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Abstract 

A steady two-dimensional model that represents the part of a convection cell where the neutral gas 
constituent is rising and becoming supersonic is presented for both isothermal and variable tempera
ture conditions in an intensely heated region of the outer atmosphere of a planet or star. The stream
lines and orthogonal curves are represented by a system of confocal hyperbolae and ellipses respec
tively. The nozzle throat is achieved principally by the physical contraction and subsequent expansion 
of the gas rather than by a variation in the temperature or in the gravitational force component 
along the streamline. Regions in which supersonic speeds may be achieved are investigated by 
making suitable approximations both when the streamline is nearly vertical and when it approaches 
its asymptote. The characteristic patterns for the velocity and heating contours are shown, and the 
effects which parameters have in modifying these patterns are discussed. 

Introduction 

The conditions under which supersonic neutral winds may be achieved in the 
outer atmosphere of a planet have been explored for an isothermal environment 
in Part I of this series (Gilbert and Cole 1974a) and for the case of a variable tempera
ture in Part II (Gilbert and Cole 1974b). In these studies, streamline functions 
suggested by the possible shapes of convection cells were chosen and the boundary 
walls of a narrow tube of gas about a streamline were defined in a convenient mathem
atical form. No attempt was made to match boundary walls of adjacent streamlines 
so that a fully two-dimensional model was not possible. For the same general assump
tions, the present paper presents a steady two-dimensional model that represents the 
part of a convection cell where the gas is rising and becoming supersonic. Such a 
model is only appropriate in a region of intense heating, which may be caused, in 
the case of the Earth's atmosphere, by nuclear explosions or by auroral processes 
(Cole 1966), as was suggested in Part I. 

The behaviour of the Earth's atmosphere in response to heating has been in
vestigated previously for the more likely case of subsonic speeds. Thomas and 
Ching (1969) used analytical expressions in their study of the atmospheric response 
with altitude to various forms of time-dependent heating functions, while Volland 
and Mayr (1971) assumed small perturbations and known functional forms of the 
time-dependent variables to treat the time-dependent problem in three dimensions. 

Under the assumption of incompressibility, convective motion has been studied 
in both a fluid mechanics and a meteorological context (Scorer and Ludlam 1953; 
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Batchelor 1954; Scorer 1957; Lilly 1964). The shape-preserving circulating vortex 
structure is generally referred to as a 'thermal'. Both experimental and theoretical 
evidence demonstrate that under certain conditions a thermal will rise and expand 
while retaining its shape. By considering a suitable space-time transformation 
(i.e. by stretching the coordinates), Lilly (1964) was able to obtain a pseudo steady
state solution asymptotically. Much work has been done on the motion of plumes 
and thermals (for a review, see Turner 1969) but, as in most meteorological studies, 
the gas is assumed to be incompressible; also, supersonic speeds are completely 
inappropriate. Assuming hydrostatic equilibrium for a planet's atmosphere, one 
may show that the density decreases exponentially with altitude (e.g. Nicolet 1960) 
so that, except for very small scale convection (where the cell size is of the order of 
magnitude of a few kilometres), the assumption of a constant density is unrealistic. 
More important in the present paper though is that to achieve a nozzle throat in the 
real, as opposed to ficticious, sense (see below) at which the flow becomes supersonic, 
the gas must contract and subsequently expand. 

Generally, complete convection cells are modelled in which downward flow away 
from the centre is included. However, for convection in which the heating is so 
intense that supersonic speeds are achieved, only the rising gas may be suitably 
represented by a system of mathematically simple streamlines. Further away from 
the heating, even before the gas sinks, the motion would become turbulent. A closed 
system also presents problems in the steady-state case in that mechanisms for main
taining the energy balance must be invoked. A convenient model that adequately 
represents the rising part of a convection cell is that given by a system of confocal 
hyperbolae and ellipses (Lamb 1932). The streamlines are represented by the hyper
bolae, while the orthogonal curves, necessary to determine the expansion or con
traction rate of the gas, are represented by ellipses. This classical model is generally 
used to represent the flow of liquid from one side of a thin plane partition to the other 
through an ape~ture between the foci. In this way, a nozzle throat may be achieved 
principally by the physical contraction and subsequent expansion of the gas, rather 
than in the ficticious sense by variation in gravity itself (see Parker 1964, p. 91, for 
a mathematical demonstration of the equivalence), in the gravitational force com
ponent (Part I), in temperature (Part II), or in additional effects of friction (Banks 
and Holzer 1968). At the foci, the velocity is infinite (Lamb 1932), so that for the 
model to be physically meaningful, one of the hyperbolae must be regarded as an 
outer boundary wall each side of the centre. 

Because the throat for each tube about a streamline is found to occur above the 
centre of the cell such that the streamline is nearly vertical, vertical supersonic wind 
components are achieved at the critical point, rather than the horizontal components 
envisaged in the earlier models of Parts I and II. Hence, more intense heating may 
be necessary for such a model to be physically possible. For the variation in velocity 
to be continuous along a curve orthogonal to the streamline (i.e. along an ellipse) 
between the outer boundary walls, a critical point must exist along each streamline. 
Therefore, it is not possible to have split regions such that for some of the streamlines, 
near the vertical for example, the velocity remains subsonic while for others the 
velocity becomes supersonic. 

Regions in which supersonic speeds may be achieved are investigated here for 
both isothermal and variable temperature conditions. A convenient temperature 
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profile is chosen such that a maximum occurs at the centre and the ellipses are them
selves temperature contours. The conditions for achieving the following points are 
examined by making appropriate approximations: 

(1) a 'single critical' point at which the velocity becomes supersonic, 

(2) a 'stationary' point at which the velocity is a maximum, and 
(3) an 'infinite acceleration' point at which the velocity decreases to the character

istic thermal velocity with negative infinite acceleration. 
Finally, velocity and heating contours are presented to illustrate the characteristic 

behaviour and general effects of parameter variations. 

Mathematical Model 

In Parts I and II, streamline functions were chosen because they were suggested 
by the possible shapes of a part of a convection cel1 and for their mathematical 
convenience in simplifying the equations while allowing the existence of a critical 
point. The cross sectional area of a narrow expanding tube of gas was assumed to be 
proportional to the distance along the tube from its apex, raised to a power n. How
ever, no attempt was made to form a composite model consisting of a number of 
tubes. For a two-dimensional model, streamlines must be chosen such that two 
adjacent streamlines have a common boundary wall. This condition is satisfied for 
the case of radial expansion in a vertical plane where n = 1. The upward diverging 
and upward converging parts of a convection cell could be separately represented by 
radial expansion and contraction respectively, but the main problem with such a 
model is in attempting to match both parts for a continuous flow from the lower part 
to the upper part. The simplest extension of this crude model that enables a perfect 
matching of both parts is to represent the streamlines by hyperbolae with a horizontal 
major axis and common foci and centre, the asymptotes being straight lines radiating 
from the centre (defined as the reference position and origin of the coordinate system). 
Orthogonal curves are given by ellipses having the same major axis, foci and centre 
as the hyperbolae (Lamb 1932). Radial flow is obtained away from the centre when 
the hyperbolae approach their respective asymptotes. Because the velocity is infinite 
at the foci, for the model to be physically meaningful one of the hyperbolae is assumed 
to form an outer boundary wall each side of the centre. On defining the angle between 
the asymptote of a hyperbola and the vertical as <p, such a boundary is arbitrarily 
chosen such that <p = 70°. 

It is convenient to write the variables in dimensionless form. For a reference 
length, the distance d from the cell centre to each focus is chosen and, provided d/a 
is negligible (where a is the distance from the planet centre to the reference position) 
and distances are not very much greater than d/a, a rectilinear coordinate system 
may be used rather than the more complicated curvilinear system of Parts I and II. 
Other reference parameters specified are the temperature at the origin (10 and the 
characteristic thermal speed at the origin Co (= (ROo)!' where R is the gas constant). 
As in Parts I and II, reference to supersonic speeds is interpreted to mean greater 
than the characteristic thermal speed c (= (RO)t, where 0 is the temperature), rather 
than the sonic speed (yRO)t, where y is the ratio of the specific heats. Scaled by these 
reference parameters, the dimensionless variables are: x, the horizontal distance; 
y, the vertical distance; r, the distance along the streamline from the x axis (negative 
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for y < 0); A, the arc length along an ellipse between boundary walls about a 
streamline; T, the temperature (0/00 ); and v, the velocity. Because of the symmetry 
about the y axis, the model is considered only for x ~ o. 

Given x = Xo at y = 0, the streamlines are defined by 

X2/X~ _y2/ax = 1, (1) 

where ax = l-x~, while, given y = Yo at x = 0, the orthogonal curves are defined by 

x 2/a, +y2/y~ = I, (2) 

where a, = 1 + y~. The distance along a streamline from the x axis is given by 

r = f: {(a~+y2)/(a~+axy2)}tdy (3) 

and the arc length along an ellipse between x coordinates Xl and X2 (X2 > Xl) is 

1X2 A = {(a;-x2)/(a; _a,x2)}t dx. 
Xl 

(4) 

Both integrals in equations (3) and (4) cannot be evaluated analytically and hence 
they are ~alculated numerically using Simpson's rule. The angle qJ between the 
streamline and vertical is given by 

cosqJ = {(a~ :+axy2)/(a~+y2)}t. (5) 

Assuming only pressure gradient and gravitational forces for steady-state motion 
of a neutral gas constituent, the 'general nozzle flow equation' (Part I) may be written 
as (noting that the variables are now in dimensionless form and that the gravitational 
force is assumed constant) 

(v-T/v)dv/dr = F(r), (6) 

where 

F(r) == Fl +F2+F3 , (7) 

and 

Fl = A -1 dA/dr, F2 = _T- l dT/dr, F3 = _).T- l cos qJ , 

with), = god/ROo and go the gravitational acceleration at the reference position. 
In dimensionless form, the net accession of heat Q from all sources and sinks may 

be written as (part I) 

Q = ~ = (AoVO)(TdV + _v dT) 
Poc~ Av dr '}I-I dr ' 

(8) 

where q is the net accession of heat in dimensional form and Po and Vo are the density 
and velocity at the reference position. 

A feasible temperature profile appropriate to an intensely heated region of an 
otherwise isothermal part of an atmosphere is one whereby a maximum occurs at 
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the centre, the temperature decreases to a constant value away from the centre, 
and the ellipses are themselves the temperature contours; the last condition results 
in a constant maximum temperature along the x axis between the foci. A two
dimensional temperature profile may then be defined by a function along the y axis. 
The following Gaussian function for the temperature is therefore assumed: 

T = Too + (1- Too) exp{ - (yO/h)2} , (9) 

where Too « 1) is the temperature approached asymptotically as Iyo I tends to infinity, 
and h is the dimensionless temperature scale height. Given (x,y), the value of Yo 
is first determined from equations (1) and (2) (yo = Y for x = xo = 0) so that T 
may be calculated from equation (9). However, dT /dr must be calculated numerically. 

Regions of Supersonic Speeds 

It has been shown in Part I that, for a critical point to exist at which the velocity 
becomes supersonic, F(r) = 0 and F'(r) > 0, where the prime denotes differentiation 
with respect to r. With the present model, the gravitational force component does 
not in general vary significantly enough to achieve this condition without other 
effects being considered. Further away from the centre of the cell, where the flow 
becomes almost radial (see Part I), F1 ~ r -1, which approaches zero, as does F2, 
as r becomes larger; F3 approaches a constant negative value of - (A/T oo)cos 4>, 
so that F(r) also approaches this value. Hence, provided F(r) has one root such that 
F'(r) > 0, it will have another such that F'(r) < 0 and will asymptotically approach 
a constant negative value. This corresponds to the velocity becoming supersonic 
at the first zero, a maximum at the second zero, and ultimately to decrease to the 
characteristic thermal velocity with negative infinite acceleration. The model breaks 
down in this way because the assumptions of not too large distances are violated, 
and so the model must be restricted to regions within which the latter conditions 
may occur. For a velocity reversal to occur whereby the velocity decreases to a 
subsonic speed at a subsequent critical point, as described in Part II, F(r) would have 
to possess another zero such that F'(r) > O. Even if this were so, because F(r) 
ultimately becomes negative the velocity would again become stationary, this time a 
minimum, and then increase to the characteristic thermal velocity with infinite 
acceleration. The following analysis examines the conditions for achieving a single 
critical point, stationary point and infinite acceleration point. 

Critical Point 

To achieve a critical point, F(r) must increase on passing through a zero value. 
For the temperature profile defined by equation (9), the functions F1 and F2 are both 
negative when r is negative, zero when r = 0, positive when r is positive, and asymp
totically approach zero as r tends to infinity. Since F3 is always negative, F(r) may 
only be positive for r > O. For the isothermal case, where F2 = 0, if the condition 
F(r) > 0 is to be satisfied, it must be so before the maximum value of F1 is attained. 
This occurs well before the streamline approaches its asymptote, since in this region 
F1 may be represented by the decreasing function r -1. Because both r and A must 
be evaluated numerically from equations (3) and (4) respectively, the critical distance 
ro or Yo (the subscript c denoting a critical value), which is found on solving the 
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equation F(rc) = 0, can only be determined numerically as in Parts I and II. To 
obtain an analytical solution for the isothermal case and to investigate the dependence 
of the critical distance on various parameters for both constant and variable temp
erature cases, Fl may be approximated by (see Appendix) Fl = yla; provided 
y2 ~ ax, so that powers of y2 lax greater than unity may be neglected. By further 
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Fig. 1. Critical point and stationary 
point contours: 

1·0 

(a) Variation of critical point contours 
with J. for the isothermal case. The 
solutions shown are exact (full curves) 
and approximate (dashed curves). 

(b) Variation of critical point contours 
with (Too, h) for J. = 0'4 in the case 
of a variable temperature. 

(c) Variation of stationary point contours 
with (Too, h) for J. = 0·2 in the case 
of a variable temperature. 

In this figure and in Figs 2 and 3 all 
variables are in dimensionless form. 

neglecting y2lax, F3 may be approximated by -AlT. Hence for the isothermal case, 
where T = 1, 

Yc~Aa;, (10) 

which at Xo = 0 (that is, ax = 1) results simply in Yo ~ A. For consistency with the 
condition y2 ~ ax, the approximation (10) requires A2 ~ a;3, and hence, noting that 
a;3 ~ 1, the condition A ~ 0·4 is imposed. At Xo = 0, this latter condition requires 
y ~ 0·4 for complete consistency. 

For parameter A, Fig. la shows the critical distance contours derived using the 
approximation in equation (10) compared with the exact values derived numerically. 
It may be observed that the contours all converge towards the focus, a result given 
directly by equation (10) when Xo = 1 (that is, ax = 0). At the focus, which is outside 
the outer boundary wall of the model considered, the velocity would be infinite. 
Physically, the closer the streamline is to the focus, the greater is the constriction of 
the flow below the horizontal axis of the convection cell, and the greater the subsequent 
expansion above the axis, so that a nozzle throat is achieved closer to the axis. With 
this model in the isothermal case, ignoring the slight variation in gravitational force 
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component along a streamline (i.e. in cos <1» for y2 ~ ax, a real nozzle throat is 
achieved rather than the ficticious or equivalent ones achieved earlier (Holzer and 
Axford 1970; Parts I and II). 

Assuming that a critical point may be achieved in the isothermal case, the effect 
of the variable temperature, defined by equation (9), on the critical distance is required, 
given the same temperature-independent parameters. The validity of the above 

(a) JoO' (b) 

Ak' 

Tk o'l\ \ \.\ \ ~~ 0·6 
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0' " 'Y \" 
0·5 2·5 4'5 6·5 

h h 

Fig. 2. Boundary values for Too, showing the variation with h of (a) Tt for parameter ).jk when 
A = 0·05 (full curves) and 0·4 (dashed curves), and (b) Tk , for parameters Ak' and A. 

approximations is always maintained if the additional effect does not increase Yo at 
x = O. Assuming these approximations, at the critical point (O,Ye) when the temp
erature is constant, the equation F(Te) = 0 gives Yc = Te = A. When the temperature 
varies, the required condition Yc ~ A is equivalent to F(A) ;;.: 0, which from equations 
(7) and (9) results in 

,1.2 ~ h2 In(I+2/h2), 

which does not depend on Too, noting though that Too < 1. When A is its maximum 
value of 0'4, h is approximately ;;':0'2. Small values of h, much less than unity, 
though possible soon after heating commences when considering a time-dependent 
solution, are considered unrealistic under steady conditions,and hence the condition 
h ;;.: 0·5 is imposed. 

Fig. Ib shows how the critical point contours vary with the temperature profile 
parameters Too and h for A = 0·4. The critical distance Yc is observed to decrease 
as both Too and h decrease, that is, as the heating at the centre becomes more intense 
relative to the surrounding area. 
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As in Parts I and II, a general critical distance boundary value k corresponding 
to y c (or r c at Xo = 0) is introduced such that 0 < k ~ 0·4. The value k represents 
the extreme upper boundary at k = 0·4 and the 'limiting' extreme lower boundary 
as k approaches zero, but may be either a lower or upper boundary between. The 
condition k ~ A is necessary for consistency with the condition Yc ~ A. On solving 
the equation F(k) = 0, an expression for· the corresponding boundary value of Too, 
written as Tk , is given by 

where 

Tk = (B-Ak-1)/(B-I), 

B = (1 + 2/h2) exp{ - (k/h)2} . 

Table 1. Approximations for analysis of critical point 

Expressions for Fb F2, F3 and Yc are shown for three cases when y2 ~ ax (y ~ '0'4 
at ax = 1), A ~ 0·4 and h ~ 0·5. The critical distance Yc is obtained by sub
stituting Yc for y in the equation Fl +F2+F3 = 0 and can only be. calculated 

numerically in case B 

Case A Case B Case C 
Function isothermal variable T variable T 

(T = 1) ax = 1 ax = 1, A ~ 0,'5, y ~ A ~ h 

Fl Yla; y y 
F2 0 {2y(T-Too )W}T- 1 2y(1-Too )W 
F3 -A AIT -A 

Yc Aa; AU +2(1- Too)W}-l 

(11) 

For all h, B assumes its smallest value when k is its maximum value (i.e. 0,4). For 
k = 0·4, B has a maximum value of about five at h = 0·417. As h increases, B 
decreases, approaching unity asymptotically as h' tends to infinity. Since we have 
h ~ 0'5, it follows that B is greater than unity. Therefore, because (B-1) must 
be positive in equation (11), a lower boundary at k, which is equivalent to the con
dition F(k) < 0, results in a lower boundary for Too. Similarly, an upper boundary 
at k results in an upper boundary for Too-

The variation of Tk with h for parameter A/k when A =0·05 and 0·4 is shown in 
Fig. 2a. Given a constant value of A/k, for A ~ 0·5 (the minimum value of h), k 
must be very much less than h, since we have k ~ A. Hence the exponential function 
in the expression for B above is approximately unity, so that Tk may be written as 

Tk ~ I--th2(A/k -1), (12) 

which depends on A/k rather than on A and k separately. The curves in Fig. 2a when 
A = 0·05 (full curves) may be adequately represented by equation (12) and, even 
when A is its largest value of 0 . 4 (dashed curves), the absolute error in Tk can be seen 
to be no more than about 0·075 within the range of h shown. Approximating 
exp{ -(k/h)2} in this way is equivalent to assuming that, in the interval for k, the 
temperature gradient is linear, that is, 

dT/dy = -2y(I-Too)/h2, 



Supersonic Winds in Outer Atmosphere. III 93 

and the temperature itself may be represented by a mean value (T = 1). The critical 

distance may then be written as 

Ye ~ )'{I+2(I-T",)/h2}-1. 

The various approximations used for F1, F2 and F3 when y2 ~ ax, and for the 

resulting expressions for Ye where appropriate, are summarized in Table 1. 

Stationary Point 

To achieve a stationary point rs or Ys (the subscript s denoting a stationary value) 

following a critical point, F(r) must decrease on passing through a subsequent zero 

value. Fl may be represented by the decreasing function r -1 as the streamline 

approaches its asymptote (defined by x = Y tan cP, where tan cP = Xo a;t). Thus, 

for the isothermal case, since F3 is always negative F(r) will ultimately become 

negative. As for r e, without making approximations, rs may only be determined 

numerically. Corresponding to the procedure adopted for examining the behaviour 

of the critical point, expressions are now derived for an approximation of Ys and a 

general boundary value for Too at x = 0, and the validity of the approximations for 

the additional effect of the assumed temperature profile is investigated. 

For y2 ~ ax, we have Fl ~ r-1 and r ~ yseccP, the distance along the asymptote 

from the origin. Hence, for the isothermal case, the equation F(rs) = ° results in 

Ys ~ ),"-1 , (13) 

which, unlike the ap'proximation for Ye' is independent of Xo. For consistency with 

the condition y2 ~ ax, the approximation (13) requires ),2 ~ a;l and hence, noting 

that a;l ~ 1, the same condition for)' (namely), :::::; 0'4) is imposed as was when 

y2 ~ ax. At Xo = 0, the condition), :::::; 0·4 requires Y ~ 2·5 (that is, y ~ 1/0·4) 

for complete consistency. 
Assuming the above approximations, at the stationary point (O,Ys) when the 

temperature is constant, the equation F(rs) = ° gives Ys = rs = ), -1. For the validity 

of the approximations to always be maintained, the additional variable temperature 

effect (for h ~ 0·5) must not decrease Ys at x = 0, which is equivalent to the condition 

F()' -1) ~ ° and results in 

r 2 :::::; h21n(1 +2/h2). 

The smallest value of the left-hand side of this inequality is 6·25 (when ), = 0·4), 

but the maximum value of the right-hand side approaches two (when h tends to 

infinity). Hence, unlike· the critical-distance case, it is not possible to specify con

ditions such that the validity of the approximations is always maintained. Atx = 0, 

both Ye and Y s decrease as a result of the additional effect of the assumed temperature 

profile, so that while the approximation for the former improves, the approximatIon 

for the latter deteriorates. 
Fig. Ie shows how the stationary point contours (calculated numerically) vary· 

with . Too and h for A = 0·2. The constant-temperature contour is seen to approach 

its approximate value of Ys = 5 as Xo becomes larger; this is to be expected"because 

the condition y2 ~ ax is more easily satisfied. As with Ye' Ys is observed to decrease 

as both Too and h decrease. 
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A general stationary distance boundary value k' corresponding to Ys (or rs at 
Xo = 0) is introduced such that k' = k- 1 (k being defined in the previous subsection as the critical distance boundary value), and therefore k' ~ 2·5. The corresponding value of Too, written as Tk " is given by 

Tk , = (lk' - D)/(1- D) , (14) where 
D = (1 +2/h2)exp{ -(k'/h)2}. 

In the assumed ranges of k' and h (namely k' ~ 2·5 and h ~ 0·5) D is less than unity, so that a lower boundary at k', which is equivalent to the condition F(k') > 0, results in a lower boundary for T OCJ" Similarly, an upper boundary at k' results in an upper boundary for Too. 

Table 2. Approximations for analysis of stationary point 
Expressions for Fb F2, Fa and Y. are shown for three cases when y2 ~ ax 
(y ;;. 2·5 at ax = 1), A :s:; O' 4 and h ;;. O' 5. The stationary distance y. is 
obtained by substituting y. for y in the equation Fl + F2 + Fa = 0 and 

can only be calculated numerically in case B 

Case A Case B Case C 
Function isothermal variable T variable T 

(T = 1) ax = 1 ax = l,y ~ h 

F1 cos tP /y cos tP /y y-1. 
F2 0 {2ysec tP(T-Too)W}T- 1 0 
Fa - A cos tP -ACOStP /T -A/Too 
y. A -1 

Too/A 

Fig. 2b shows the variation of Tk , with h for parameter Ak' when l = 0'05, 0'1, 
0·2 and O' 3. As with the critical-distance case, an approximation for Tk , may be found: for k' ~ h the exponential in the expression for D is approximately zero, so that Tk , may be written as 

Tk , ~ lk', (15) 

which is equivalent to assuming that, in the interval for k', T = Too and dT /dy = O. The stationary distance may then be writt.enas 

Ys~Too/l. 

It may be observed in Fig. 2b that Tk , approaches the constant value in equation (15) 
as h decreases and k' increases (k' increases as A decreases sinceAk' is held constant). 

The various approximations used in the analysis of the stationary point are 
summarized in Table 2. 

Infinite Acceleration Point 

Following a velocity reversal at a stationary point, both Fl and F2 approach zero as r becomes larger, while F3 approaches a constant negative value. The accelera
tion will therefore ultimately become infinite (negatively) as v approaches c. Generally, the point at which this occurs, rt or Yt (the subscript t denoting a value at the infinite 
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acceleration point), can only be determined numerically by calculating the velocity 
from equation (6). However, for the constant-temperature case when Xo = 0, the 
approximations made above may be used to give a relationship between Yt and' A . 

. When the temperatUre is constant, the velocity at both Yc and Yt is the same so 
that, for r = Y and (y, v) = (Yt, c) in equation (11) of Part I, . 

f7' 
F(y)dy = 0, 

70 

(16) 

a result similar to that obtained in equation (18) of Part II when considering solutions 
that pass through two critical points. At Xo = 0, separate approXimations were 
previously made for the regions y2 ~ land y2 ~ 1. Since we have Yt > Y. > 1 > Yc 

> 0, an approximation is required for FJ in the intermediate region, when y2 is 
, . 

Table 3. Variation with 1 Qf parameters for aoaIY$1s of infinite 
accel~tion point. 

..t 

0·4 
0·3 
0·2 
0·1 
0·05 

See text for definitions of h. and T • 

Y. 

5·9 
9·2 

16·7 
42·6 
102'~ 

h. 

0·65. 
0·61 
0·55 
0·49 
0'44 

T. 

0·58 
0·68 
0·82 
1 
1 

. . . 
c;lose to unity. The regions are therefore m9dified such that ° < Y ~ 1 and y > 1 
respectively (at Y =: 1, F1 =' 1 using both approximations). Noting that Yc .;. A, 
equation (16) may be written as (see case A o(Tables 1 and 2) 

I1 f7' . ;. (y--A)dy + . 1 (y-1-A)dy = 0, (17) 

which results in 

AYt -lnYt = !(1 +A2). (18) 

Given A, Yt must be obtained numerically but, if Yt is known, A may be easily derived: 
From Table 3, it is observed that Yt increases rapidly as A decreases. 

By also assuming the earlier approximations for T and dT/dy, so that we have 
T = 1 and dT/dy = -2y(1-T",,)/h2 when ° < Y ~ 1, and T = Too and dT/dy = ° 
when y > I, the additional effect of the assumed variable temperature on Yt may be 
examined. In place of equation (17), we have the equation (see case C of Tables 
1 and 2) 

II f7' . 
· ;. {y-A.+2y(1-Too)/h2} dy + . 1 (y-1-A.!Too)dy = 0, 

which results in 

;'Yt/Too -lnYt = (I- Too){(1-;'2)/h2 +A/Too }+!{l+A2). (19) 
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As with equation (18), Yt must be obtained numerically from (19). Since we have 
Yt > Y. > 1, it is not necessary for the additional" effect to eithet increase or decrease 
Ytfor the validity of the approximations to be maintained. However,to investigate 
the effect on Yt, assume arbitrarily that conditions for Yt to be decreased are required. 
Then, for Yt given by equation {I 8) we have 

51' 

... F(y)dy < 0, 

which results in 

h2 > (1- A2)T ",/A(Yi -1). 

Given A, this inequality may be used to. specify either a minimum value of h (written 
as ht) or a maximum value of Too (written as T J such that the additional effect of the 
variable temperature decreases the point Y\ at which the acceleration becomes 
negatively infinite. The former is found when Too approaches <its maximum value of 
unity, while the latter is found when h = O· 5, its minimum value. Consistent with 
the condition Too < 1, we must have Tt < 1, and hence where the calculated value 
of T t in Table 3 exceeds this limit it has been set equal to 1. It may be seen from 
Table 3 that, for A ::;;; 0'1, Yt will always be decreased by the additional effect for the 
assumed range of values for h and too' 

Velocity and Heating Solutions 

Methods of solving th~ genenil nozzle flow equation (6) have btlen presented in 
Part I for the isothermal case and in Part II for the variable temperature case by 
using fin,ite-difference formulae. Only the solutions themselves for the model under 
consideration are therefore pres~nted here with appropriate comment. As discussed 
in Part I, comparisons with any eXPtlrimental data are inappropriate at present. . 

Unlike the earlier models in Parts I and II, the present two-dimensional model 
achieves a nozzle throat in a more real sense in that the boundary walls about a 
streamline allow for contraction and subsequent expansion of the gas. At Xo = 0 
the gravitational force component is constant along the streamline, so that for a 
constant temperature, provided a critical point exists, there is a physically real 
deLaval nozzle. Because dimensionless coordinates have been used and the streamlines 
are rigidly defined within this system, the 'real nozZle' effect remains constant, so 
thata, characteristic pattern for the velocity and heating contours might be expected. 
Hence the variations in the parameters X, h and Too, noting the earlier restrictions 
(namely A ::;;;'0'4, h·~O·5 and Too <1), would,distort this pattern rather than 
completely change it. 

A 'region 6f a convection cell is first chosen such that for the assumed value ofA:' 
(0,2) the characteristic pattern of the contours is clear and the velocity is monotonically . 
increasing for all possible values of h and Too within their assumed ranges. Such a 
region is illustrated in Fig. 3, which shows the contours for v and Q when the temp
erature is constant compared with those whenh = 1 and Too = 0·7. The observed 
effect in modifying the contours is found to be more pronounced as both h and Too 
decrease, that is, as the heating at the centre becomes more intense relative to the 
surrounding area. For the isothermal case, Q will become negative following the 
stationary point (zero atthe stationary point) while, for the variable temperature case, 
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since dT jdr < ° when r > 0, Q will become negative before the stationary. point 
occurs. For a constant temperature, a decrease in A shifts the velocity contours 
lower, but insignificantly affects the heating contours. Only Q depends on y, and a 
decrease in y has the same effect as a decrease in h or Too. From the characteristic 
pattern it may be concluded that closer to the focus the velocity increases more 
rapidly, and hence the heating is greatest there. 

1.2 'Y- 1V 
......:::::::: I ac:sc::z: <:: JI 

x x 

Fig. 3. Contours for (a) velocity v and (b) heating Q when). = O' 2 for the isothermal case (full 
curves) and the variable temperature case when Too ;= 0·7 and h = 1 (dashed curves). In (b) the 
specific heat ratio y is taken to be 1· 67. 

Conclusions 

In the steady two-dimensional model considered here for the part of a convection 
cell where the neutral gas constituent is rising and becoming supersonic, under both 
isothermal and variable temperature conditions in an intensely heated region of the 
outer atmosphere of a planet or star, a classical system of confocal hyperbolae and 
ellipses has been used to represent the streamlines and orthogonal curves respectively. 
With this model, the nozzle throat has been found to be achieved principally by the 
physical contraction and subsequent expansion of the gas, rather than artificially by 
varying the temperature or the gravitational force component along the streamline. 
For the variation in velocity to be continuous along an ellipse between the outer 
boundary walls, it is not possible to have split regions such that, for some of the 
streamlines, the velocity remains subsonic while, for others, the velocity becomes 
supersonic. Suitable approximations have allowed an investigation of regions in 
which supersonic speeds may be achieved both when the streamline is nearly vertical 
and when it approaches its asymptote, and the points have been found at which the 
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vdocity becomes supersonic, is a maximum,and decreases to the characteristic 
thermal velocity with negative infinite acceleration. Parameter variations have been 
shown to only modify the characteristic pattern observed for the velocity and heating 
contours rather than completely alter it. 
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Appendix. Approximation for F1 in the Region of a Critical Point 

An approximation is required for F1 (= A -1 dA/dr) in the region of a critical 
point so that an analytical solution for the critical distance may be obtained when the 
temperature is constant. Noting that x ~ 0, equation (I) may be written as 

x = xo(1 +y2/ax}/;;· 

Provided y2 ~ ax, so that powers of y2/a", greater than unity may be neglected, we 
have 

x ~'xo(1 +y2/2a",h dx/dy ~ xoy/a"" 

cos ~ ~, 1-!(xoy/a",)2 , r ~y. 

For a given streamline whose left boundary wall is defined by the hyperbola 
such that x = Xo at y = 0, let the right boundary wall be defined by the hyperbola 
such that x = Xo + Ao at y = 0, where Ao is arbitrarily small. Then, further along 
the left wall at (x,y) the corresponding orthogonal point on the right wall may be 
approximated by (x + A sec~, y), where A is the arc length approximated by the 
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perpendicular distance between the point (x, y) and the hyperbola defining the right 
wall. Neglecting powers of Ao greater than unity, 

{1-(xo+Ao)2}-1 ~ a;l(1 +2Aoxo/ax), 

so that the right boundary wall may be approximated by the equation 

x +AseccP ~ (xo+Ao)(1 +y2/2ax +y2Aoxo/a;). 

Using the above approximations for x, cos cP and r, 

and FJ is given by 

(A/Ao)seccP ~ 1+y2(1+x~)/2a;, 

A/Ao ~ 1 +y2/2a;, 

F _ 1 dA,...., Ao d(AjAo) ,...., y 
1 - "Ii dr ,...., A dy ,...., a 2 ' 

x 
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