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Abstract 

The propagation properties of transverse electromagnetic waves in plasmas are discussed from the 
point of view of the 13-moment approximation. It is shown that additional modes, termed stress 
modes, should be able to propagate in a plasma even below the plasma frequency. The properties 
of these modes are examined, particularly with regard to energy transmission, and the conditions 
for their experimental detection are considered. Practical parameters for possible experiments are 
given. 

Introduction 

Propagation properties of waves in plasmas have been calculated for various cases 
of magnetized and inhomogeneous media, both of low and high frequencies with 
respect to the ion plasma frequency (Spitzer 1962; Stix 1962; Denisse and Delcroix 
1963; Liley 1963; Ginzburg 1964; Bydder 1967). In the present investigation, an 
interest in microwave propagation restricts the discussion to electronic modes, while 
for simplicity only a non-magnetized homogeneous plasma is considered. When the 
dispersion equations for such a plasma are calculated using expressions derived with 
the 13-moment approximation of Grad (1949; Herdan and Liley 1960), certain modes 
of transverse electromagnetic propagation not predicted by less detailed treatments 
are found. Since the 13-moment equations are a more accurate description of the 
plasma dynamics in physically significant variables than the hydromagnetic equations 
(which only predict the 'normal' electromagnetic modes), there can be little doubt 
that the additional modes exist. That these modes have not been found experimentally 
is probably due to the relatively low energy that they can carry through a plasma. 

The above additional modes allow the propagation (in a non-magnetized plasma) 
of transverse waves at velocities of the order of the electron thermal speed, normally 
much smaller than the group velocity of light in the medium. They have been termed 
stress waves (Liley 1963; Bydder 1967) because they are associated with the non
diagonal terms of the plasma stress tensor and the plasma heat flux vector. The 
resemblance to longitudinal plasma waves is superficial, since the propagating stress 
modes are incompressible and involve transverse oscillating electric and magnetic 
fields with the same phase relations as in the transverse electromagnetic waves. Since 
the boundary conditions which allow coupling of transverse electromagnetic waves 
into the plasma also match coupling into stress modes, incident microwaves should 
also propagate through the plasma as stress waves. Accordingly the conditions under 
which their propagation could be measured may be obtained from the propagation 
characteristics of these waves. Their propagation could then be tested experimentally. 
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13-moment Equations 

As is well known (Chapman and Cowling 1960), when the Enskog equations of 
change are derived from the Boltzmann equation they do not form a closed set. The 
equation of change or moment equation for a general function I/I(r, Wi' t) of the particle 
velocity Wi is 

d(ni~l/Ii») +ni<I/IYv. V + V' • (ni<l/Ii Wi») 

« dl/li) < r7,/,) F /Ol/li) b <81/1i ) <Ol/li )" V) -ni dt + Wi'V'I'i + i''''OWi + i' OWi X Wi - OWi Wi : v 

= t'L.!ik(l/Ii)' (1) 
i,j 

with 
d/dt == a/ot + V. V', Fi = Qi+Vxbi-dV/dt. 

In equation (1), Wi = c i - V, where C i is the particle velocity relative to a rest frame 
and Vis the velocity of the frame to which the equations are referred; bi = (eJmi)B, 
where e i and m i are the charge and mass of particles of type i and B is the macroscopic 
magnetic field; Qi + Vx bi is the acceleration due to the macroscopic fields (e.g. for 
an electric field E, Qi = (eJmi)E); and ni is the number density of particles of type i. 
The average of I/Ii over velocity space, <I/Ii), is 

<I/Ii) = nil f Jil/li dWi 
Wi 

and the moment of I/Ii is ni<l/Ii)' where!i is the distribution function of type i particles. 
The right-hand side of equation (1) is the collision integral. 

For the l3-moment equations, a description is sought in terms of the physically 
significant variables: density Pi' mean velocity U i, temperature Ti, stress tensor Si 
and heat flux R i . The equations for these parameters are obtained by taking 1/1 i 
respectively equal to mi, m, Wi' tmi wr, mi Wi Wi and tmi wr Wi -fkTi Wi' The equations 
for the stress tensor and heat flux vector involve, however, moments of higher order 
in w, than those listed and therefore the system of equations must be truncated. Grad 
(1949) achieved this by expressing the distribution function as a linear function of the 
above moments for the purpose of calculating the higher order moments in terms of 
them. Using a three-dimensional Hermite polynomial expansion, the distribution 
function is written 

4 

f(r,w,t) = exp(-mw2/2kT) L an(r,t)Hn(w). 
n= 1 

By making use of the orthogonality properties of the Hermite polynomials H n, the 
coefficients an are readily obtained in terms of the moments. The expression becomes 

! = n(oc/n)3 /2 exp( -ocw2){1 +2ocu. W + (oc/p}P: ww + (toc2/p}R. W(w2 -foc- l )} , 

where P is the non-hydrostatic component of the stress tensor (see below), p is the 
hydrostatic pressure, and oc = m/2kT, k being Boltzmann's constant. When the stress 
tensor and heat flux vector equations are written in terms of the 13 independent 
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moments, namely p (1 component), u (3 components), T(l component), S (5 independ
ent components) and R (3 components), with the higher moments calculated from this 
distribution function, the equations are known as the 13-moment equations (Grad 
1949; Herdan and Liley 1960). There is, of course, one set of equations for each 
type of particle present in the plasma. However, the moment equations for the electron 
component of the plasma separate, apart from the collision terms, from those of the 
heavy components provided that (Bydder 1967) 

me/Te ~ m)Ti and meTe ~ miTi · 

Neglecting the subscripts and considering only elastic collisions, the 13-moment 
equations for the electrons in the plasma, with the collision terms written in terms 
of the momentum transfer collision frequency v, are as follows. 

(i) The continuity equation is 

op/ot+V.(pu+pV) = o. 

(ii) Writing J = neu, the momentum equation becomes a generalized Ohm's Law: 

mdJ m ~ 
--d +-JV.V+V.P+Vp-SE+VxB) 
e t e m 

m m 3p 
-JxB + -J. VV +-vJ --evR = O. e e 5p , 

(iii) Since p = nkT, the thermal energy equation is 

d(tp) ~ V V "R 5mV (PI) m J dV 
dt + 2P • + v. + 2e • p + e • dt 

-J.(E+VxB)+P:VV+pV. V = o. 

(iv) The stress tensor equation is 

~~ + P V. V +t{VR} + 2:{v(~0} -2{(E + VxB)J} 

2m{ dV} ~ +--e J dt +2{P. VV}+2p{VV}- m {PxB}+pvP = 0, 

where P == {S}, the symbol {} denoting the non-hydrostatic component of the 
tensor (the explicit form of { } as an operator is given by Bydder and Liley 1968). 

(v) Finally, the heat flux equation is 

-+-P.V - +-pV - +-V.P+-J--dR 7 (p) 5 (p) P 5m d (p) 
dt 2 p 2 P P 2e dt p 

-~P. (E+ VxB- m ddV)-~RXB+tRV. V +tR. VV +fVV.R 
met m 

+ mp JV . V + mp V V. J + mp J. V V - 32m
p ()vJ + ,vR = O. 

ep ep ep ep 
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The coefficients /3, " e and e depend on the nature of the collisions with the heavy 
particles, but they are all of order unity. 

Wave Equations 

At sufficiently high frequencies, it is apparent that the ions and neutrals, because 
of their large inertia, will be effectively stationary and the electrons will determine 
the wave properties. This is the case when 

OJ ~ OJbi and OJ ~ -t(p eO! Poyt K , (2a, b) 

where OJbi is the ion cyclotron frequency, PeO the average electron pressure, Po the 
plasma density and K the wave number corresponding to the angular frequency OJ. 

The restriction (2b), taken in conjunction with the decoupling conditions, is equivalent 
to requiring that the wave speed is much greater than the heavy particle thermal speeds. 

The steady state solution for a homogeneous plasma is obviously J = 0, P = 0, 
R = 0, and P = Po, P = Po. From Maxwell's equations, E = ° and B = Bo. Referring 
the equations to a frame moving with the plasma mean mass velocity further simplifies 
the equations. For small amplitude ~wave motion in the homogeneous plasma, the 
equations may be linearized for the perturbations. With the zero subscripts designating 
steady state parameters, and non-subscripted parameters the perturbed variables, 
the linearized equations for wave motion in the homogeneous plasma are: 

op + mV.J = 0, at e 

oJ e e poe2 e - +- V. P +- Vp ---E --JxBo at m m m2 m 

+vJ _53epo evR = 0, 
mpo 

op 2" R 5mpo 
T+"3 v • +-3- V • J =0, 
ut epo 

~P +t{VR} +2mpo{VJ} _2e{ pXBo} +/3vP = 0, 
ut epo m 

oR + 5po Vp _ 5p~ Vp +Po V. P -~RxBo 
at 2po 2p~ Po m 

- 3mpo evJ +,vR = 0. 
2epo 

Maxwell's equations, already linear, are necessary to complete the set: 

1 DE = 0, 
V x B - J10 J - c2 at 

oB 
VXE+at = 0. 

These equations separate into a number of independent sets, depending on the 
orientation of the steady magnetic field with respect to the oscillating electric field 
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components. In the absence of a magnetiC field two similar sets of equations describe 
transverse wave motion and a third describes longitudinal motion. 

Since this paper is concerned with establishing the propagation properties of 
transverse modes for experimental study, only the simplest case of no magnetic field 
is considered. Using a cartesian frame with propagation in the z direction, and the x 
axis aligned with the wave polarization direction, the wave motion can be described 
in terms of the five components By, Jx, Ex, Pxz and Rx. The linearized equations 
relating to these are 

oBy J 1 oEx - 0 - ifZ - 110 x - c2 7ft - , 

aEx oBy _ 0 
oz + at - , 

oJx :.. oPxz -~ E +vJ _ 3epo evR = 0, 
ot + m oz m2 Po x x 5mpo x 

apxz ~ oRx + mpo oJx +pvPxz = 0, 
Tt + 5 oz epo oz 

oRx +Po apxz _ 3mpo ()vJx + (vRx = o. 
at Po oz 2epo 

Assuming plane steady waves of angular frequency wand wave number 1(, the 
dispersion relation for this set of equations is 

1(4u2c2(2iw+~v+ Yv+.J.()v+.J.ev) 
5 5 ~ 5 5 

+ 1(2c2(iwP(v2 -iw3 -pw2v- (w2V+p(V3 -w2v+iwpv2 

+ iwY v2 --.!Le()pv3 - -.!Liwe()v2) ~ 10 10 

+ 1(2U2( -2iw3 _~W2V-w2yv -.J.w2()v-.J.w2ev +~iww2) 
5 5 ~ 5 sSP 

+ (-iw3P(v2 +iw5 +W4PV+W4(V-W2p(V3 +w4v-iw3pv2 -iw3 (v2 

+-.!Lw2e()pv3+-.!Liw3e()v2+iww2pYv2 -W2W2pV _W2W2 Yv -iw3w2) = 0 (3) 10 10 P ~ P P~ P , 

where wp = (ne2/meo)t is the plasma frequency and u = (kTe/me)t is the electron 
thermal speed. 

Neglecting collisions, the solutions of the dispersion equation (3) are 

1(2 = (w2 - w;)/ c2 and 1(2 = 5w2/7u2 . (4a, b) 

The solution (4a) is the well-known collisionless result for microwave propagation in 
a homogeneous plasma, giving a refractive index 

11= (1 - W~/W2)t = 1(/1(0' 

where /(0 is the vacuum region wave number. The second solution (4b) is the stress 



324 E. L. Bydder and B. S. Liley 

mode. Although this result is probably contained in direct solutions of the Boltzmann 
equation, including the Chapman-Enskog solution, it has not been recognized because 
these methods do not give results in a readily interpretable physical form. It is a 
dispersionless mode, the phase and group velocity being given by .J f u. The ratio 
of the wavelength A to the Debye length AD is 

Aj).D = 2n.Jf rop/ro. 

When the collision terms are included, it is found that the damping lengths are of 
the order of a few electron mean free paths. 

It is difficult to resolve the question as to whether the transverse electron stress 
mode can propagate when the wavelength is less than the Debye length (the electro
magnetic modes do propagate in such circumstances), but at frequencies less than 
the plasma frequency there appears to be no impediment to propagation. It is in 
this frequency region that the normal electromagnetic mode does not propagate 
and therefore this is the region in which stress propagation should be experimentally 
studied. Furthermore, it is in this frequency region that practical use could possibly 
be made of stress-mode propagation. 

Energy Considerations 

The transverse modes are incompressible, so that the plasma energy density tp 
does not fluctuate (heating effects due to collisions are not being considered). Hence, 
in obtaining the Poynting vector, only the electromagnetic energy need be considered. 
The energy density input is 

J.E = Jl.C;1 VxB.E -soE. a: 
E 8E -1 V E B -1 B 8B 

= -so ·Tt -Jl.o • x -Jl.o ·Tt· 

Integrating over a volume v, we find 

L (J.E +soE. ~~. +Jl.C;1 B. a:) dv = Jl.C;1 f ExB. ds, 

showing that the energy flux for transverse waves in the plasma is given by this form 
of the Poynting vector, namely Jl.o 1 ExB. 

For wave motion of the general form 

E = Eexp[i(rol -K.Z)], 

where E is the peak electric field, the Maxwell equations give 

KxE = roB. 

The instantaneous energy flux S can be written in terms of the electric field: 

S= Jl.- 1Ex (KXE)/ro = KE2/Jl.ro. 
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The averaged flux is simply 
s = I(E2/2flW. 

In terms of the electric field amplitude in the plasma for the various modes, the 
electromagnetic energy flux is 

Se = E;(l- W~/W2)t /2flC 
and the stress flux is 

S8 = E; /2flU . 

However, in order to compare the energy transmitted by different modes, the 
Poynting flux must be expressed in terms of the field external to the plasma. This is 
readily calculated for a uniform plasma slab with sharp boundaries normal to the 
wave vector. Denoting the incident and reflected vacuum fields by E i , Bi and En Br 
respectively and the transmitted plasma fields by Et, Bt , these boundary fields can 
be matched. As there are no surface fluctuating charges or currents, E and Bare 
continuous across the boundary and hence 

Ei+Er = Et and Bi+Br = Bt · 

Writing B in terms of E, the second condition becomes 

KoxEi/W -KoxEr/w = KxEt/w. 

Since K and Ko are perpendicular to the electric fields, 

Ei - Er = (1(/l(o)Et , 
which gives 

Et = 2Ei/(1 + 1(/1(0) . 

In terms of the incident (vacuum) electric field the averaged energy flux is (see 
Appendix 1) 

- I( 4Ef 
s = 2flo ~ (1 + 1(/1(0)2· 

The electromagnetic energy flux is 

Se = 2Ef (1- w~)t[l + (1- W~)t]-2 
floC w2 w2 

while the stress energy flux is 

- 2E?- u 2E?- U 
S =-'--",-'-

s flo (U+C)2 flo c2· 

For wp ~ W the electromagnetic energy flux is essentially equal to the vacuum flux, 
while in all cases the stress energy flux is '" u/ C smaller than the free space flux. 

In order to measure the propagation of stress waves through a slab of plasma in 
the electromagnetic wave cutoff region, the evanescent energy flux penetrating the 
slab should be less than the energy transmitted by the stress wave. This is readily 
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calculated using the same boundary conditions. Again let the incident and reflected 
fields on the vacuum side of the interface be E;. Et etc., while the evanescent fields 
in the plasma at the boundary are E l , .... It follows at once that 

EI+Et = El , BI+Bt = Bl 

and, as for the propagating case, that 

El = 2EI/(1 + K/Ko) . 

The intensity or energy transmission coefficient for the boundary is 

T = 12/(1 +K/Ko) 12. 

As shown in Appendix 2, collisions allow the cutoff mode to transmit energy to 
the second boundary, at which 

Ee21 = Eel exp( - KI ZO) , 

where iKI is the complex part of the wave number and Zo the slab thickness. Since 
for cases of interest we have I Ee21/Eell ~ 1, the effect of the wave reflected from the 
second boundary has been neglected. The phase difference between the boundaries 
has also been ignored for this reason. 

At the second interface the boundary conditions are 

Ee21 + Ee2t = Ee2 , Be21 + Be2t = Be2 , 

from which follows 

Ee2 = 2KEe21/(K+Ko), Be2 = 2Ko KE2i/W(K+ Ko)· 

In terms of the incident vacuum field, 

Ee2 = [4KKo exp( - KI Zo)/(K + Ko)2]EI . 

The mean energy flux out of the plasma slab from the evanescent mode is 

S 2 = Re(Ee2 B:2) = (16K~eXp( -2KIZO)(K:+KD2)E~ 
e 2J-to 2J-toW[(Kt+ Ko)2+Kf]2 I • 

Since we av. _ 16K.exp( -2K,z. : E, 
h e I K·I ~ I Kt I, ) (K)2 2 

Se2 ,.., 2J-to W I 

= 16(Ko/Kj)2exp( -2KjZo)Sj, 

where KI for the evanescent wave is algebraically Kt for the same mode in the prop
agation region. Taking 

KI = w/c(1-w~/w2)t ,.., (w/c)(l +W~/2(2), 
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we have 
Se2/Si'" 16(1 +w;/2w2)-2exp( - 2zo/d) , 

where d = c(l-w;/w2}!/w. 
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The energy transmitted through the slab by the stress wave is calculated similarly. 
Neglecting losses due to collisions, the vacuum electric field from the stress wave is 

E.2 = 2Eo1 /(1 + Ko/K) . 
The energy flux is 

s _ ( 2Ei )2( 2 )2 Ko 
.2 - 1 +K/Ko 1 + KO/K Jlo w 

= SD6K~K2/(Ko+K)4]. 

Substituting for K, and changing to averaged fluxes, 

_ _ ( 4ro2/uc )2 _ (16u2) S 2 = S· '" S. -- . 
• 1 (w/u +W/C)2 1 e2 

It is apparent that both the process of converting incident electromagnetic waves into 
stress waves and its converse have weak coupling. The Fabry-Perot effect of pro
ducing high transmittance because of many reflections would not contribute signifi
cantly to the transmitted stress energy unless the electron mean free path were very 
long, apart from the physical difficulties of maintaining a sharp boundary. 

Plasma Parameters for Experimental Propagation of Stress Waves in the Cutoff Region 

In order to measure the propagation of stress waves through a plasma slab, the 
plasma frequency should be above cutoff. The slab should be as homogeneous as 
possible to ensure uniform opaqueness in all regions to the incident microwaves, and 
to reduce diffraction effects which could result in microwaves being scattered into 
the receiving antenna. The dimensions and parameters of the plasma must ensure 
that the propagated microwave flux is much less than the calculated stress energy 
flux. To this end, stress wave losses should be kept low, corresponding to achieving 
electron mean free paths at least of the order of the slab thickness. For a reasonably 
ionized plasma this requires the electron temperature to be as high as possible. Again, 
since the stress energy flux is proportional to Te, the received energy should scale 
as Te. 

The proposed experiment could be carried out using R band microwave com
ponents at a frequency of 37 GHz and a power input of 20 mW. The plasma density 
for cutoff at this frequency is '" 1 . 8 X 1019 m - 3, and a practical minimum density is 
therefore likely to be about twice this, e.g. 3-4 x 1019 m - 3. The attenuation distance 
for the microwaves is then of the order of 0·3 mm. A suitable method of producing 
this plasma may be with an r.f. discharge. The electron temperature would possibly 
be in the range 5-10 eV. Taking the latter value, the ratio of stress wave velocity 
to free space wave velocity is u/e'" 5 x 10- 3 • The electron mean free path for 
electron-ion collisions, 

A,. = (4nmeBo)2(kTe)2_1 
t e2 me 4nninA 

(where A = 12n(BokT/e2)3/2/nt), would be ",30 cm. Since the mean free path for 
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electron-neutral particle collisions is 

A _ (kT.)t 1 
n - me 7x 10 14 nn ' 

the neutral density should be less than 1020 for a similar value for An' 
Maximum coupling between microwave horns is limited to about - 6 dB. With 

optimum horn coupling and using a 20 m W input, the detected power would be of 
the order 

82 ", 20x 10- 3 xix 16x25 x 10- 6 = 2x 10- 6 W. 

The plasma thickness should be sufficient to reduce the microwave power to '" 10- 7 W. 
This requires roughly 

exp( -2zo/d) '" 5 x 10- 6 or zo/d '" 6, 

which is equivalent to a plasma thickness of about 2 cm. 
A 'typical' detector crystal has a sensitivity of 300 Jl V m W -1 (Heald and Wharton 

1965) and figure of merit ",20. The threshold sensitivity with a 100 kHz bandwidth 
is about - 55 dB with respect to 1 mW, i.e. better than 10- 8 W. Clearly there is in 
principle no difficulty in detecting 1 JlW, which would in fact give an output of 
about 0·3 JlV. 

Overall the experiment appears feasible. Possibly the greatest difficulty would be 
the elimination of stray microwave signals scattered or refracted into the receiving 
antennas. Provided sufficient plasma of adequate density could be generated, a 
propagation experiment would obviously be worth attempting. 

Stress Wave Properties 

Assuming that microwave propagation of the predicted intensity for stress waves 
was detected in a cutoff plasma, it would be necessary to show that it was due to 
stress modes rather than stray microwave scattering or other effects. The most 
obvious property of the stress wave is its slow speed. The wave speed could be 
measured by modulating the incident microwave radiation in some fashion and then 
comparing the phase difference of the incident and detected wave forms. A currently 
available R band modulator (Hitachi Electronics Co. Ltd 1973) has a maximum 
frequency of approximately 200 kHz. For a 10 cm path in a plasma at 10 eV electron 
temperature, the propagation delay for the stress wave is 

l' = 0·1(7kT./5m.)-t '" 10- 7 s. 

This corresponds to a phase shift of 7° at 200 kHz. Such a small phase shift may be 
difficult to measure accurately, although with larger plasma dimensions, e.g. 30 cm, 
the phase shift would increase to '" 20° and would be convincing if measured. 
Additionally, if the propagation distance was varied, a corresponding variation in 
phase shift could be shown to correspond to slow wave propagation. 

Further effects that could be exploited are the variation in wave speed and 
attenuation with electron temperature and the general variation in attenuation due 
to changes in fractional ionization or number density. More subtle would be the 
introduction of a magnetic field. As with electromagnetic waves in plasmas, stress 
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waves are split into ordinary and extraordinary rays by a magnetic field (Bydder 
1967). While such considerations are beyond the scope of the present paper, the 
Faraday rotation, for example, of stress waves in a magnetized plasma is different 
from that of microwaves, and could be used to distinguish stress waves. Again, the 
differences in propagation in inhomogeneous plasmas, which have been considered by 
Bydder (1967), may be exploitable. Finally, it may also be possible to detect the 
stress mode inside the plasma, where the energy flux would be greater by a factor'" c/u 
than that transmitted through the slab. 
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Appendix 1. Wave Transmission through Interface with Multirefringent Medium 

In discussing the coupling of microwaves into electromagnetic waves and stress 
waves at a plasma boundary, it was assumed that the transmission coefficients were 
given by 

T1 ,2 = 1 E1 ,2/EO 12 = 12/(0/(/(0+/(1,2) 12 , 

which corresponds to SdSo, S2/S0 where So and Sl> S2 are respectively the incident 
and the two transmitted mode (e.g. stress and electromagnetic) Poynting vectors. 
As in the body of the paper, the zero subscript indicates the incident (vacuum) wave 
and the subscripts 1,2 the two possible modes in the plasma. 

To show that this is so, consider a boundary in which there is an incident and a 
reflected wave on the vacuum side and two transmitted waves on the birefringent 
(plasma) side. Then the transmitted energy density is given by the total Poynting 
vector S, as 

S - ExB _ (El +E2)x(B1 +B2) _ S S (E2 XBl +El XB2) ---- -1+2+ , 
Po Po Po 

where Sl = (El x B1)/ Ito and similarly for S2' these being the transmitted energy 
fluxes in modes 1 and 2 respectively. 
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The energy flux, as with the field vectors, by convention in this notation, is the 
real part of the complex term. Hence the energy in the term 

S12 = (E2 xB1 +E1 xB2)/llo 

is in fact the real part. Since K x E = wB, 

s - E2 X (K1 xE1) +E1 x (K2 xE2) _ (K1 +K2)E1.E2 
12 - wllo - wllo ' 

and Kl and K2 are assumed real, the energy flux has magnitude 

e = Re(Su) = (K1 + K2) Re(E1 E2)/wJ1.o . 

As normal incidence is assumed and the waves are transverse, the vectors have been 
replaced by their scalar amplitudes. Using additional subscripts rand i to denote 
the real and complex components of the field vectors, the energy term becomes 

e = K1 +K2 Re(E1r+iEli)(COScf>1 +isin cf>t>(E2r + iE2i)(cos cf>2 + isin cf>2))' 
wllo 

where cf>1 = wt - K1 Z and similarly for cf>2' On multiplying out, the real part gives 

e = K1 +K2(E1r E2r -EliE2i)(COScf>1 COScf>2 -sincf>1 sincf>2) 
Wllo 

-(E1rE2! +E2r E li)(sin cf>1 cos cf>2 + sin cf>2 cos cf>1)) 

= K1 + K2(E1r E2r -Eli E2i) cos(cf> 1 +cf>2) -(E1rE2i +E2r Eli) sin(cf> 1 +cf>2))' 
Wllo . 

The time dependence is in the terms cos( cf>1 + cf>2) and sine cf>1 + cf>2)' Averaging these 
over a complete period gives 

(2lt/(l) 
Av[cos(cf>1 +cf>2)] = (w/2n) Jo cos(2wt -K1 z -K2 z) dt = O. 

Similarly Av[sin(cf>1 + cf>2)] = 0, whence e = O. That is, the total transmitted averaged 
flux for just two permitted modes is 

8 = 81 +82 , 

Appendix 2. Energy Propagation in Cutoff Modes 

It is well known that electromagnetic energy propagates through thin slabs, e.g. 
metals, in the cutoff region for which w < wpe' The propagation can be calculated 
phenomenologically in terms of the conductivity or the transport coefficients, 
particularly the collision frequency v. The details depend on what parameters are 
appropriate to the approximations. 

When the collision frequency is small compared with the wave frequency, the 
electromagnetic wave dispersion solution to first order in v/w is (Bydder 1967) 

K=+ p - p [ (W2 - (2) t i w2 V ] 

- c2 2wc( w2 - w;)t . 
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In the cutoff region m < mp, and writing (m~-m2)/c2 = a.2 with a. real, the wave 
solution for this case is 

E = Eo exp[i(mt -m; v z/2mc2a.)] exp( -a.z). 

The propagation is in the positive z direction. Using Maxwell's equations 

B = (- ia./m + m~ v/2m2c2a.)E, 

the energy propagation is 

S = (m; V/4m2C2a.Po)E~ exp( - 2a.z). 

An alternative approach is to assume a relationship of the form 

J = (1E. 

This is appropriate «(1 being taken as real) for low wave frequencies and high collision 
frequencies. The conductivity (1, for a singly ionized plasma, is given by (1 = ne2/me v. 
Since 

v x B = Po (1E + (iw/c2)E , 
we have 

V2E = (imPo(1 -m2/c2)E 

and, provided Po (1C » 1, 

E = Eo exp[i(mt- yz)] exp( - yz), 

with y2 = 1-Po (1m. This gives 
B = (y/w)(I-i)E, 

and so the energy flux is 

S = E~(y/2Pom)exp( -2yz) 

= EMmm~/2vc2)t(mPo)-1 exp[ -2(mm;/2vc2)t z]. 

The latter result may be compared with more formal calculations (Bydder 1967) 
which show that for v » m the wave penetrates in the form 

E = Eo exp[i(wt-mz/c)] exp( -m;z/vc) , 
that is, 

S = (EM2Po c)exp( -2m; z/vc). 

The difference between the various cases is due to the approximations used, and 
of course the results are for different parameter regions. The common conclusion, 
however, is that, in the presence· of collisions, energy penetrates the plasma even 
during wave cutoff, the propagated energy flux decreasing exponentially with distance. 
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