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Abstract 

Results are reported of an investigation into the effect of the chosen boundary conditions on the 
steady finite-amplitude convective motions in a layer in which the average energy flux is imposed. 
The boundary conditions are chosen with a view to the application of the results to solar granulation 
and supergranulation. It is shown that, at high Rayleigh numbers, solutions do in fact exist for 
which there is no modulation in the energy flux and little fluctuation in the temperature across the 
boundaries. 

Introduction 

In studies of finite-amplitude convection, one usually assumes that the average 
temperature at the convective layer boundaries is given and that the fluctuation of 
the temperature about this average value vanishes at these boundaries. These 
assumptions correspond to the usual laboratory situation but are unlikely to be 
appropriate if one wants to extend the results of such calculations to astrophysical 
problems. In a star the average energy flux across the convective layer is given and 
has to be conserved. This requirement, in the Boussinesq approximation, corresponds 
to the assumption that the temperature gradient on the two boundaries is given. 
Alternatively, this corresponds to the assumption that the Nusselt number is given. 

In order to approximate to an astrophysical situation a little more closely, we 
assume that the average temperature Too at the bottom of the convective layer is 
given, whereas the average temperature at the top of the layer is not imposed. Besides 
the usual assumptions of no overshooting and free boundaries, one has to decide 
on the appropriate boundary conditions to be applied to the temperature fluctuations. 
In this paper two cases are considered: (A) in which the temperature fluctuation is 
assumed to vanish at the top and bottom of the convective layer; (B) in which the 
gradient of the temperature fluctuation vanishes at the top and bottom of the con
vective layer. Since in practice there must be some interaction between the convective 
zone in a star and its surroundings, it is likely that the true picture will be somewhere 
in between the above two extreme cases. 

It is shown that the boundary conditions have a marked influence on the results. 
The assumption of no temperature fluctuation leads to a marked modulation of the 
flux, even at low Rayleigh number. On the other hand, the assumption of no modula
tion in the flux leads to the result that the temperature fluctuation can be made very 
small for large Rayleigh numbers, i.e. for very deep convective zones. The latter 
model would be more likely to approximate the situation existing in supergranulation 
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which is only observable as a velocity pattern and not as an intensity pattern (Bray 
and Loughhead 1967). 

Basic Equations 

The required basic equations, in the mean-field approximation (Roberts 1966), 
can be written as 

(D2_a2)2W = Ra2F, (D2-a2)F = WDTo, DTo=FW-N, (la,b,c) 

where D == d/dz, and a is the horizontal wave number, R the Rayleigh number and 
N the Nusselt number. The Rayleigh number is given by 

R = gad3TOO/VK, (2) 

where g is the gravitational acceleration, a the coefficient of volume expansion, d the 
thickness of the layer, Too the temperature at the lower boundary, v the lcinematic 
viscosity and K the thermal diffusivity. The vertical velocity W, the temperature 
fluctuation F and the average temperature T are functions of z to be determined 
subject to the boundary conditions: 

(A) 

(B) 

W= D2W= F= 0 

W= D2W= DF= 0 

at 

at 

z = 0 and I, 

z = 0 and 1, 

(3a) 

(3b) 

where z = 0 specifies the lower boundary, and the layer thickness d has been taken 
to be the unit of length. The equations (3) are valid only if the perturbations are 
two-dimensional rolls or convection cells with square or rectangular planform. The 
value of a determines the shape of the convective cells, with large values corresponding 
to elongated cells. 

In the present problem the Nusselt number N is assumed to be given. It then 
follows from the boundary conditions (3) and equation (lc) that DTo = - N on the 
two boundaries. The elimination of DTo and F between equations (la)-(lc) yields 
the following sixth-order differential equation in W 

(D2_a2)3W = W 2(D2_a2)2W -RNa2W, (4) 

which has to be solved subject to the following boundary conditions at z = 0 and 1: 

(A) 

(B) 

Linear Problem 

W= D2W= D4 W= 0, 

W = D2W = D 5W-2a2D3W+a4DW = O. 

(Sa) 

(Sb) 

Before attempting to find the solution to the nonlinear problem, it is necessary 
to solve the linear equations. Neglecting the nonlinear term in equation (4) gives 

(D2_a2)3W = -Rc Na2W , (6) 

where Rc is the so-called critical Rayleigh number; convection only occurs at Rayleigh 
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numbers larger than this critical value. Equation (6) has to be solved, for a given 
value of N, subject to the boundary conditions (5a) or (5b). 

The actual temperature gradient at the boundaries is given from equation (lc) 
by the expression 

(dTo/dz)actual = -NToo/d. (7) 

It follows that, once a value has been selected for the Nusselt and Rayleigh numbers, 
the thickness of the layer and the temperature at the lower boundary will be uniquely 
determined by the assumed value of the temperature gradient at the boundaries, 
i.e. by the assumed value of the energy flux across the layer. It should be noted that 
the numerical results given in this paper correspond to the case when the Nusselt 
number is equal to one, unless otherwise specified. 
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Fig. 1. Critical Rayleigh number 
Rc as a function of the horizontal 
wave number a when there is no 
modulation of the energy flux at 
the boundaries. 

The dependence of the critical Rayleigh number Rc on the horizontal wave number 
a is now examined. In the absence of temperature fluctuations at the boundaries, 
i.e. for F = 0 (Case A), this dependence is given by (Chandrasekhar 1961) 

Rc = (rc 2 + a2? /a2 • (8) 

In the absence of fluctuations in the energy flux on the boundaries, i.e. DF = 0 
(Case B), we have, on solving the differential equation (6) by the initial-value tech
nique, the results as summarized in Fig. 1 for N = 1. It can be seen that in this case 
Rc increases with a but does not tend to infinity as a tends to zero. The minimum 
of the Rc(a) curve occurs at a = 0, which is unusual. In most linear calculations 
(e.g. Chandrasekhar 1961) Rc(a) has a minimum for some finite value of a, called the 
critical horizontal wave number ac, and tends to infinity as a tends to zero. 
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Fig.2. Variation across the layer, for the indicated Rayleigh numbers R and boundary conditions 
(Case A or B), of: (a) and (b) the temperature fluctuation F, (c) the temperature gradient DTo 
and (d) the average temperature To. 

Numerical Solutions of Nonlinear Equations 

The numerical integration of the nonlinear equation (4), with boundary conditions 
(5a) or (5b) was carried out by initial-value and quasi-linearization techniques, and 
the results of the integrations are summarized in Figs 2 and 3. 

Case A 

When no temperature fluctuations are allowed on the boundaries, the shape of 
the F(z) curve follows the usual pattern except that the maxima decrease with increasing 
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Fig.3. Variation, for Case B and the 
indicated parameters, of 

(a) the vertical velocity Wacross 
the layer, 

(b) the temperature fluctuation F 
across the layer and 

(c) the maximum vertical velocity 
W max as a function of the horizontal 
wave number a. 
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Rayleigh number for R > 1400, whereas the gradient of F at the boundaries tends 
to a constant value. This behaviour is illustrated in Fig. 2a. 

CaseB 

Figs 2b-2d illustrate the behaviour of the temperature fluctuation F(z), temperature 
gradient DTo(z) and average temperature To(z) for various values of the Rayleigh 
number when no modulation of the energy flux is allowed on the boundaries. It can 
be seen from Fig. 2b that the shape of the F curve changes drastically as the Rayleigh 
number changes from the low to the large values, and that an isothermal layer 
develops in the central region of the layer while the temperature at the upper boundary 
increases gradually. In the compressible case, the isothermal layer corresponds to a 
region where the temperature gradient equals the adiabatic temperature gradient. 

Figs 3a and 3b show the variation of the Wand F curves with changes in the assumed 
value of N from N = 1. Fig. 3c show the variation of the maximum vertical velocity 
Wmax with wave number for all values of a for which convection exists at R = 6010 
(for N = 1). 



486 R. Van der Borght 

Asymptotic Solutions 

When the Rayleigh number is large, the numerical integrations become much 
more difficult and time consuming. Since the Rayleigh number is probably large in 
astrophysical applications (Spiegel 1971) we now derive analytical expressions, that 
are valid at high Rayleigh numbers, for the limiting amplitude and the temperature 
fluctuations at the boundaries. 

As explained in detail in previous papers (Van der Borght et al. 1972; Van der 
Borght and Murphy 1973a, 1973b) the following equation should be satisfied in 
the main stream 

'l' (D2 - a2)2 'l' = 1, where W = (NRa2)t'l'. (9a, b) 

Following a method first introduced by Howard (1965) we use the following truncated 
Fourier expansion for 'l' 

'l' = Al sin nz + A3 sin 3nz. (10) 

The coefficients Al and A3 are then given by (see Appendix 1) 

2t ( (n2+a2)2) Al ~ -- 1 -t -:-':----,:;--~ 
n2 + a2 (9n2 + a2)2 

and A '" (n2 + a2)2 
3 '" :-::--~- J 

(9n2 +a2f AI' 
(lla, b) 

It is then evident that the maximum amplitude W max is given by 

Wmax = (NRa2)t(AI-A3)' (12) 

Values of W max for N = 1 and a = 1r, as derived by numerical integrations, are 
compared in Fig. 4a with the values predicted from the formula (12) at large Rayleigh 
numbers. It is seen that the computed values do in fact tend asymptotically to the 
theoretical values predicted by the expression (12). Since, in the main stream, we have 

FW=N (13) 

at high Rayleigh numbers, it is also possible to predict the values of F(B from the 
formula (12). 

In order to derive asymptotic expressions for the modulation of the flux (Case A) 
and temperature modulation at the boundaries (Case B) we have t.o proceed with the 
integration of equations (Ib) and (lc). From equation (10) it can be seen that, near 
the origin, we have 

'l' = Az, where A = n(AI + 3A3) . (14a, b) 

On eliminating DTo between equations (1b) and (Ic), we obtain the following 
equation in F 

(D2-a2)F = W2F-NW. (15) 

Using the following scalings in the boundary layer 

(= ptz, W = ptl/l, F= P-*/N, where p = NRa2 , (16a, b,c,d) 

we can write the differential equation (15) as 

d2/ldC2 = 1/12/_1/1, where 1/1 = A(. (17a, b) 
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Fig. 4. Comparison as a function of the Rayleigh number R of values predicted by the asymptotic 
theory (curves) with those derived by numerical integration (points) for: 
(a) the vertical velocity W mazo 

(b) the modulation of the flux DF(O) at the boundaries, 
(c) the maximum of the temperature fluctuation Fm .. , 

(d) the position Zmax of Fm ... 

(e) the temperature fluctuation F(O) at the boundaries. 



488 R. Van der Borght 

Equation (17a) must be solved subject to the boundary conditions: 

(A) 

(B) 

f=O at C=O, f=(AO- 1 at C=oo; 

df/dC=O at C=O, f=(AO- 1 at C=oo. 

(18a1,2) 

(18b1,2) 

These boundary value problems can be solved by numerical methods, and this has 
in fact been done in order to check the accuracy of the following analytic solutions. 

Eliminating", between equations (17a) and (17b) yields 

d2f/dC2 -A2 C2f= -AC. (19) 

In order to derive the general solution of this second-order linear inhomogeneous 
differential equation in/, we have to find the complementary function and a particular 
integral. The complementary function is the general solution of the homogeneous 
equation 

d2f/dC2 -A2 C2f= o. (20) 

The general solution of this equation (e.g. Kamke 1959) can be expressed in terms of 
the modified Bessel functions of order t as follows 

f = C1 Ct1tCtAC2 ) + C2 CtLtHAe) . (21) 

We now show that a particular solution of equation (19) can be obtained in terms 
of the modified Struve functions. It is well known (Abramowitz and Stegun 1965) 
that the modified Struve function Liz) is a solution of the differential equation 

d2w dw 4{lZ)V+1 Z2 _ +z __ (Z2+ V2)W ="2 . 
dz2 dz ntr(v+H 

(22) 

This result can be generalized. It can be verified by successive differentiation and 
substitution that the expression 

y = x" LlfJxY) (23) 

is a solution of 

d2 y + 1-2(X dy {(P Y-1)2 + V2')12_(X2) _ 4pV+1Gy+1 2 y(v+1)+a-2 (24) 
- ---- ')IX ----y- ')IX • 
dx2 X dx x2 ntr(v+H 

A comparison between equations (24) and (19) shows that the latter admits the follow
ing particular integral 

f = - {(2n)t rCt)/4Atgt Lt(tAC2). (25) 

Adding equation (25) to (21) then gives the general solution of (19). It now remains 
to determine the constants C1 and C2 from the boundary conditions (18a) or (18b). 

Case A 

It follows from the properties of the modified Bessel and Struve functions that 
(Appendix 2) 

limgtlt<-!AC2)} = 0, limgtLtHAC2)} = A- t 2t /r(1), limgtLt(tAC2)} = O. 
'-+0 '-+0 '-+0 

(26a, b,c) 
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The boundary condition (18al) is then satisfied if 

C2 = o. (27) 

With the help of the appropriate asymptotic expansions for Iv and Lv it follows 
that, for Z large (Appendix 3), 

Lt(z) - I±t(z) ~ - rH)/1t rCt)(!z)* . (28) 

If we select for C1 the value 
C1 = (21t) trW/4At , (29) 

it follows (Appendix 3) that 

1= {(21t)tr(t)/4At}(t{It G-AC2)-L,t<-lAC2)} (30) 

is a solution of the differential equation (19) and that it satisfies the boundary 
condition (18a2). From this expression for Iwe have 

and therefore 
(dl/dC )'=0 = 1tt r(i )/4r(t ), 

(dF /dz )%=0 = N1tt r(i )/4r(t)· 

(31) 

(32) 

We see that the modulation of the flux at the boundaries is appreciable and of the 
order of 59 %. In Fig. 4b a comparison is given between the computed values of 
this quantity and those predicted by the asymptotic theory. 

It is also possible to derive the position and value of the maximum temperature 
fluctuation either by analytic means, making use of equation (30), or by numerical 
integration. We have chosen the numerical method for the sake of expediency. For 
N = I and a = 1t, we find that 

Imax = 1·08345 and Cmax=3·15. (33) 

The values of F max and Zmax are then given by 

Fmax = Nlmax/(NRa2)t, and Zmax = Cmax/(NRa2)t. (34a, b) 

These values, for a = 1t and N = I, are compared in Figs 4c and 4d with those 
derived from numerical integrations. 

CaseB 

We use a similar procedure to that adopted in Case A. It can be shown (Appendix 
2) that 

~~:C(CtLtHAC2») = 0, ~~ :C (Ct LitAC2») = 0, (35a, b) 

~! :C ( Ct I tG-A(2») = At /2t ret) . 

In order to satisfy the boundary condition (18b1) we have to adopt the value 

C1 = O. 

(35c) 

(36) 
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It then follows, as for Case A, that 

I = {(2n}tr(~:)j4Atgt{LtCtA,2)-Lt<-~A,2)} (37) 

satisfies the boundary condition (18b2) (Appendix 3). A similar expression was 
obtained by J. Latour (personal communication) in an investigation of the asymptotic 
behaviour of the Nusselt number at large Rayleigh numbers when the average 
temperature is given on the two boundaries. In the problem under consideration 
in the present paper, the heat flux at the boundaries, i.e. the Nusselt number, is 
given and no further integrations are required. 

From equation (37) we obtain 

1(0) = t(njA)t, (38) 

and therefore the temperature fluctuation at the lower boundary (z = 0) is given by 

F(O) = t(njA)t N*(Ra2)-t. (39) 

Due to the symmetry of the problem, the temperature fluctuation F(1) at the upper 
boundary is given by the same expression. In Fig. 4e are given the values of F(O) 
as evaluated by numerical integration and those predicted by equation (39) for large 
values of the Rayleigh number, for a = nand N = 1. It is seen that the computed 
values do in fact tend asymptotically to those predicted by the theory. 

Conclusions 

The present results show that some interesting characteristics are possessed by 
the steady finite-amplitude solutions of the convection problem for non-self-interacting 
planforms within the Boussinesq approximation in the case of an imposed average 
energy flux across the convective layer. Two families of solutions have been considered: 

(A) In the case of no fluctuations in the average temperature on the boundaries, 
the solutions have the usual form and show a strong modulation of the convective 
flux on the boundaries. This could provide a picture of ordinary solar granulation. 

(B) On the other hand, the supergranulation is observed as a velocity pattern 
and not an intensity pattern. If one imposes zero fluctuation of the energy flux at 
the boundaries, the present results show that finite-amplitude solutions do in fact 
exist and that for deep layers the resulting fluctuation in the temperatures at the 
boundaries is also quite small. For such deep layers the Boussinesq approximation 
is unlikely to be valid and compressibility would have to be taken into account. 

Acknowledgment 

The author wishes to thank Mr J. R. Crawford for help with the numerical 
computations. 

References 
Abramowitz, M., and Stegun, I. A. (1965). 'Handbook of Mathematical Functions', p. 498 (Dover: 

New York). 
Bray, R. J., and Loughhead, R. E. (1967). 'The Solar Granulation', p. 103 (Chapman & Hall: 

London). 



Nonlinear Convection with Imposed Energy Flux 491 

Chandrasekhar, S. (1961). 'Hydrodynamic and Hydromagnetic Stability', p. 35 (Oxford Univ. 
Press). 

Howard, L. N. (1965). Notes from Summer Study Program in Geophysical Fluid Dynamics, 
Woods Hole Oceanographic Inst., 65-51, Vol. 1, p. 125. 

Kamke, E. (1959). 'Differentialgleichungen, Losungsmethoden und Losungen', p. 440 (Chelsea: 
New York). 

Roberts, P. H. (1966). In 'Non-equilibrium Thermodynamics, Variational Techniques and Stability' 
(Eds. R. J. Donnelly, R. Herman and I. Prigogine), p. 125 (Chicago Univ. Press). 

Spiegel, E. A. (1971). A. Rev. Astr. Astrophys. 9, 323. 
Van der Borght, R., and Murphy, J. O. (1973a). Aust. J. Phys. 26, 341. 
Van der Borght, R., and Murphy, J. O. (1 973b). Aust. J. Phys. 26, 617. 
Van der Borght, R., Murphy, J. 0., and Spiegel, E. A. (1972). Aust. J. Phys. 25, 703. 

Appendix 1 

Equation (9a) can be written 

(D2_a2)2p = p-l. (AI) 

Multiplying this equation by 2sinknz and integrating between the limits 0 and 1, 
we obtain 

2 J: (D2 -aZ)ZPsinknzdz = 2 f: (sinknz)/Pdz. 

Keeping in mind that a Fourier expansion of the form 

00 

P = L An sin nnz 
1 

requires the boundary conditions 

P = DZP = 0 at z = 0 and I 

to be satisfied, we obtain by means of a series of integrations by parts: 

f: D4 P sin knz dz = (kn)4 f: P sin knz dz 

and 

fol D Z P sin knz dz = - (kn)2 fol P sin knz dz . 

It then follows that the left hand side of equation (A2) can be written 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

2 fol (DZ-aZ)ZPsinknzdz = 2(kZnz+a2)2 fol Psinknzdz. (A7) 

Substituting equation (A3) in this equation, we find that 

2 Sol (DZ - aZ)2 P sin knz dz = (kZnZ + aZ)2 A.k • (AS) 
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Restricting ourselves to a two-term Fourier sine expansion and neglecting higher 
order terms, we have 

1 1 '" 1 -(A3/A l)(1 +2cos2nz). (A9) 
iji = A ":_ __ , A "'_ ") '" A "' __ _ 

Substituting equations (A8) and (A9) in (A2) gives 

(k2n2+a2)2 Ak = 2 fol (sinknz/A l sinnz){l -(A3/Al)(1 +2 cos 2nz)} dz. (A10) 

Thus, when k = I, we have 

(n2+a2)2 Al = (2/Al)(I- A 3/A l)' (All) 

and, when k = 3, we have 

(9n2+a2)2 A3 = (2IAl) fol (1 +2 cos 2nz){1 -(A3IAl)(1 +2cos2nz)} dz 

= (2IA l)(1- 3A3IA l)' (A12) 

From equations (All) and (AI2) we get, in the first approximation, the approximate 
expression (lIb) for A 3/A l • On using this expression in equation (All), we obtain 
the approximation (lla) for A l . 

Appendix 2 

The series expansions for the modified Bessel and Struve functions can be written, 
to the leading order term, as 

Iv(z) ~ (-!-zy;r(v+ I) and Lv(z) ~ Uzy+1/{rG) r(v + i)} . (Al3) 

It then follows from these expressions that 

At 
Y2) _" (t Il!A." = 2t r(i) (t LtGAe) = A -f2t 

nt) , 
A5/4 (3 

(t Lt GA(2) = 25/2 r(-D n-D . 

(A14a, b,c) 

The general solution to equation (19) can be written (see equations (21) and (25)) 

f = Cl (t It(-!-A(2) + C2 (t Lt(tA(2) - {(2n)t rW/4At} (t L t GA(2). (AI5) 

In Case A the boundary condition (18a l ) must be satisfied. It then follows from 
equations (AI4) and (AI5) that C2 = O. Similarly in Case B the boundary condition 
(18b l ) must be satisfied. It then follows from equations (AI4) and CAl 5) that Cl = O. 
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Appendix 3 

Asymptotic expansions for the modified Bessel and Struve functions Iv and Lv 
can be written (e.g. Abramowitz and Stegun 1965) 

liz) -+ expz (1 _ fl-I + (fl-I)(fl-9) ) 
(2nz)t 8z 2! (8Z)2 ..., 

where fl = 4v2 , (A16) 

and 

Liz) -+ Liz) +n- 1 f (-It+1r(k+D 
k=O _. 

(A17) 

Equation (28) then follows from equations (A16) and (AI7) for large values of z. 
Thus for large values of " we have 

,t{I±t(!A,2)-Lt(tA,2)} ~ {n- t 23/ 2/r(i)Atg-1 • (AI8) 

In Case A, with C1 and C2 given by equations (29) and (27), equation (A15) of 
Appendix 2 then yields the expression (30) for f Alternatively, using equation (A18), 
we have for large' 

f~ (AO- 1 , 

and the solution (30) therefore satisfies the boundary condition (18a2 ). Similarly, 
in Case B, with C1 given by equation (36) and letting 

C2 = (2n)t rW/4At , (A19) 

equation (A15) of Appendix 2 then yields the expression (37) for f This expression 
satisfies the boundary condition (18b2). 
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