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A justification is presented for the use of the Wick rotation in the construction of solutions to Wick's 
equation. This is done by demonstrating the equivalence of the solutions found by Wick (1954) 
and by Green (1957) with and without recourse to the Wick rotation respectively. 

Introduction 

Wick (1954) made two important contributions to the theory of the bound states 
of a pair of particles in relativistic quantum mechanics. The first was his suggestion 
that the relative momentum of the bound particles could be regarded as a Euclidean 
four-vector, so that the contour of integration over the relative energy, which appears 
in the Bethe-Salpeter integral equation for the wave function of the bound state, 
could be rotated from the real to the imaginary axis. This transformation of the 
Bethe-Salpeter equation has since come to bear the unfortunate name 'Wick rotation'. 
The validity of this rotation depends upon the analytic properties of the wave function. 
Wick's second contribution was to propose a set of approximations to the Bethe
Sal peter equation which rendered this equation soluble, and yet not so simple that 
all the relativistic features were obliterated. These approximations were that the 
bound particles should be spinless, that the exchanged particles should be both 
massless and spinless, and that the bound state could be adequately represented by 
the ladder Feynman diagram. 

Wick's equation for the bound state wave function <p(p) is 

(pi -mi)(p~ -m~)<p(p) = i.A.n- 2 f d4k <P(k)/{(p-k)2+is} , 

where p = (Po,p) is the relative momentum of the bound particles, PI'P2 and ml, m2 
are their four-momenta and masses respectively, and A. is the coupling constant whose 
magnitude determines the strength of the interaction. It is questionable whether 
Wick's model has any connection with physics, for the assumption that the exchanged 
particles have neither mass nor spin excludes all real particles. Nevertheless, applica
tions have been found; e.g. Biswas (1958) used Wick's equation in a composite model 
for K-mesons (see Nakanishi (1969) for many other applications). However, the 
value of Wick's equation lies not in its applications, but rather in the fact that it is 
the only soluble example of the Bethe-Salpeter equation. It is hoped that the relativ
istic aspects of its solutions, namely, the appearance of a new quantum number 
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and the possibility of imaginary values for the relative time and energy, are not 
peculiar to the model but are general features of the solutions of the Bethe-Salpeter 
equation. The purpose of the present paper is to justify the use of the Wick rotation 
in the construction of solutions to Wick's equation. 

The advantage gained by Wick through the rotation was the replacement of the 
indefinite Minkowski metric in the kernel of the integral equation by the definite 
Euclidean metric, so. that the integral equation became amenable to standard mathe
matical techniques. To accomplish this change of metric, Wick needed to prove 
three facts: 

(1) that the wave function ¢(p) was analytic in the upper and lower halves of 
the complex plane of the variable Po, and could be analytically continued 
from one region to the other; 

(2) that the contour of integration for the Po variable could be rotated from the 
real axis to the imaginary axis without encountering any singularities of 
the integrand; 

(3) that the contributions to the integral from the quarter-circles at infinity in 
the Po plane were zero or, equivalently, that ¢(p) approached zero as rapidly 
as Po 2 when Po approached infinity along any ray in the first or third qua,drants 
of the Po plane. 

Wick formulated stability conditions for the bound particles and found that these 
were sufficient to establish points (1) and (2) concerning the wave function. However, 
he was forced to assume the validity of (3). Wick reduced the four-dimensional 
integral equation to an ordinary differential operator. He deduced that, at a given 
centre-of-mass energy, bound states could only occur if the coupling constant assumed 
one of a countably infinite set of values, and that these values were the eigenvalues 
of the differential operator. 

Green (1957) discovered that it was not necessary to rotate the contour of integra
tion in order to find solutions of Wick's equation. He replaced the integral equation 
by a partial differential equation with associated boundary conditions and demon
strated that an ingenious bipolar coordinate transformation rendered the partial 
differential equation separable. Green also found that the permissible values of 
the coupling constant were the eigenvalues of an ordinary differential operator, 
which differs from the operator derived by Wick. 

To reconcile the two studies, and hence to justify Wick's assumption (3), it must 
be shown that the two ordinary differential operators have the same spectrum. The 
solution of this problem is here resolved into two stages. Firstly, the two differential 
equations are reduced to the same form, so that the operators differ only in the 
boundary conditions. Secondly, solutions which fulfil one set of boundary conditions 
are shown to fulfil the other set, and vice versa. Only the case of particles of equal 
mass is considered since Cutkosky (1954) has shown that the equations for unequal 
masses can be reduced to the former case. 

Differential Operators 

Wick's differential operator is comprised by the differential equation 

{(I-z2)d2/dz2 +2(n-l)zd/dz -n(n-l) +A/(I-a+az2)}g(z) = 0 (1) 
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and the boundary conditions 

g(± 1) = o. (2) 

The parameter A, the eigenvalue of the equation, is the coupling constant, n is an 
integer quantum number, and a is the square of the ratio of the centre-of-mass energy 
to the total rest mass of the interacting particles, and so is less than unity for bound 
states. The eigenvalues of this operator are simple, so that it follows that each eigen
solution g(z) must have definite parity, for otherwise g(z) and g(-z) would be 
independent eigensolutions with the same eigenvalue. The boundary conditions 
(2) may be replaced by 

g(O) = g(1) = 0 

for odd solutions of equation (1), and by 

dg(O)/dz = g(l) = 0 

for even solutions. If we now define 

x = (1-Z2)-1 and f(x) = xtng((1-1/x)t) 

then f(x) satisfies the following differential equation, a particular case of the Heun 
equation (Erdelyi 1955): 

{ d2 (1 1) d A-n2(X-a)} 0 -+ -+-- -+ x = dx2 1- x x-I dx 4x(x-l)(x-a) j( ) . (3) 

The boundary conditions to be satisfied by an 'odd' solution of equation (3), i.e. a 
solution of (3) derived from an odd solution of (1), are 

lim x-tnj(x) = 0 and j(l) = O. (4,5) 
x'" 00 

'Even' solutions of equation (3) must also satisfy (4) but, instead of (5), they must 
satisfy 

lim (x-l)tdf/dx = O. (6) 
x'" 1 

Green (1957) produced the equation 

{d2/dIX2 +;";(a -COS21X) +n2}u(lX) = 0, (7) 

which is to be satisfied by bounded periodic functions with period 210. If we have 

x = COS2 1X and f(x) = u(arccosxt) 

then f(x) also satisfies equation (3). The condition that U(IX) should be bounded 
requires that U(IX) should vanish as rapidly as COS21X - a near COS21X = a, for other
wise U(IX) would contain a factor log(cos21X -a). (Such a term would confound the 
definition of periodicity!) For the functionf(x), this implies that we have 

limj(x)f(x-a) < 00. (8) 
x"',, 
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The second boundary condition for J(x) also depends upon whether J(x) is derived 
from an odd or even function. If u(cx) is odd, we have 

u(O) = 0 

and thus 

J(I) = 0 (9) 

but, if u(cx) is even, we have 

du(O)jdcx = 0 
and thus 

lim (x-l)tdf/dx = O. (10) 
x-+l 

The various boundary conditions imposed on solutions of equation (3) are summarized 
in Table 1. 

Table 1. Summary of boundary conditions for equation (3) 

Green (1957) Wick (1954) 
Solution x=a x=l x = 1 x<= 00 

'Even' lim f(x) < 00 lim (x-1)'i df = 0 
x-..a x-a %-+1 dx 

lim (x-1)'i df = 0 lim x-'in f(x) = 0 
%-+1 dx x-+oo 

'Odd' lim f(x) < 00 f(l) = 0 
x-+a x-a f(l) = 0 lim x-'in f(x) = 0 

x~'" 

It is shown in the following sections that every solution of equation (3) which 
satisfies the boundary conditions at x = 1 and x = 00 has an analytic continuation 
which satisfies the boundary condition at x = a, and conversely. The work of Erd6lyi 
(1944) on the representation of Heun functions as convergent series of hypergeometric 
functions contains the solution of this problem. There is, however, a simpler solution 
which uses only elementary properties of Heun functions. 

Heun Functions 

The Heun equation is the second-order differential equation with just four singular 
points, all of which are regular. In its general form 

{~ + t (I-CX i - PI ~ + CXIPi ) _ X(CX4P4 - CX l Pl - CX2P2 -CX3 P3) -'}f(X) = 0 
dx2 i=l X-XI dx (X-Xi)2 (X-Xl)(X- X2)(X-X3) 

with 
4 

L (CXt+PJ = 2, 
i=l 

the singularities lie at Xl' X2, X3 and X4 = 00, and the parameters may be assumed 
to satisfy 

Re(CXj-Pi) ~ 0 for i = 1,2,3,4. 
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Solutions of the Heun equation are represented globally by 

{
Xl X2 X3 X4 = 00 

p exl ex2 ex3 ex4 

Pl P2 P3 P4 

X}, (11) 

a simple extension of the notation invented by Riemann for solutions of the 
hypergeometric equation. The entries exl and PI below a given XI are the exponents 
of the two independent branches which can be developed in series near XI' For 
certain values of the parameter " two branches of the P function may become linearly 
dependent; such exceptional solutions being called Heun functions. In this section 
it is shown that for certain cases of the Heun equation, one of which is equation (3), 
there are Heun functions which adopt definite exponents at not just two singular 
points but instead at all four. 

Suppose that it is possible to choose one exponent at each singular point so that 
the sum of the four chosen exponents is an integer. If the difference of the exponents 
at any singular point is an integer, suppose in addition that the exponent with the 
larger real part has been chosen. For clarity of argument, we assume that exponents 
exl' ex2, ex3' ex4 have been chosen and that we have 

exl +ex2 +ex3 +ex4 = m, (12) 

where m is an integer. Let f(x) denote a Heun function with exponents ex3 and ex4 
at X3 and X4 respectively. The analytic continuation of f(x) from some initial point 
Xo around a simple closed contour 2, which encircles in a positive sense the singular 
points Xl and X2' produces the same effect as continuation around a similar contour 
which encircles X3 and X4 in the opposite sense. This is readily seen ifthe compactified 
plane is projected onto the Riemann sphere. The latter continuation replacesf(x) by 

exp( -2ni(ex3+ex4))f(x). 

By the assumption (12) we have 

exp( - 2ni(ex3 +e(4)) = exp(2ni(exl +e(2)) . 

Thus continuation off(x) from Xo around 2 mapsf(x) into 

exp(2ni(ex1 +e(2)) f(x). 

A sufficient condition for this to be true is that f(x) should have exponents exl and 
ex2 at Xl and X2 respectively. When the difference of the exponents at one of these 
points, say X2' is an integer, this condition is also necessary. The details of the proof 
of this assertion are messy, but the result is easily understood. The branch of the 
P function (11) with exponent P2 at X2 contains a term with a factor log(x-x2) 
whenever ex2 - P2 isintegral. The assumption that f(x) depends upon this branch, 
and hence thatf(x) also contains a term with a logarithmic factor, is impossible to 
reconcile with the result that continuation of f(x) around 2 merely multiplies f(x) 
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by the factor exp(2ni(ct1 +ct2)). Thus, when the condition (12) holds and either 
ctl - /31 or ct2 - /32 is an integer, the Heun function with exponents ct3 and ct4 at X3 

and X4 also adopts exponents ctl and ct2 at Xl and X2. 

Application to Wick's Equation 

Equation (3) is a particular case of the Heun equation, the solutions of which in 
Riemann notation are 

{
Oaloo } 

P ! 1 ! !n x. 

o 0 0 -!n 

The boundary conditions at x = 1, to be satisfied respectively by 'odd' and 'even' 
solutions of equation (3), are fulfilled if and only if the 'odd' solutions have exponent 
! and the 'even' solutions have exponent 0 at x = 1. The condition at infinity imposed 
by Wick (1954) requires I(x) to have exponent !n at infinity. Thus, the 'odd' and 
'even' eigensolutions of Wick's boundary value problem are Heun functions with 
exponent !n at infinity and exponents! and 0 respectively at x = 1. The condition 
at x = a imposed by Green (1957) requires I(x) to have exponent 1 at x = a, so 
that the eigensolutions of Green's boundary value problem are also Heun functions. 

Suppose I(x) is an 'odd' eigensolution of Wick's boundary value problem. If n 
is even, then 

!+I+!+!n 

is an integer and, since the difference of the exponents at x = a is an integer, it 
follows from the argument of the preceding section that I(x) has exponents !, 1, ! 
and in at 0, a, 1 and 00 respectively. Thus I(x) satisfies the boundary condition 
at x = a and so is an eigensolution of Green's boundary value problem. This 
argument can be reversed because the difference of the exponents at infinity is also 
an integer. Consequently I(x) is an eigensolution of one operator if and only if it 
is an eigensolution of the other. The same conclusion applies in the other cases, 
corresponding to the other possible choices of parity for the eigensolution and n. 

Conclusions 

It has been shown above that the analytic continuation of an eigensolution of 
Wick's differential operator satisfies the differential equation and boundary conditions 
which together comprise Green's differential operator, and vice versa. The discrete 
spectra of the operators are identical. Consequently Wick's approach, which employs 
the contour rotation, is equivalent to Green's which does not. Hence the use of the 
contour rotation is justified in this model. 

The proof of the equivalence rests upon a fortuitous combination of exponents 
in the Heun equation, which permits the boundary conditions at one pair of singular 
points to be transferred to equivalent boundary conditions at another pair. It is 
most certainly not a general feature of Heun functions that they adopt a definite 
exponent at each of the four singular points. In fact, the argument can be reversed 
to imply that the contour rotation is only permissible because Wick's equation leads 
to such a special case of the Heun equation. It could be argued that the unusual 
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trick needed to justify the rotation is a reflection of the special nature of Wick's 
model and that the possibility of the Wick rotation only arises for solutions of Wick's 
equation. However, an alternative and broader view is that in any fundamental 
process the internal or relative momenta can be treated as Euclidean four-vectors 
or, equivalently, that the relative times may be taken to be imaginary. If this view 
is accepted, as is done e.g. in Euclidean field theory, then it is not at all surprising 
that the rotation can be justified. 
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