Gamma Ray Transitions following keV Neutron Capture in 2s-1d Shell Nuclei

M. J. Kenny, A. P. W. Martin, B. L. E. Carlson and J. A. Biggerstaff D.

- ^A AAEC Research Establishment, Private Mail Bag, Sutherland, N.S.W. 2232.
- ^B University of British Columbia, Vancouver, Canada, and AAEC Research Establishment.
- ^c AINSE Fellow at the Australian National University, and attached to AAEC.
- ^D Oak Ridge National Laboratory, Tennessee, U.S.A., and AAEC Research Establishment.

Abstract

A Ge(Li) detector has been used to observe γ -ray transitions after the capture of keV neutrons in natural samples of F, Al, Si, S and Ar. Transitions to positive and negative parity states show that there are strong p-wave resonances as well as s-wave resonances in this mass region. The even-Z nuclei decay more by E1 transitions than by M1. Odd-Z nuclei decay by strong M1 transitions.

Introduction

Previous measurements of keV capture spectra for elements in the A=20-40 region have used NaI detectors (Bird et al. 1965; Bergqvist et al. 1967; Lundberg and Bergqvist 1970; Nystrom et al. 1970). From these experiments a certain amount of information has been derived for electric and magnetic dipole transitions following p-wave and s-wave resonance capture. In this laboratory, techniques have been developed for using Ge(Li) detectors for resolved resonance capture (Bird et al. 1968). In the region A=40-70 strong s-wave resonances are seen and there is evidence for d-wave resonances (Bird et al. 1969) consistent with shell model theory. An extension of this work to cover six elements between A=90 and 140 has shown strong dipole transitions following p-wave capture, again consistent with shell model theory (Bird et al. 1972). Detailed analysis of this work is hindered by the close spacing of both initial and final states.

It was decided to seek further clarification of the significance of p-wave resonances with mass number and of the contributions of electric and magnetic radiation in the decay schemes by using a high resolution Ge(Li) detector to study keV capture by several 2s-1d shell nuclei. The samples used were fluorine, aluminium, silicon, sulphur and argon.

Method

The experimental techniques have been described previously (Bird et al. 1969). The detector used for these measurements was an Ortec 40 cm³ coaxial Ge(Li), with a resolution (FWHM) of $2 \cdot 3$ keV at $1 \cdot 33$ MeV. The detector was at 90° to the capture sample. Neutrons were produced with the ⁷Li(p, n)⁷Be reaction using a proton energy 12 keV above threshold and a thick target. The proton beam was klystron bunched to 2 ns FWHM and the timing resolution was < 4 ns for the γ -ray energy range from 700 keV to 9 MeV. The flight path length to sample centre was 30 cm. Digital window techniques were used in the time spectrum to select

760

four or five intervals of neutron energy. The neutron energy was also measured to an accuracy of ± 4 keV by the shift in energy of primary γ -rays above the expected thermal value.

Nucleus	Resonance energy (keV)	Reference	$l_{ m n}$	J^π_{c}	Observed in present work
¹⁹ F	27.07	Macklin and Winters (1973)	1	2-	Yes
	49.7	Macklin and Winters (1973)	1	1-	Yes
²⁷ Al	6	Bergqvist et al. (1967)	1		No
	34.7	Singh et al. (1971)	0	2+	Yes
²⁸ Si	32-38 ^A	Bergqvist et al. (1967)			Yes
	67.7	Allen and Macklin (1973)			Yes
³² S	30	Bergqvist et al. (1967)	1	3/2-	Yes
	43	Nystrom et al. (1970)	_	<u>-</u>	Yes

Table 1. 2s-1d shell nuclei resonance parameters

Gamma ray energy calibration was made in terms of the ${}^{1}\text{H}(n,\gamma){}^{2}\text{H}$ line at 2223 keV, the thorium line at 2614 keV and iron and titanium thermal capture lines at 7646 and 6413 keV (Rasmussen *et al.* 1970; Gove and Wapstra 1972). Detector efficiency measurements were performed with a ${}^{56}\text{Co}$ source and the reactions ${}^{26}\text{Mg}(p,\gamma){}^{27}\text{Al}$, ${}^{14}\text{N}(n,\gamma){}^{15}\text{N}$ and ${}^{35}\text{Cl}(n,\gamma){}^{36}\text{Cl}$ (Bartholomew *et al.* 1967; Fubini *et al.* 1970). Data were collected by an on-line PDP7 computer. Pure element samples were used for aluminium, silicon, sulphur and argon while Teflon was used for a fluorine sample. Sample masses were typically 2 kg and run times varied from 40 to 80 h with an average beam current of 6 μ A. Measured intensities varied from a few thousand counts in the strongest peaks to about fifty counts in the weakest peaks. Uncertainties on measured intensities due to statistical errors, background, efficiency corrections and variation in self-absorption thus vary from a few per cent for the strongest transitions up to about 30% for the weakest.

Results

A list of resonances for which γ -ray spectra have been measured is given in Table 1. The observed transitions and relative intensities (per 100 captures) are listed in Tables 2a-2f together with thermal capture and previous keV data where available. Decay schemes and high energy γ -ray spectra are shown in Figs 1–5. The results are generally consistent with previous work, but remove numerous ambiguities associated with relatively poor resolution NaI experiments.

There are some differences between our results and those of Lundberg and Bergqvist (1970). For the $67 \cdot 7$ keV resonance in ²⁸Si we observe no measurable intensity to the 3067 keV $5/2^+$ state whereas they see this as a moderate transition. For the 30 keV resonance in ³²S we observe an increased intensity to the 3221 keV $3/2^-$ state and negligible intensity to the 2869 keV $(3/2, 5/2)^+$ state. It must be presumed that because of the superior resolution of the Ge(Li) detector, the present decay scheme is the more reliable.

A Two or more resonances.

Radiation widths have been calculated from the usual formulae (Skorka *et al.* 1966) and are listed in Table 3. In cases of uncertainty, both E1 and M1 radiation widths are included. Higher multipolarities have not been calculated because they are unusual in neutron capture.

Large M1 radiation widths are partly due to the preferred 8.3 eV value for Γ_{γ} in aluminium taken from the data of Singh *et al.* (1971). From the 49 observed transitions, 25 are E1, 20 are M1 and 4 are uncertain. The 38 keV resonance in silicon and the 43 keV resonance in sulphur have equal numbers of E1 and M1 transitions irrespective of l=0 or 1 assignment. Average radiation widths are 3.3×10^{-3} W.u. for E1 and 90 × 10⁻³ W.u. for M1. Interchanging the uncertain E1 and M1 transitions has a negligible effect on the average. Similarly, any error caused by assuming $\Gamma_{\gamma}=1.0$ eV in the unknown cases has negligible effect.

Table 2. Gamma rays observed after keV neutron capture

References to data compared with the present results are:

Bq, Bergqvist et al. (1967);

Hd, Hardell and Hasselgren (1969), Hardell et al. (1969); Sp, Spilling et al. (1968);

Bt, Bartholomew *et al.* (1967); Lb, Lundberg and Bergqvist (1970); St, Spits *et al.* (1970)

(a) Resonances in 19F

γ-ray	Transition	7.77	701 1B		• .	0 captures		0.137
energy ^A (keV)	(²⁰ F state) (keV)	J_{f}^{π}	Thermal ^B Sp, Hd	27 ke\ Present	у Вq	44 keV Present	Bq	9 keV Present
6601	$R \rightarrow 0$	2+	9.0	$2 \cdot 0 \pm 0 \cdot 5$			5	
5955	$R \rightarrow 656$	3 ⁺		6 ± 1	6	42 ± 7	9	
5778	$R \rightarrow 823$	4+				23 ± 7		
5617	<i>R</i> → 984	1-	1 · 2				13	18 ± 4
5544	$R\rightarrow 1057$	1+	4.4				12	9±4
5290	$R\rightarrow 1309$	2-	1.8	31 ± 2	32			
4757	$R\rightarrow 1843$	(2)-	1 · 4	8 ± 2				
4630	<i>R</i> →1971	(3)-	0 · 1	46 ± 4	50			
4556	$R\rightarrow 2044$	2+	4.7	$1\cdot 5\pm 1$			42	59 ± 6
3635	R→2966	2+, 3+				35 ± 9		
3112	$R\rightarrow3488$	1+	2.0	3 ± 1	8		20	14 ± 5
2518	$R\rightarrow 4082$	1 +	0.5	$2\cdot 5\pm 1$	5		. 7	
Secondaries								
823	823→ 0		2.0			45 ± 7		
851	1843→ 984			$2\cdot 5\pm 1$				
985	984→ 0		9.3	4 ± 1				17 ± 4
1057	1057→ 0		$6 \cdot 2$	$2\cdot 5\pm 1$				14±6
1147	1971→ 823		2.3	24 + 3				_
1307	1309→ 0		4.4	48 ± 4				
1386	2044→ 656		6.6	5±1				57 ± 6
1841	1843→ 0		6.5	8 ± 2				
1892	4082→2195		0.5	$1\cdot 5\pm 0\cdot 5$				
1970	1971→ 0		0.8	9 ± 2				
2143	2966→ 823		2.0	_		18 ± 4		
2195	2195→ 0		0.7	$1\cdot 5\pm 0\cdot 5$				
2966	2966→ 0		0.9			11 ± 3		
3490	3488→ 0		6.7	$2 \cdot 5 \pm 1$		· —		14 ± 5
4080	4082→ 0		0.4	1.5 ± 0.5				

^A E_{γ} (measured) $-E_{\rm n}$. ^B Only those lines seen in keV capture are included here.

Table 2 (Continued)

(b) Resonance in ²⁷Al

γ-ray energy ^A	Transition (28Al state)	$J^{\pi}_{\ \mathrm{f}}$	Thermal	Intensity/100 captures 35 keV	
(keV)	(keV)	f	Hd	Present	Bq
7724	<i>R</i> → 0	3+	31.8	79±5	60
7689	$R \rightarrow 31$	2+	4.5	$2\cdot 5\pm 1$	4
6708	$R\rightarrow 1014$	(3)+	1.0	3±1	
6102	$R \rightarrow \frac{1620}{1623}$	1+ (2,3)+	2.9	10±2	10
5579	$R\rightarrow 2139$	$(2,3)^+$	1.1	1·5±1 \	
5445	$R\rightarrow 2272$		0.2	2 ± 1	4
2956	<i>R</i> →4766	(l=1)	9.3	2±1	•
2818	<i>R</i> →4905	(l=1)	3.5	}	3
Secondaries					
1623	$\begin{array}{c} 1620 \\ 1623 \end{array} \rightarrow \qquad 0$		2.3	6±1·5	
1017	1017→ 0		2.8	2·0±1	
986	1017→ 31		2.3	$2 \cdot 5 \pm 1$	
868	3011→2143			$3\cdot 5\pm 1$	

(c) Resonances in 28Si

γ-ray	Transition			Intensity/10	0 captures	
energy ^A	(29Si state)	$\boldsymbol{J_{\mathrm{f}}^{\pi}}$	Thermal	38 keV	67·7 k	eV
(keV)	(keV)	•	St	Present	Present	Lb
8476	<i>R</i> → 0	1/2+	2.4	9±1·5	32±2	35
7202	$R\rightarrow 1273$	3/2+	8	47 ± 3	37 ± 2	32
6449	$R\rightarrow 2028$	5/2+	0		19±2	10
6049	$R\rightarrow 2426$	3/2+	0.5		9±1	8
	R→3067	5/2+				7
3540	R→4934	3/2-	69	42 ± 3	2 ± 1	9
2092	<i>R</i> →6381	1/2-	21	2 ± 1	$1\cdot 0\pm 0\cdot 5$	(17)
Secondaries						
2027	2028→ 0			15 ± 2	5 ± 1	
4935	4934→ 0		65	56±2	6 ± 1	
6383	6381→ 0		12	15 ± 2	4 ± 1	

(d) Resonances in 29Si

γ-ray	Transition		Inte	nsity/100 captu	res
energy ^A	(30Si state)	J_{f}^{π}	Thermal	15 keV	26 keV
(keV)	(keV)		St	Present	Present
10612	$R \rightarrow 0$	0+	20	80 ± 10	0
8380	$R\rightarrow 2232$	2+	5	20 ± 10	100

 $^{^{\}text{A}}E_{\gamma}$ (measured) $-E_{\text{n}}$.

Table 2 (Continued)

(e) Resonances in 32S

γ-ray	Transition			Intensity			
energy ^A	(33S state)	J_t^{π}		30 ke		43 ke	V
(keV)	(keV)		Thermal	Present	Lb	Present	Lb
8640	$R \rightarrow 0$	3/2+	2.5	5 ± 1 · 5	3	8 ± 2	17
<i>7</i> 799	$R \rightarrow 842$	1/2+	3.5	48 ± 3	50	6 ± 2	(10)
6671	<i>R</i> →1968	5/2+		4 ± 1	10	_	(5)
6325	<i>R</i> →2313	3/2+		4 ± 1	10	9±2	(-)
	R→2869	$\binom{3/2^+}{5/2^+}$			4		
5415	$R \rightarrow 3221$	3/2-	52.6	27 ± 3	8	60 ± 4	66
4424	R→4213	3/2-	4.3	6±1·5	4	9 ± 2	
2929	<i>R</i> →5715	1/2-	14.0	$5\pm1\cdot5$	15	8 ± 2	(7)
Secondaries							
5042	5883→ 842			0.6		0.5 ± 0.5	
4862	5715→ 842			5 ± 1		6±1	
3363	4213→ 842			$2\cdot 5\pm 1$		5 ± 1	
3218	3221→ 0			15 ± 1		31 ± 3	
2371	3221→ 842			15 ± 1		29 ± 3	
2310	2313→ 0			2 ± 1		5±1	
1968	1968→ 0			4±1		0	
1698	4920→3218			2 ± 1		2	
1474	2313→ 842			4 ± 1		8	

(f) Resonances in 40 Ar

γ-ray	Transition			Intensity/100	captures
energy ^A	(41 Ar state)	$\boldsymbol{J}_{\mathbf{f}}^{\pi}$	Thermal	15-70 keV	58 keV
(keV)	(keV)		Bt	Present	Present
6098	<i>R</i> → 0	7/2-		15±2	40±4
5933	<i>R</i> → 167	5/2-		$2\cdot 5\pm 1$	
5582	<i>R</i> → 516	3/2-	14.6	1·0±1	
5063	$R\rightarrow 1035$	•	0.8	10 ± 2	26 ± 3
4744	<i>R</i> →1354	3/2-	57.6	71 ± 3	34 ± 3
Secondaries					
1187	1354→ 167			33 ± 3	
838	1354→ 516			5±1	

^A E_{γ} (measured) $-E_{\rm n}$.

Spin and Parity Assignments

Where the l value for the resonance is known, the dominant decay mode is dipole, either electric or magnetic. Similar behaviour is observed in keV capture in the regions A=40-70 and 90-130, and also occurs across the periodic table in thermal capture. Assuming a preference for dipole transitions and using previously determined spin and parity assignments, a number of deductions can be made.

Table 3. Estimated radiation widths

Neutron resonance	E_{γ} (keV)	I_{γ} $(\times 10^{-2})$	Γ_{γ} (eV)	Dipole strength E1	(10 ⁻³ M1	W.u.)
		¹⁹ F target				
27 keV,	6628	2	1 · 4 ^A	0.2		
$J_{\rm c}^{\pi}=2^-,$	5982	6		0.75		
p wave	5317	31			140	
•	4784	8			47	
	4657	46			304	
	4583	1.5		0.4		
	3139	3		2.7		
	2545	2.5		4.3		
44 keV	5999	42	1.0B	4.0	94	
	5822	23		4.4	57	
	3679	35		17.0	350	
49 keV,	5666	18	1·7A		87	
$J_{c}^{\pi}=1^{-},$	5593	9	- '	1.7	0,	
p wave	4606	59		20		
p wave	3162	14		15		
	5102	²⁷ Al targe	t			
25 IroV	7750	79	8.3c		680	
35 keV, $J_{c}^{\pi} = 2^{+}$,	7758 7728	2.5	0.2		23	
$p_{c} = 2^{-1}$,	6743	3			4	
p wave	6132	10			174	
	5616	1.5			46	
	5480	2			58	
	2991	2		10	20	
		²⁸ Si target				
38 keV	8513	9	0.23 ^D	0.05	2	
JO RC V	7239	47	0 23	0.5	14	
	3574	42		3.3	100	
	2126	2		0.7	21	
67·7 keV,	8542	32	0.8E	0.7		
deduced	7268	37	0.0	1.2		
p wave	6516	19		0.9		
p wave	6116	9		0.5		
	3603	2		0 3	16	
	2159	1			38	
	2137	²⁹ Si targe			30	
(32) keV	8406	100	<i>t</i> 1⋅0 ^B	2.6	81	
(32) RO	0700	³² S target		2 0		
30 keV	8670	5 s target	0·5F	0.06		
30 keV, $I^{\pi} - 3/2$	7829	48	0.3	0.00		
$J_{\rm c}^{\pi} = 3/2^{-},$	6701	46		0.7		
p wave	6355	4		0.1		
	5445	27		0.1	40	
	3443 4454	6			16	
	44.14	O			10	

^A Macklin and Winters (1973).

^B Presumed value.

^C Singh *et al.* (1971).

^D Allen and Macklin (1973); g = 1.

^E Allen and Macklin (1973); g = 2.

^F Bergqvist *et al.* (1967).

Tabla	2	(Continued)
ranie	.7	Communear

Neutron resonance	E_{γ} (keV)	I_{γ} $(\times 10^{-2})$	Γ_{γ} (eV)	Dipole streng E1	th (10 ⁻³ W.u.) M1
		32S targ	jet		
43 keV	8683	8	1 · 0 ^B	0.2	6
	7842	6		0.2	6
	6368	9		0.5	17
	5458	60		5.4	178
	4467	9		1.5	49
	2972	8		4.4	148
		40 Ar tar	get		
58 keV	6150	40	1 · 0 ^B	2.2	
	5113	26		2.4	
	4794	34		3.9	

^B Presumed value.

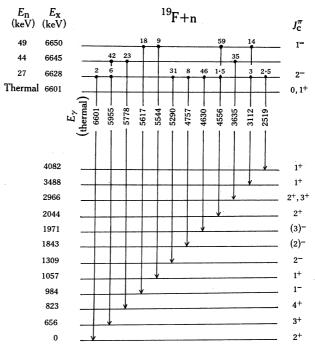
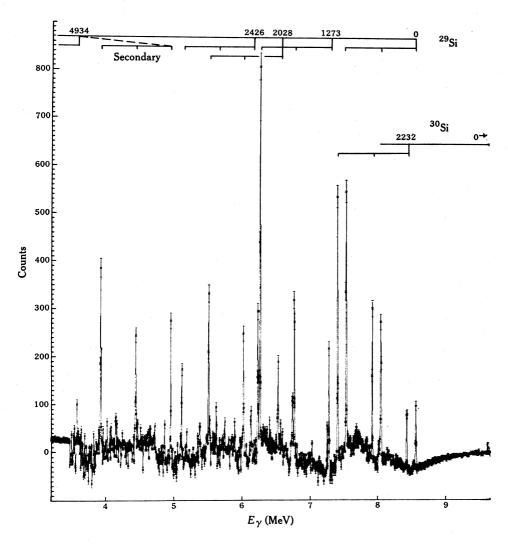



Fig. 1. Decay scheme of ²⁰F for the 27, 44 and 49 keV resonances in ¹⁹F.

^{20}F , $E_{\rm x} = 1971 \; keV$, $J_{\rm f}^{\pi} = 3^{-1}$

Recent measurements by Longo et al. (1973) and Forster et al. (1973) assign negative parity to both the 1309 and 1971 keV levels in ²⁰F. It is probable (Pronko 1973) that the 1971 keV level is the 3⁻ member of the low lying negative parity quartet (1⁻, 2⁻, 2⁻, 3⁻) predicted by Johnston et al. (1971), the other members being the 984, 1309 and 1843 keV levels. The 3⁻ assignment is consistent with the strong branch to the 4⁺ level at 823 keV observed for the 27 keV resonance. Using this 3⁻ assignment the strongest transitions from this resonance are seen to be M1.

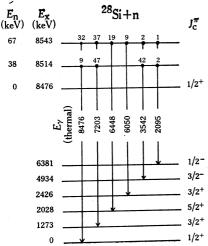


Fig. 2 (above). High energy γ -rays observed in the decay of ²⁹Si and ³⁰Si, summed over the neutron energy range 15–70 keV with the continuum subtracted. The positions of full energy, single escape and double escape peaks are shown.

Fig. 3 (*left*). Decay scheme of ²⁹Si for the 38 and 67 keV resonances in ²⁸Si.

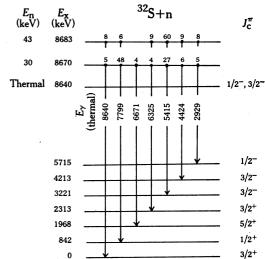


Fig. 4. Decay scheme of ³³S for the 30 and 43 keV resonances in 32S.

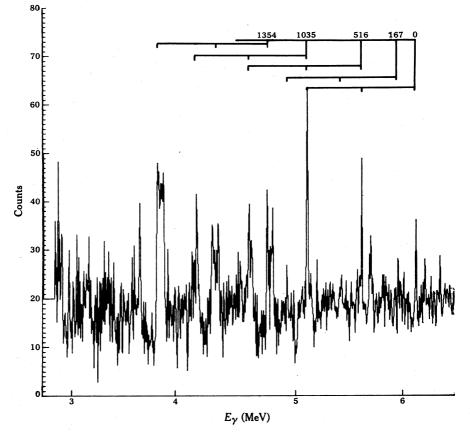


Fig. 5. High energy γ -rays observed in the decay of ⁴¹Ar, summed over the neutron energy range 15-70 keV with the continuum subtracted. The positions of full energy, single escape and double escape peaks are shown.

¹⁹
$$F+n$$
, $E_{\rm n} = 43.5 \ keV (J_{\rm c} = 3, 4)$

Two groups of γ -rays are observed here, in agreement with the results of Macklin and Winters (1973), who reported resonances in the capture cross section at $43 \cdot 5 \pm 0 \cdot 1 \text{ keV}$ ($J_c^{\pi} \ge 1$) and $48 \cdot 7 \pm 0 \cdot 3 \text{ keV}$ ($J_c^{\pi} = 1^-$, $\Gamma_n = 1 \cdot 96 \pm 0 \cdot 3 \text{ keV}$, $\Gamma_{\gamma} = 1 \cdot 7 \pm 0 \cdot 4 \text{ eV}$). Transitions to the levels at 656, 823 and 2966 keV give an observed neutron energy of $41 \pm 3 \text{ keV}$ and are thus attributed to the $43 \cdot 5 \text{ keV}$ resonance. Because the final states have spins $(2-4)^+$, assuming dipole transitions the $43 \cdot 5 \text{ keV}$ resonance then has $J_c = 3, 4$.

Dat	Data from Allen and Macklin (1973)						
Resonance E_n (keV)	Area (barn eV)	Width Γ_n (eV)	$g \Gamma_{\rm n} \Gamma_{\gamma} / \Gamma$ (eV)				
31.7	6.5		0.05				
38.8	26.3	85	0.23				
55.6	36	990	0.45				
67 · 7	106		1.6				
70.8	1.9		0.03				

Table 4. Neutron resonance parameters in natural silicon
Data from Allen and Macklin (1973)

High resolution time of flight spectra obtained at ORELA by Allen and Macklin (1973) using a 40 m flight path show five resonances in natural silicon for neutron energies between 20 and 80 keV. The parameters reported for these resonances are given in Table 4. It is seen that the 55 keV resonance is broad and the $67 \cdot 7$ keV resonance is narrow. At a neutron energy of (63 ± 4) keV, most observed transitions are to positive parity states $(1/2^+, 3/2^+, 5/2^+)$. The dipole-transition assumption leads to $J_c^\pi = 3/2^-$ for the $67 \cdot 7$ keV resonance.

A strong similarity is noted between this resonance and the 84 keV p-wave resonance in the neighbouring even-Z nucleus ²⁴Mg. The latter resonance has $J_c^{\pi} = 3/2^-$ and its decay scheme has been reported by Bergqvist *et al.* (1967) and Lundberg and Bergqvist (1970). Almost all the observed transitions are E1 to states with $J_f^{\pi} = 1/2^+$, $3/2^+$ and $5/2^+$. As is the case with silicon, the decay scheme differs totally from thermal capture, where the strongest transitions are E1 to negative parity states at 3-5 MeV excitation.

$$^{29}Si+n$$
, $E_{\rm n}=(26\pm5)keV(J_{\rm c}^{\pi}=2^{-},l_{\rm n}=1)$

Although natural silicon contains only $4.7\%^{29}$ Si, the spectra show a strong transition to the 2^+ first excited state in 30 Si at $E_n = (26 \pm 5)$ keV. This transition is almost as strong as any observed in 29 Si and, when isotopic abundances are considered, it is about 15 times stronger than any other observed transition. This behaviour is completely different from that for thermal capture (Spits et al. 1970). An explanation for the appearance of this transition and the non-appearance of transitions to the 0^+ ground state is to assign $J_c^\pi = 2^-$. The possibility of the resonance being s wave and the transition being M1 is less likely because of the relatively fewer strong M1 transitions observed in even-Z nuclei than in odd-Z nuclei. The data in Table 4 show that the 31.7 keV resonance in natural silicon has $g \Gamma_{\nu} \Gamma_{n} / \Gamma \sim 0.05$ eV, assuming

 $^{^{28}}Si + n$, $E_n = 67.7 \ keV (J_c^{\pi} = 3/2^-)$

it to be in ²⁸Si. If it is a p-wave resonance in ²⁹Si, then $g \Gamma_{\gamma} \Gamma_{n} / \Gamma = 1 \cdot 0$ eV. The latter value for the radiative width would be more usual for this mass region.

$$^{40}Ar + n$$
, $E_n = (58 \pm 4)keV (J_c^{\pi} = 5/2^+, l_n = 2)$

Transitions are observed to the $7/2^-$ ground state in 40 Ar at $E_n = (58 \pm 4)$ keV. This is seen clearly in Fig. 5 along with transitions to the $5/2^-$ first excited state. Assuming dipole transitions, the resonance is d wave with $J_{\alpha}^{r} = 5/2^+$.

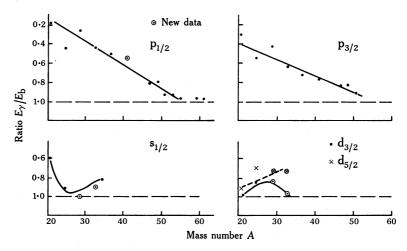


Fig. 6. Plots of the ratio of the γ -ray energy E_{γ} to the neutron binding energy E_{b} against mass number A for the strongest transition to each final state assignment for even-even target nuclei.

Radiation Widths

Bergqvist et al. (1967) obtained average radiation widths of $1 \cdot 4 \times 10^{-3}$ W.u. for E1 and 20×10^{-3} W.u. for M1 (based largely on aluminium data) for 2s-1d shell nuclei. They concluded that the M1/E1 ratio was small ($\sim 10^{-2}$) for even-Z nuclei and much larger ($\gtrsim 10^{-1}$) for odd-Z nuclei. In the present work we have used a larger Γ_{γ} for the 35 keV resonance in aluminium and on the basis of recent negative parity assignments have shown that strong M1 transitions also occur in fluorine. Our average M1 value is thus larger than that of Bergqvist et al. while our E1 average is in good agreement, bearing in mind that different transitions are involved. The M1/E1 ratio is found to be ~ 1 for odd-Z nuclei and $\sim 10^{-2}$ for even-Z nuclei.

Strong Transitions

In most decay schemes, irrespective of the resonance *l*-value, a few transitions account for about three-quarters of the observed intensities. Thermal spectra also show a small number of strong lines. It was pointed out by Bird (1969) that neutron capture by even-even medium weight nuclei is generally followed by strong transitions to predictable final states. The data then available for negative parity states ($p_{1/2}$, $p_{3/2}$) included fairly extensive thermal capture results in the region A = 20-90. For the $s_{1/2}$ positive parity states, however, the data were restricted to the results of Bergqvist *et al.* (1967) for 2s-1d shell keV capture. From the present work it has been possible to use the silicon, sulphur and argon data to supplement previous data.

Fig. 6 shows a set of plots for five shell model states including $d_{3/2}$ and $d_{5/2}$. All transitions are E1. The argon data fit smoothly on the $p_{1/2}$ curve and a clear minimum is obtained for the $s_{1/2}$ curve. This is possibly true for the $d_{3/2}$ and $d_{5/2}$ states also, although insufficient data from p-wave resonances are available to confirm this. The $d_{3/2}$ state in ²¹Ne appears to be lower than might be expected.

It was argued by Bird (1969) that the shape of the $p_{1/2}$ and $p_{3/2}$ plots could be taken as evidence that the neutron capture process is semi-direct. The incoming neutron forms a resonant state which may decay by a transition involving the pairing of this neutron and a core neutron, the pair going into vacant high spin states leaving a low spin hole. The conclusion is then that neutron capture in even—even medium weight nuclei is predominantly a one- or two-stage process, at least for low angular momenta.

The odd-Z nuclei show much less evidence for systematic trends. Where initial and final state configurations are known, all transitions are consistent with the dipole hypothesis. By supplementing the data from this experiment with the sodium and additional aluminium data from Bergqvist et al. (1967) and Lundberg and Bergqvist (1970), it is found that there are no systematic changes between thermal and keV capture whether it be s wave or p wave. The picture is confused by the lack of information on spin and parity assignments in sodium, and the recent assignments given to low lying levels in ²⁰F which differ from previous values.

Conclusions

The high resolution Ge(Li) spectrometer enables individual resonances to be studied and decay schemes to be established. Where l values for individual resonances are known from previous work, the dominant decay modes are seen to be dipole transitions. For the even-Z nuclei there is a strong preference for electric rather than magnetic dipole, but for the odd-Z nuclei strong magnetic dipole transitions are observed. The 67.7 keV resonance in silicon has been assigned $I_n = 1$. For argon, where no previous data are available, a resonance has been observed at 58 keV and assigned $l_{\rm n}=2$. In the case of the 67·7 keV resonance in ²⁸Si, the relatively strong transition to the 2028 keV $5/2^+$ state enables a $J_{\rm c}^{\pi}$ allocation of $3/2^-$ to be made. A resonance has been observed in ²⁹Si+n, and this is presumed to be the 31.7 keV resonance observed in natural silicon by Allen and Macklin (1973). In the even-Z nuclei, thermal capture shows only very weak transitions to positive parity states whereas, in keV capture, numerous strong transitions are seen to these states. It is clear therefore that p-wave resonances are significant in the present mass region. This behaviour is consistent with the shell model, and previous work (Kenny 1971; Bird et al. 1972) has shown similar consistency in the mass regions A = 40-70and 90-130. Radiation widths for E1 transitions show typical average values, while M1 transitions in fluorine and aluminium are strong.

Acknowledgments

The authors acknowledge valuable discussions with Dr J. R. Bird and assistance from Dr D. Chan and the accelerator technical staff. Branching ratio information for the 26 Mg(p, γ) 27 Al reaction was provided by Dr S. G. Boydell of Melbourne University.

References

Allen, B. J., and Macklin, R. L. (1973). Proc. Int. Conf. on Photonuclear Reactions and Applications, March 1973, p. 291.

Bartholomew, G. A., et al. (1967). Nucl. Data A 3, 434.

Bergqvist, I., Biggerstaff, J. A., Gibbons, J. H., and Good, W. M. (1967). Phys. Rev. 158, 1049.

Bird, J. R. (1969). Proc. Int. Conf. on Properties of Nuclear States, Montreal, p. 782.

Bird, J. R., Allen, B. J., and Kenny, M. J. (1969). AAEC Rep. No. TM511; Proc. IAEA Symp. on Neutron Capture Gamma Ray Spectroscopy, Studsvik, p. 587.

Bird, J. R., Biggerstaff, J. A., Gibbons, J. H., and Good, W. M. (1965). Phys. Rev. B 138, 20.

Bird, J. R., Kenny, M. J., and Allen, B. J. (1968). Phys. Lett. B 27, 638.

Bird, J. R., Pattenden, N. J., and Kenny, M. J. (1972). Proc. IAEA Conf. on Nuclear Structure Study with Neutrons, Budapest, p. 460.

Forster, J. S., Ball, G. C., Davies, W. G., Leslie, J. R., McLatchie, W. T., and Millington, G. F. (1973). Bull. Amer. Phys. Soc. 18, 678.

Fubini, A., Napoli, A., Prosperi, D., and Terrasi, F. (1970). CNEA Rep. No. RT/F1(70)47.

Gove, N. B., and Wapstra, A. H. (1972). Nucl. Data A 11, 2, 3.

Hardell, R., and Hasselgren, A. (1969). Nucl. Phys. A 123, 215.

Hardell, R., Idetjarn, S. O., and Ahlgren, H. (1969). Nucl. Phys. A 126, 392.

Johnston, I. P., Castel, B., and Sostegno, P. (1971). Phys. Lett. B 34, 34.

Kenny, M. J. (1971). Aust. J. Phys. 24, 805.

Longo, D. S., Lawson, J. C., Alexander, L. A., Hichwa, B. P., and Chagnon, P. R. (1973). Phys. Rev. C 8, 1347.

Lundberg, B., and Bergqvist, I. (1970). *Phys. Scr.* 2, 256; Proc. IAEA Symp. on Neutron Capture Gamma Ray Spectroscopy, Studsvik, p. 667.

Macklin, R. L., and Winters, R. R. (1973). Phys. Rev. C 7, 1766.

Nystrom, G., Lundberg, B., and Bergqvist, I. (1970). RIND Rep. No. FOA C440-22.

Pronko, J. G. (1973). Phys. Rev. C 7, 127.

Rasmussen, N. C., Orphan, V. J., Harper, T. L., Cunningham, J., and Ali, S. A. (1970). Gulf Atomic Rep. No. GA-10248.

Singh, U. N., et al. (1971). Proc. Int. Conf. on Statistical Properties of Nuclei, Albany, p. 81 (Plenum: New York).

Skorka, S. J., Hertel, J., and Retzschmidt, T. W. (1966). Nucl. Data A 2, 4, 349.

Spilling, P., Gruppelaar, H., De Vries, H. F., and Spits, A. M. J. (1968). Nucl. Phys. A 113, 395.

Spits, A. M. J., Op der Kamp, A. M. K., and Gruppelaar, H. (1970). Nucl. Phys. A 145, 449.

Manuscript received 19 November 1973, revised 29 July 1974

