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Abstract 

It is shown that a dual absorptive model can explain the dip structure of backward differential 
cross sections of hadronic processes. The polarizations in those backward processes in which the 
dominant contribution comes from non-flip amplitude are also found to be qualitatively consistent 
with experiment. 

Introduction 

The ability to explain the structure of differential cross sections in various hadronic 
processes is a desirable feature for any phenomenological model. Previous attempts 
to account for the dip structure in various backward reactions have achieved only 
partial success, however, with models which are able to predict the dip structure in 
some reactions failing to do so in others. Thus although explanations of various 
backward reactions are available on a piecemeal pattern, neither the class I models, 
such as the weak-cut model (Arnold 1967; Capella and Tranh Thanh Van 1969), 
the Regge pole model and the Veneziano model, nor the class II models, such as the 
strong-cut model (Henyey et al. 1969) and the Dar-Weisskopf model (Dar et al. 1969), 
give a unified picture of the dip structure in backward differential cross sections. 
Another difficulty that most of the models encounter is the erratic behaviour of 
polarization in various forward and backward processes. 

Recently Harari (1971a, 1971b) has proposed a dual absorptive model which 
seems to have remarkable success in predicting the dip structure of several forward 
hadronic processes. Although this model is still only qualitative and has also met 
certain difficulties in explaining polarizations in forward processes (Harari and 
Schwimmer 1971; Barger and Halzen 1972), its overall results are quite encouraging. 
Originally the model was aimed at explanations of forward scattering processes of 
hadrons, but Aye (1972) has shown that it can be equally applied to pion-nucleon 
backward scattering, for which it reads: 

(i) 1m/lis, u) is proportionaito J~;.(rJ( -u»), where/,(s, u) is an s-channel hadronic 
amplitude, J~;. has the same general structure (dips, bumps etc.) as the Bessel 
function J~;.(rJ(-u»), L1A is the magnitude of the total s-channel helicity flip, 
and r '" 1 fm. For exotic s-channel processes Im/'(s, u) = o. 

(ii) The u-channel description of Im/'(s, u) is given by a combination of Regge poles 
and cuts. A weak (or no) cut is needed if the impact parameter representation 
of Im/,(s, u) is dominated by partial waves with I '" qr, where q is the c.m. 
momentum, while a strong cut is required if the impact parameter representation 
of Im/'(s, u) is dominated by partial waves with I ~ qr. 
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(iii) Rej"(s, u) is unknown in the s-channel picture. In the u-channel description 
Rej"(s, u) gets contributions from the same resonances and cuts which contribute 
to Imj"(s, u). If a weak (or no) cut is needed for Imj"(s, u) then Rej"(s, u) is 
given by the usual signature factor, while if a strong cut is required then the 
phase of the amplitude approaches the signature factor as s ~ 00. Since this 
may happen very slowly, Rej"(s, u) remains undetermined for practical purposes. 

For nN backward amplitudes, Aye (1972) has found that according to the above 
model LlA. = 0 amplitude needs a strong-cut contribution for ~ exchange, while 
LlA. = I amplitude needs a strong-cut contribution for N exchange. It may happen 
that for certain processes like K + p ~ K + P strong cuts contribute to all the amplitudes. 
In such cases the predictive power of the above model is diminished considerably. 
The Harari model can thus give useful information only for those processes in which 
at least some dominant amplitudes do not need a strong-cut contribution. 

In the present work we show that if, in addition to the above restriction/on the 
applicability of the Harari model, we assume that a strong-cut contribution is needed 
only for LlA. =I: 0 amplitudes then we are able to derive certain qualitative information 
about the dip structure of backward differential cross sections and polarization 
in those processes in which a LlA. = 0 amplitude dominates. In this case the u-channel 
description of j"(s, u) is given by 

and 

Imfl;.=o(S, u) = Jo(r.j( -u)), 

{ 
tan!n{oc(u)-!} } 

Refl;.=o(s,u) = Jo(r.j(-u)) 
- cot!n{ oc(u) -!} 

Imfl;. .. o(s,u) = (_l)A;'J,u(r.j(-u)), 

Refl;. .. o(s, u) = a = ? 

(la) 

(1 b) 

(2a) 

(2b) 

The tangent term in equation (1 b) is associated with the contributions from odd 
trajectories while the cotangent term is associated with even trajectories. 

Dip Structure of Backward Differential Cross Sections 

Although actual fitting of the experimental data must be carried out to finally 
decide whether a certain helicity amplitude dominates a given process, for our quali­
tative analysis it will be sufficient to just examine the trend of the data for differential 
cross sections near u = 0 and make a rough guess as to the dominance of the various 
amplitudes involved in the process. For example, if the differential cross section 
du/du for a particular reaction decreases rapidly with increasing I u I (i.e. there is a 
sharp peak at u = 0) then the LlA. = 0 amplitude(s) is (are) dominant in the vicinity 
of u = O. On the other hand, if du/du has a small value at u = 0 and increases rapidly 
with I u I (i.e. a dip at u = 0) then the indication is that the helicity flip (LIA. =I: 0) 
amplitude(s) is (are) dominant near u = O. If there is no sharp backward peak or 
dip in the differential cross section, the £lip (LIA. =I: 0) and non-flip (LIA. = 0) amplitudes 
are of comparable strength. Let us now consider certain backward scattering processes. 

(i) The backward processes n+p ~ n+p, n-p ~ nOn and K-n ~ n-Ao are 
dominated by the even-signatured N" trajectory. Also, all of these reactions show a 
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sharp backward peak at u = 0 which indicates that the LlA. = 0 amplitude is dominant. 
Thus we may write for each differential cross section 

du/du ex: {Jo(ry'( -u))y{l +cot2tn(oc--D} 

= {Jo(ry'(-u)W/sin2 !n(oc-!). (3) 

The N" trajectory has been parameterized by Barger and Cline (1967) as oc(NJ = 
-0,38 +0'88u, with an error which is less than 10%, so that for u = -0·2 we have 

oc ;::::: -t. Since this gives a nonzero value of sin-tn(oc--t) for u = -0'2, the double 
zero of {Jo(ry'( -u)W must cause a dip in the differential cross sections given by 
equation (3). This agrees with the experimental findings of E. W. Anderson et al. 
(1968), Orear et al. (1968), Crennell et al. (1969) and Boright et al. (1970). 

(ii) The backward processes n-p ---+ n-p and n-p ---+ p-p have /).6 as the exchange 
trajectory. There is neither a sharp backward peak nor a dip in their differential 
cross sections at u = 0 and consequently the flip and non-flip amplitudes make 
comparable contributions. Thus, since JI1UO does not vanish at u = -0'2, no dip 
can appear. This is also in agreement with experiment (E. W. Anderson et al. 1968, 
1969; Orear et al. 1968; Crennell et al. 1969; Boright et al. 1970). 

(iii) The backward process K + p ---+ K + P is dominated by A" exchange and the 
differential cross section is of the same form as in (ii) above. Thus we expect no dip, 
in agreement with experiment (Baker et al. 1968). 

(iv) The backward photoproduction processes yp ---+ nOp and yp ---+ n+n do not 
have sharp peaks or dips in their differential cross sections at u = 0, so we can conclude 
that the flip and non-flip amplitudes make comparable contributions and consequently 
that there should be no dips at u = - 0·2. This is again consistent with experimental 
observation (R. L. Anderson et al. 1968, 1969; Tompkins et al. 1969). 

(v) In the process K -p ---+ n+1:- there is a sharp peak in the backward differential 
cross section at u = 0, so that the dominant contribution from the LlA. = 0 amplitude 
would cause the experimentally observed dip at u = -0·2 (Barger et al. 1972). 

(vi) In the process K-p ---+ n-1:+ the absence of either a dip or a sharp peak at 
u = 0 in the backward differential cross section indicates comparable contributions 
from flip and non-flip amplitudes and so no dip is to be expected for any value of u, 
which is just what is found experimentally (Barger et al. 1972). 

Thus we see that the dip characteristics in the differential cross sections for these 
10 backward reactions are consistent with the predictions of the modified dual 
absorptive model. We shall now consider polarization phenomena in some backward 
processes. 

Polarizations 

From equations (1) and (2), for the scattering processes describable by LlA. = 0 
and LlA. = 1 amplitudes we have 

fo(s,u) = Jo(ry'(-u)) +iJo(ry'(-u)) , { 
tan!n{IX(u)-t} } 

-cot-tn{lX(u)-t} 
(4a) 

fi(s,u) = a -iJ1h/( -u)), (4b) 
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where the subscript to f denotes the total s-channel helicity flip for that amplitude; 
we choose r = 1 fm. For such processes the polarization P is given by 

Im(fof!) Jo{a -J1 cot!n(IX-!)} 
Poe = 2 2 22' du/du J o cosec !n(IX-!) +a +J 1 

(5a) 

if the exchange trajectory is even, and 

P Jo{a +J1 tan!n(IX-!)} 
oe J~sec2!n(IX-!) +a2+Jr 

(5b) 

if the exchange trajectory is odd. 
Let us now consider the backward process n - p _ K 0 A o. This reaction is dominated 

by the 1:" trajectory (Barger et al. 1969), which is of even signature and is given by 
1X(1:J = -1 + u. Also, the backward differential cross section (Bellettini 1968) 
has a peak at u = 0 so that the scattering is dominated by the non-flip amplitude. 
The polarization (5a) thus takes the form 

a -J1 (r.J( -u) )cot!n{u-l' 5) sin2!n(u-l. 5). 
P oe Jo{r.J( - u») 

(6) 

Since at u = 0 the polarization is small (Beusch et al. 1970), it follows that a is small 
near u = 0 and thus 

Poe {-J1 (rJ( -u) )/Jo{rJ(-u) )}sin n(u-l·5). (7) 

When this form is assumed for small values of 1 u I, the characteristic features of P 
are found to be in qualitative agreement with experiment (Beusch et al.). 

As noted in (i) of the previous section, the process n+p - n+p has a sharp back­
ward peak in its differential cross section at u = 0 and is therefore dominated by a 
..1A. = 0 amplitude. In addition, the dominant exchange trajectory N" is even and 
is parameterized as IX(N,,) = - 0·38 + 0·88 u. Thus the polarization is given by 

a -J1 (r.J( -u) )cotO'44n{u-l) sin20'44n(u-l). 
P oe Jo{r.J( - u») 

(8) 

Since the polarization is again small at u = 0, it follows that even in this case a 
is negligible near u = 0, and the relation (8) reduces to 

Poe { -h{r.J( -u) )/Jo{r.J( -u»)} sinO·88n(u-l). (9) 

For small values of 1 u I, this form is also found to be qualitatively consistent with the 
observed polarizations (Dick et al. 1972), giving a maximum in the vicinity of 
u = -0,2 and changing sign for u ~ -0·3. 

From (ii) above, for the process n-p - n-p, in which the flip and non-flip 
amplitudes make comparable contributions and the dominant exchange trajectory 
AlJ is odd, the polarization is given by 

Jo{a +J1 tan!n(IX-!)} Jo{a +J1 tan n(0'49 u -0'16)} 10 
Poe J~sec2!n(IX-!)+a2+Jf = J~sec2n(0'49u-0'16)+a2+Jr () 
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At u = 0 the polarization is small and so, with a neglected, the relation (10) becomes 

JOJ1 tann(0·49u -0·16) 
p oc J~sec2 n(0'49u -0·16) +Jr (11) 

This form gives zero polarization at u = - O' 2, in disagreement with experiment 
(CERN-IPN(Orsay)-Oxford collaboration results as quoted by Barger et al. 1972, 
p. 212). However, if we make the additional assumption that a A,A. = 0 amplitude 
dominates the process near u = - O' 2, the theoretical polarization curve is found 
to be qualitatively consistent with the experimental results. 
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