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Abstract 

The generalization by Bloch of the Thomas-Fermi atom to time-dependent motion is applied to 
the calculation of the photoabsorption cross section. The results are in reasonable agreement with 
the experimental cross sections in the range of photon energies O·3Z eV < lim < 300Z eV, where 
Z is the atomic number of the atom. 

Introduction 

In the early part of this century, Bloch (1933) generalized the Thomas-Fermi 
atom (Thomas 1927; Fermi 1928) by applying classical hydrodynamics to the 
degenerate electron gas formed by the atomic electrons. Bloch confined his analysis 
to one particular problem: the transfer of energy from a passing charged particle to 
the Thomas-Fermi atom. Being unable to determine the modes of oscillation 
numerically, Bloch contented himself with estimating the parameter of his model 
from the experimental results for one element. The agreement with experiment for 
all other elements with large atomic numbers was found to be very satisfactory. 

Recently the hydrodynamic model has been subjected to more careful numerical 
analysis. Th-e photoabsorption cross section has been calculated by Ball et al. (1973) 
using the original Thomas-Fermi model with an infinite radius and, as a consequence, 
a continuous rather than a discrete spectrum of normal modes. In Part I of the 
present series (Monaghan 1973) the hydrodynamic model has been examined using 
Amaldi's correction which results in a finite radius for the neutral atom. The spectrum 
is discrete for this model and the analysis is a good deal simpler than that for the 
model used by Ball et al. The polarization has been computed in Part I and found 
to be in good agreement with experiment for ions and badly in error for neutral 
atoms. The parameters in the slowing down formula of Bloch (1933) have been 
estimated in Part II (Monaghan 1974) and the agreement with experiment is good 
for swiftly moving particles. In the present paper, the photoabsorption cross section 
will be determined using the results for the discrete-spectrum model. 

Equations of Motion 

The motion of the atomic electrons is assumed to be described by the Eulerian 
equation of motion with an equation of state appropriate to a degenerate electron gas. 
If p is the mass density of the electrons, pfthecoulomb force per unit volume and U 
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the external potential per unit charge, the equation of motion becomes 

povlot +p(v. \I)v = - \lP +p(f-ejl-l \lU), (1) 

where jl is the mass and e the charge of an electron. The unperturbed equation is 

0= -\lPo +Po!, (2) 

which, as was shown in Part I, may be manipulated to give the Thomas-Fermi 
equation. For small motions, equation (1) can be linearized, so that 

Poovlot = -\l(fJP)+!fJP+PofJ!-poejl-l\1U. (3) 

In the following we shall adopt Cowling's (1942) approximation and neglect fJf 
Using equation (2), and recalling that for a fully degenerate electron gas 

P = const. p5/3 , (4) 
we find 

ovlot = -\l(WfJp) -ejl-l\1U, (5) 

where W = 5Po/3p~. Since the forces are conservative, and the fluid barotropic, we 
can choose 

v=\lC/J, (6) 

so that equation (5) may be written 

oC/Jlot + W fJp +ejl-l U = O. (7) 

The equation of continuity for the perturbed motion is 

o(fJp)lot+\I'(Po\lC/J) = O. (8) 

For the case of photoabsorption we take U to be given by 

U = @"rcosesinwt, (9) 

where @" is the amplitude of the electric field due to a plane electromagnetic wave. 
We assume that the field is turned on at t = O. 

It is evident from equation (9) that the oscillating field drives the I = 1, m = 0 
modes of oscillation. The equation of motion can therefore be solved by expanding 
C/J and fJp in terms of the eigenfunctions for these modes. These expansions can 
be written 

C/J = L C/Jj Bj cos e, 
j 

fJp = L'1jAjcose, 
j 

(10) 

where C/Jj and '1j are known (see Part I). These functions satisfy the orthogonality 
relations 

f C/JjC/Jk W- 1r2 dr = HjfJkj , 

f '1j'1k Wr2 dr = wJ HjfJkj , 

f C/Jj'1k r2 dr = WjHj~kj' 

(lla) 

(llb) 

(llc) 
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Furthermore 

([>jWj = W'1j and '1jWj + \1 • (Po \1([>j) = 0, (12) 

where Wj is the frequency of the jth mode. 
Substituting the expansions (10) into equations (7) and (8), and using the relations 

(11) and (12), we find 

. etS sin wt J 3 BJ +WjAj + H f/jr dr = 0 jJ. jWj 
(13a) 

and 
A] = wjBj • (13b) 

The boundary conditions on equations (13) are that there is no motion at t = O. The 
solutions are readily found to be 

and 

where 

Energy Transfer 

Bj = ~(Wj)2(COS(Wt)-COS(Wj t») 
Wj -00 

_ F (00 j) (00 J sine wt) _ sine 00 j t») , 
Aj - wJ-w2 00 

F(Wj) = - wetS J jJ.Hjwj '1j r3 dr. 

The energy transferred to the atom at time t is given by 

llE = J {tpO(\1([»2+!W'12} dV. 

(14a) 

(14b) 

(15) 

(16) 

This expression may be derived easily by multiplying equation (5) by Po v and integrat
ing over the atomic volume. Using the equation of continuity we find 

d(!~) = :t(J {!PO(\1([»2+!Wf/2} dV) = _ejJ.-l J pov. "VU dV. (17) 

Substitution of the expansions (10) into the expression for llE gives 

Thus 

where 

and 

llE = in L wJ Hj(BJ +AJ). 
j 

2ne2.w2tS2 1 (J )2 R~ +82 
llE = . 2 LH f/jr3 dr (i L." 

Jl. j j Wj -00 

Rj = cos(wt) -cos(Wjt) 

8j = (wj/w)sin(wt) - sin(wj t). 

(18) 

(19) 
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By using the scaled variables introduced in Part I, we can write equation (19) in 
the form 

e2g 2w2Z R; +s; 
I1E = 2 L qj (2 2)2 ' 

P, j Wj - W 

where Zqj is the classical oscillator strength and qj is defined by 

qj = tv; xg/2(f: cI>j </J 1/2 U5/2 du r / fol cI>; </J 1/2 u3/2 du 

and 
Wj = vjZ(p,e4n227/h33.J5) :;; vjK, 

where Xo is the radius of the atom when the unit of length is taken to be 

32/3 h2 
n4/3 p,e2Z1/3if3/3 

0·468 X 10- 10 

Z l / 3 
m. 

(20) 

(21) 

(22) 

(23) 

The function </J is the Thomas-Fermi function whose argument here is the variable 
u = x/xo. 

Because the frequencies Wj are very close together, the summation in equation 
(20) can be written as an integral which is dominated (when t is very large) by the 
resonance term. Furthermore, since qj is slowly varying, it can be evaluated at the 
resonance frequency and taken outside the integral. The dominant term in the 
integral is easily found to be 

4 fO (w; _(2)-2 sin2g.(w-w)t} dj. (24) 

The numerical calculations in Part I show that 

Wj '" Kgj, (25) 

where g is a constant and K is defined by equation (22). Accordingly, the term (24) 
is approximately 

t JOO -2· 2 d nt --- x sIn x x = ---. 
2w2 Kg - 00 2w2 Kg 

(26) 

Thus 
I1E ~ (ne2g 2Z/4P,Kg)qres t. (27) 

The incoming time-averaged flux of radiation is cg2/8n, and the cross section for 
photoabsorption is therefore 

o{W) = (2ne2/p,c)(Z/Kg)qres. (28) 

The calculations in Parts I and II show that 

q. '" l..g2x9/2B ·-(1+8) 
J 5 0 ] , 

where 8 ~ 1 and both Band 8 depend on Z. At resonance we have 

j '" w/Kg (29) 
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and therefore 
o{co) ~ (2rre2/J1.c)(Z/Kg)(tg2 xg/2)B(Kg/co)1+8. (30) 

Because the Thomas-Fermi model is only a rough approximation, it is entirely 
adequate to approximate the cross section (30) by the use of certain scaling relations 
made evident by the numerical calculations. These scaling relations, for an n-times 
ionized atom with nuclear charge + Ze, are: 

g = const. {(n + 1)/Z}s/4 , 

Xo = const.{Z/(n+ 1)}1/2, 

B = const. {(n + 1)/ZP/2. 

Evaluating the constants for Z = 40, and neglecting 8, we find 

where 

Z=20 

--......... " 

) 
<Xl 

"6 -= 
:s 

t> 

(a) 

o{Q) ~ (n+i)40) 3/4 0'232:. 10- 18 

"""'" 

Q = (fico in eV)/(27·2Z eV). 
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Fig.t. Comparison of the present theoretical cross section (32) for Z = 20 and 40 (straight lines) with: 
(a) the result for U<D) calculated by Ball et al. (1973), and (b) the experimental results for argon and 
xenon (Fano and Cooper 1968) shown as smooth curves which neglect fine structure. Note that 
the parameter D is as defined by equation (33). 

Comparison with Experiment 

The result (32) is compared with the cross section calculated by Ball et al. (1973) 
in Fig. la. The main difference is that the cross section calculated here is lower at 
low frequencies and falls off less rapidly. There is the further difference that the 
calculations of Ball et al. are based on the original Thomas-Fermi atom for which 
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(J is universal function of Q, while the present calculations give a different curve for 
each Z. 

In Fig. lb we compare the cross section (32) with the experimental results for the 
elements argon and xenon (Fano and Cooper 1968) in the range of frequencies for 
which the approximations are expected to be reasonably valid. Evidently the 
expression (32) is only accurate to within 50 % at a few selected points while elsewhere 
the agreement is just to within an order of magnitude. However, when the cross 
section is required for an integration over a wide range of frequencies, as is frequently 
the case in stellar calculations, the approximate expression (32) may be adequate 
since equation (28), from which it is obtained, satisfies the sum rule (see Part I) 

f (J(w) dw ~ Kg L (J(wk) = 2ne2Z (1- n+ 1) 
k flC Z· 

(34) 

If n + 1 is replaced by n, equation (34) is the quantum mechanical result. It can be 
seen from Fig. Ib that the approximate cross sections do in fact average the peaks 
and valleys of the experimental cross sections rather well. 

Conclusions 

The Thomas-Fermi-Bloch model is expected to be a good approximation for 
those processes involving many atomic electrons. This restriction means that the 
absorption of photons with energies of a few electron volts, which may be attributed 
to the excitation of one or two outer electrons, is not adequately described. 
Similarly, one would not expect a good description of absorption involving energies 
of the order of Z 2 rydbergs, since these energies indicate absorption by K or L 
electrons. For intermediate energies the calculated (J(w) should be reasonable although, 
since there is no shell structure in the model, the structure in the experimental cross 
section is outside the scope of the model. 
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