continued until r > 10(sCjE)t Ro = R I , say, as it was 
found that this gave phase shifts accurate to about four decimal places. Mter calcu
lating the Bessel functions J1+t(kr) and LI-t(kr), the integration was continued for a 
further 10 steps and the half-integer Bessel functions were recalculated at this new 
distance, R2 say. The phase shift was then calculated to an unknown multiple of n 
using the formula (Kilpatrick et al. 1954) 

where 

K- -DIKi/D2 
tan'1l = (_1)1 Kt -DI Ki /D/ 

Kt = R7Jl+t(kRJ, K j- = RlJ-1-ikRj) , D j = Rj"'(R j ) (i = 1,2). 

(9) 

To determine the required multiple of n, the number of zeros in "'(r) between r = 0 
and R2 were counted and the number of zeros in the Bessel function J 1+ t(kr ) between 
r = 0 and R2 were obtained using the asymptotic formula for the phase Ov(z) of a 
Bessel function (see Abramowitz and Stegun 1965, p. 365, equation 9.2.29). Given 
Ol+t(kR2), the number of zeros before J/+t (kR2) is the integer part On+!. The 
number of multiples of n to be added to '11 given by equation (9) is the difference 
between those two totals of zeros. Using this method the phase shifts obtained were 
accurate to four decimal places and the relative accuracy, required for the lifetime 
calculations, was greater. 

Results 

Some of the results from the Kumar-Robson (1973) potential are given in Fig. 2, 
where the phase shifts in units of n are shown as a function of wave number for seven 
values of the quantum number I. There are several features of interest in this diagram 
At very small values of k, each phase shift tends to an integral value and from 
Levinson's theorem (Mott and Massey 1965) it is known that at k = 0 the number of 
shifts of n in '11 gives the number of permanent bound states supported by the effective 
pair potential. We see that the pure interaction potential (I = 0) supports 39 bound 
states if it is represented by the Kumar-Robson model; this number is also given by 
the Skullerud (1973) potential. From Fig. la we see that bound rotational states are 
allowed up to 1 '" 100, and for the Kumar-Robson potential 1845 bound states were 
identified with values of 1 ~ 101. The Skullerud potential, which is deeper than the 
Kumar-Robson form, supports bound states at larger values of I. No attempt has 
been made to calculate the energies of these bound states. 

Phase shifts calculated for values of I > 5 begin to show sharp increases at certain 
values of k. When these increases are equal to n they are identified with the virtual 
states thought to be responsible for the small pressure dependence in the potassium ion 
mobilities. The energy of the virtual state is given by E j = h2kJ2p.. where k j is the 
value of k at which the phase shift is changing most rapidly with k, and the lifetime t j 
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Fig. 2. Phase shifts 1/1 in units of n as a function of the dimensionless parameter 
q = kRo from the Kumar-Robson potential for the indicated values of the 
angular momentum quantum number I. 
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Fig. 3. Wave numbers k as a function of the angular momentum quantum 
number 1 for virtual states from the Skullerud potential with centre of mass 
energies approximately in the range 20-30 meV. The solid circles indicate the 
states that are probably responsible for the observed pressure dependences. 
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of that state is obtained from the maximum slope, 

'l:i = th(orJdoE)max. (10) 

It is possible for a given rotational state to support several virtual states, and more than 
450 virtual states were identified for both potential models. These states had energies 
up to 60 meV and lifetimes greater than 10-13 s, many of them with lifetimes greater 
than 10- 7 s. Thus, at least in principle, it is possible for virtual states to influence 
mobility measurements. 

Table 1. Energies and lifetimes of virtual states lying between approximately 20 and 30 meV 
Asterisks indicate those states that could contribute substantially to the pressure dependence 

E(meV) l' (ns) E(meV) l' (ns) E(meV) l' (ns) E(meV) l' (ns) 

98 19·70 0'1591* 
99 21·03 0'0087 22·14 0·0003 

100 19·99 >32 22·35 0'0025 
101 21·54 22'4564* 23·61 0·0008 
102 19·90 >33 23·06 0'2076* 24·80 0·0005 
103 21·64 >32 24·58 0·0058 25·80 0·0003 
104 19·43 >34 23·37 29'1554* 25·99 0·0027 
105 21·34 >32 25·08 5'9749* 27·38 0·0008 
106 23·25 >31 26·81 0'168* 28·66 0·0005 
107 20·63 >33 25·17 >30 28·40 0·0218 29·97 0·0003 
108 22·72 >32 27·05 28'0483* 29·98 0·0034 
109 19'47 >34 24·81 >30 28·93 0'2062* 
110 21·73 >32 26·90 >29 
111 24·00 >31 28·99 >28 
112 20·25 >33 26·28 >29 
113 22·71 >31 28·56 >28 
114 25·17 >30 
115 27·64 >29 
116 30·10 >27 

Fig. 3 shows some of the wave numbers at which virtual states are found using the 
Skullerud (1973) potential for centre of mass energies lying between about 20 and 
30 meV, the energies most likely to be significant at room temperature. It is obvious 
from the figure that the wave numbers of the states lie on smooth curves and that for a 
given value of 1 the states are closer together at higher k. Table 1 gives the energies and 
lifetimes of the states represented in Fig. 3. The lifetimes range from about 3 x 10-13 S 

to those in excess of 3 x 10- 8 s and the states with the higher energies have the shorter 
lifetimes, as is to be expected since the rotational barrier is narrower at higher energies. 
The states lying close to the limiting curve of dissociation have very short lifetimes and 
it was sometimes difficult to distinguish these states from perturbations in the phase 
shift that occurred at energies a little higher than the maximum in the effective poten
tial. At room temperature and at the pressures of 1 or 2 torr used by Elford and Milloy 
(1974) in their experiments, the mean time between collisions is of the order of 1 ns. 
From Table 1 it js seen that there are eight states (asterisks) whose energies and life
times are such that they could contribute significantly to the pressure dependence. 
These states are indicated in Fig. 3 (by solid circles) and we see that they all have 
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either the second highest or highest energy for a given rotational quantum number. 
Although there are many states whose lifetimes are much longer than those selected, 
they are all buried deeply in the well behind the rotational barrier and it is unlikely 
that their populations are very high. Similar results to the above were obtained for 
the Kumar-Robson (1973) potential. 
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Fig. 4. Variation with 
temperature of the first-order 
reduced zero-field mobility /Co 

of potassium ions in argon, as 
calculated from equations 
(6)-(8). 

It is possible that quantum effects due to the virtual bound states could be seen in 
the temperature dependence of the reduced zero-field mobilities. Fig. 4 shows the 
first-order reduced zero-field mobility for the system as a function of temperature, 
calculated using equations (6)-(8). The results do not indicate any marked quantum 
effects and the variations shown are only slightly greater than the claimed errors in 
experiment. Consequently it is unlikely that any temperature-dependent quantum 
effects could be observed experim~ntally. However, the pressure dependence due to 
the formation of virtual bound states is not excluded by these mobility calculations. 

Conclusions 

In this investigation of the possibility of quantum effects being responsible for small 
pressure dependences in potassium ion mobility data, it has been shown, using two 
realistic ion-atom interaction potentials, that a number of virtual bound states with 
lifetimes typical of the mean time between collisions will be populated at ambient 
temperatures and that, in addition, a large number of permanently bound states could 
be formed in principle. The question of the ease of formation of such states can only 
be answered by carrying out multichannel scattering calculations, which is beyond the 
scope of the present work. As the Ar-K + system is not expected to show quantum 
effects easily, due to the large masses involved, it can be expected that other alkali 
metal ion-inert gas systems will also form virtual and permanently bound dimers. 
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