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The increase in cross section for inelastic collisions due to polarization of the target by the projectile 
has an upper limit in a simple model. The usual treatment of core polarization in nuclear collisions 
gives a polarization potential which is too large because of the use of perturbation theory and the 
neglect of dynamic effects, and which is in phase with the direct coupling potential contrary to 
recent experimental evidence and to channel coupling theory. 

1. Introduction 

The usual treatment of the collision of nucleons with nuclei involves the application 
of the distorted wave Born approximation and the adoption of a nucleon-nucleon 
interaction of definite strength. It turns out in many cases that, if the elastic scattering 
is used to determine the strength of the nucleon-nucleon interaction, the inelastic 
scattering is then too small in magnitude by at least a factor of two. This failing 
led to the core polarization model of Love and Satchler (1967) in which account is 
taken of the interaction of the incident nucleon with the nucleons in the core of the 
nucleus as well as with the valence nucleons. 

The effect of polarization of the target system by projectiles has long been taken 
into account in many calculations of the elastic scattering of slow electrons by atoms. 
The effect on the inelastic scattering has been considered recently and found to be too 
large in the usual approach through perturbation theory (Mohr 1975). It is shown 
here that the perturbation theory treatment of core polarization may also seriously 
overestimate the effect, the more so since the static approximation is implied and 
correcting for the dynamic effect reduces the scattering still further. Finally it is 
shown that the effect of channel coupling should also be considered. 

2. Improved Treatment of Target Polarization 

The state of a system polarized by the field of a projectile is that of the unpolarized 
system mixed with other states. Physically this implies virtual transitions from the 
unperturbed state to other states during the collision. 

Consider a target system with a valence particle, of coordinates xv, which has energy 
eigenstates E j and eigenfunctions l/I j(xv). When this particle is perturbed by the field 
of a projectile, with coordinates xP' the mutual potential energy of the two particles 
being V(xvp) where xvp = 1 xv-xp I, the perturbed target system has eigenfunctions 
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Pi(Xv, xp) related to the unperturbed set by the unitary transformation 

Pi(Xv, xp) = L aik(xp) I/Ik(Xv)· 
k 

C. B. O. Mohr 

(1) 

The aik are functions of xp only in the usual static approximation and are generally 
calculated by perturbation theory. They can be obtained more accurately by diagonali­
zing the energy matrix with diagonal elements Ei and off-diagonal elements given by 

Vkl(Xp) = II/I:(Xv) V (Xvp) 1/1 ,(xv) dxv, (2) 

these being the transition potentials effective in the scattering when target polarization 
is neglected. When target polarization is taken into account the transition potentials 
are given by 

Vij(Xp) = I pr(xv, Xp) V(xvp) Pj(xv, Xp) dxv 

=. L al'k(xp) vk,(xP) aj,(xp)' 
k' 

(3) 

(4) 

VOO and VOj are pseudopotentials which give the elastic and inelastic scattering more 
correctly than the original potentials VOO and VOj' 

3. Upper Limits on Scattering Cross Sections 

We now show that the improved treatment above can lead to upper limits on 
scattering cross sections, firstly by considering the simple case of a target system with 
a valence particle assumed to have only two states. 

If the ground state has an unperturbed energy Eo and the excited state is El , the 
unitary transformation (1) is (Davydov 1965) 

Po = I/Iocostp-I/IlsintP, P l = 1/10 sin tP + 1/11 cos tP, (5,6) 
where 

tanp = vOllt(El +Vll-EO-Voo). (7) 

The transition potential effective in inelastic scattering is then, from equation (4), 

VOl = VOICOSP +t(voo-t1ll)sinp. (8) 
As VOl ~ 0, 

VOl ~ VOl + (VOO VOl -VOl vll)/(El +Vll -Eo-voo), (9) 

so that VOl is proportional to VOl for small VOl> as expected from first-order perturba­
tion theory. The second term on the right of the limit (9) is the polarization potential, 
and is a second-order term corresponding to an elastic collision followed by an inelastic 
collision or vice versa. As VOl increases, VOl approaches a limiting value which is, 
from equation (8) with (7), 

V~~X = t(EI-Eo)' (10) 

We thus have a limit on the transition potential effective in inelastic scattering 
and hence on the inelastic cross section O"in' Assuming the limiting value of VOl is 
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reached within the nuclear radius a and substituting in the plane wave Born 
approximation, we find that CTin is appreciably less than (2/+1)(kx a)4/k2 for the first 
few values of I, where k; = El - Eo is taken to be the energy of the strongest excitation 
of the nucleus and k 2 is the projectile energy. Usually kx a is less than unity, and 
then we may write CTin < (2/+ 1)/k2. This value is to be compared with the limiting 
value (21+ 1)n/k2 set by consideration of particle flux (Mott and Massey 1965), 
which is reached asymptotically with increasing values of VOl in a simple model 
employing strong coupling between two channels (Massey and Mohr 1937). 

The limit set by channel coupling arises from the unitarity of the S-matrix and is 
an overall limit. The limit set by the polarized orbital method arises from the 
unitarity of the matrix transformation (1), and is more stringent, being connected 
with only one of the physical processes in the collision. 

4. Overestimation of Effect of Core Polarization by Perturbation Theory 

We now suppose that the target system has three bound states 0, 1 and 2, and 
consider excitations from state 0 to state 1, either directly or by virtual transitions 
through the intermediate state 2. 

The probability of the two-stage process may be comparable with that of the 
direct process if the couplings to the intermediate state are strong, as for a collective 
state, and this is the basis of the core polarization model (Love and Satchler 1967), 
in which the intermediate state is an excited state of the core and the final state has an 
excited valence particle and de-excited core. We first take the intermediate state 
to be an excited state of the valence particle. 

We are interested in the effective transition potential VOl as expressed in terms 
of the Vkl of equation (4). The three diagonal matrix elements VO O' Vu and V22 as func­
tions of xp will generally be peaked near the nuclear surface and be of similar form. 
If we take them to be of identical form, the sum of the three diagonal terms in the 
expression (4) for VOl becomes 

VOO ~::a~k akl = VOO < 'l' 0 I 'l'l) = o. 
k 

We therefore neglect these three terms so that we can concentrate on the 
dependence of VOl on the three off-diagonal elements VOl' V02 and V21. 

To find the a ik in equation (4) requires the diagonalization of a 3 x 3 matrix, and 
this can only be carried out numerically, giving little insight into the problem. We 
therefore consider the typical case where the transition through the intermediate 
state is of the same strength as the direct transition, and see what relation this 
implies between the three transition potentials in perturbation theory. The latter 
gives 

aik = I, 

= vk;/(Ej-EJ, 

k = i, 

k =F i, 

(I1a) 

(lIb) 

which we substitute in equation (4). If we neglect the three terms of third order in 
the Vklo we have 

VOl = VOl -V02V21{(E2-El)-1+(E2-Eo)-1}. (12) 

The first-order term VOl corresponds to the direct transition and the second-order 
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term in V02 V21 to the transition through an intermediate state. The two correspond­
ing scattering amplitudes add if E2 > El and the Vkl are negative. In the diagonali­
zation method, we have (aOOall +aOlalO)vOl for the direct term and corresponding 
terms in V02 and V21 in equation (4) for the virtual transitions, where the alk are no 
longer given by the relations (11). 

We now take the intermediate state to be an excited state of the core. Let 
superscripts p, v and c refer respectively to the projectile, valence particle and core 
particle (or collective state of the core), and let % and 0/1 denote the ground and 
excited state of the valence particle, and Xo and Xl similarly for the core. Then 
the initial, intermediate and final states of the target system are I 0) = Xo 0/0, 
12) = Xlo/O and II) = XOo/l respectively. The total potential energy of the system 
is v = vpv+vPc+vcv, and so the transition potentials vij(xP) == (ilvU) acting on 
the projectile at the point xP contain in their component terms the quantities: 

VPV - f ,/,* vpv ,/, dxv 
i} - 'I'i '1'1 ' 

VPC - fx* .. DC X dxc 
i} - i v j , 

cv _ If * ,/,* cv ,I, d C d v Vik,jl - Xi '1'1 V Xk'l'l X X. 

Integrating over all XC and XV and using the orthonormal properties of the o/'s and 
X's gives, to second order, 

VOl = (Olvll)-(OlvI2)G(2Ivll) 

= (vg'i +v~~,ol)-(vgl GV~1.01 +v~'i,ooGV~'i,Ol)' 

The second term in each parenthesis is independent of xP and therefore does not 
contribute to the scattering. So, as far as the scattering is concerned, we have the 
term vpv for the direct transition (referred to as D) and the term vpc G vCv for the core 
polarization (referred to as C). As these terms are functions of the projectile coordi­
nates only, it is immaterial for our purpose whether the intermediate state involves 
the excitation of valence particles or core particles, or whether the core states are 
single-particle or collective. We can still label the two terms VOl and V02 G V21 
respectively. 

Core polarization calculations often do not state the numerical values of the 
parameters used. However, the paper by Love and Satchler (1967) shows, for the 
1·98 MeV level in 180, the two form factors C and D having similar radial distribu­
tions, with maximum values near the nuclear surface of about the same magnitude 
as the excitation energy. Specimen values of the parameters were therefore selected 
to make the two terms C and D in equation (12) of equal magnitude. For chosen 
values of the energy denominators and the ratio V02/V2h the values of V02 and V21 
were determined in terms of VOl' Typical sets of values were chosen to give the 
results shown in Fig. 1 for various values of the determining parameter VOl (the 
quantities are in arbitrary units of energy). The curves labelled P are for the two 
terms C and D as given by perturbation theory. The curves labelled C and D show the 
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values of the indirect and direct transition potentials obtained by diagonalizing the 

energy matrix and substituting the eigenvector components alk into equation (4). 

Perturbation theory is seen to become increasingly inadequate with increasing 

values of VOl' not only in seriously overestimating the magnitudes of C and D, but 

also in respect of their ratio. For V12 = V02, the values of C and D attain maximum 
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Fig. 1. Illustrating the effective potential Val for transitions from state 0 to state 1 of the target 

system as a function of the direct transition potential Val. Curve D shows the contribution from 

direct transitions and curve C the contribution from virtual transitions through an intermediate 

state 2, calculated by diagonaiization of the energy matrix. The transition potentials Voz and V12 

were fixed in terms of Val by choosing their ratio and making the contributions D and C equal in 

the perturbation theory formula (12). The perturbation theory result for the two contributions is 

shown by the dashed line P. All quantities are in arbitrary units of energy. The values of the 

parameters are: 
(a) (b) (c) (d) 

E1-Eo 1 1 

Ez-Eo 2 1·2 2 2 

VOZ/V12 1 4 ! 

values surprisingly soon, with a ratio of about two over nearly the whole range instead 

of the ratio of unity given by perturbation theory_ The curves for the smaller energy 

denominators have lower maxima as might be expected from equation (7): one 

may not boost the term C just by taking a small energy denominator. For V02 > V12 

the discrepancies are less, while for V02 < V12 they are greater, the actual signs being 

reversed for the greater values of VOl' so that perturbation theory is completely mis­

leading for all but the smallest values of these quantities. 
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For radial distances appreciably greater or less than the nuclear radius, C and D 
will be small in magnitude compared with the excitation energy, and so will be given 
well enough by perturbation theory. For protons on heavy nuclei, perturbation theory 
may be satisfactory: thus for the 4·07 MeV level in 208Pb, Love and Satchler 
(1967) find maximum values of C and D of about one-tenth the excitation energy. 
The overall inaccuracy of perturbation theory values can be determined only by detailed calculation in a given case. 

5. Reduction of Polarization Potential by Dynamic Effect 
The general treatment of polarization, including that of Section 2 above, is 

based on the static approximation, which assumes that the energy of the projectile 
is low enough for its transit time past the target system to be long compared with 
the orbiting times of the target particles. At higher energies the target system has 
time to respond only partially to the field of the projectile, and the polarization 
potential is reduced. 

Garrett (1969) has obtained and applied equations for dynamic distortion for the 
elastic scattering of low energy electrons and positrons by hydrogen atoms. His 
curves show that the polarization potential, at the distances at which it is largest, 
is reduced to about 0·8 of the static value for an incident energy of 0 ·09 Ry, and to 
about 0·6 of the static value for an incident energy of 0·25 Ry. Remembering that 
the energy of the first excited state of the atom E1-EO is 0·75 Ry, one may wonder 
how much further the polarization potential will be reduced for energies above 
excitation. The core polarization model is used for incident energies which are 
several times the excitation energy. 

Using a simple nuclear model and a o-function interaction between nucleons, 
we find that the polarization potential decreases most rapidly as k 2 increases from zero towards the excitation energy and then tends slowly towards a limiting value 
as k2 becomes large. This last point is understandable, for when the transit time of 
the projectile is already short compared with the orbiting times of the target particles, 
any further reduction in transit time will produce little further decrease in the response 
of the target system to the field of the projectile. As k 2 is increased from small to large 
values, the reduction in the polarization potential is to about 0·5 of its static value 
for a light nucleus (A ~ 18) and to about 0·8 for a heavy nucleus (A ~ 200). For 
inelastic collisions we might expect the reduction to be about the same when k2 is 
appreciably greater than E2 - Eo and E2 - E1• 

The preceding remarks are also relevant to the core polarization model in view 
of the formalism in the previous section. It appears, therefore, that much of the 
effect which the model was introduced to account for, namely to increase CTin/CTeI (see Section 1), is lost through the dynamic effect alone. Furthermore, it seems to have 
been overlooked that polarization increases CT. I as well as CTin> and this fact reduces 
the value of the model still further. 

6. Need for Inclusion of Channel Coupling 
In the above treatment the terms C and D are both real, but recent experimental 

evidence (e.g. Schaeffer and Glendinning 1973) indicates that D contains a complex 
phase factor. A theoretical basis for this is provided by the channel coupling 
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formalism. Channel coupling involves virtual transitions between different projectile 
channels, and this is complementary to target polarization with its virtual transitions 
between different target states; the same vi} are involved. 

We consider the modified radial wavefunctions for the projectile Fo, Fl and Fl 
in the three channels, coupled together by the potentials VOh VOl and V12. These 
potentials are taken to be real as before, and to be monopole for simplicity, so that 
only partial waves of the same order I are coupled together. The three coupled 
differential equations have three independent regular solutions for each I which can 
be taken to have the following asymptotic forms: 

Channel Solution I Solution II Solution ill 

0 sin(po+oo) Do sin(po + 110) ho sin(po + ;0) 

1 fi sin(p1 + 01) Sin(P1 +111) h1 sin(p1 + ;1) 

2 /2 sin(p2 + 02) 02 sin(P2 + 112) sin(P2+ ;2) 

where 
Po = kor -tin, Pl = kl r -tin, Pl = kl r-tln. 

Thus we suppose solution I is obtained by starting off with Fo as given by the first 
of the coupled equations with VOl. VOl' Fl and Fl zero, then slowly turning on VOl 
and VOl to produce finite Fl and Fl and modifications to Fo; similarly for solutions 
II and III. For small Vij we therefore expect the proportionalities: 

fi oc VOl' 11 OC VOl' gl OC V12' hl oc Vll. (13) 

The general asymptotic solution for each channel is a linear combination of the 
three solutions, with coefficients a, band c, say, and has to be equated to the corre­
sponding general asymptotic form when channel 0 is the entrance channel: 

Fo '" sin Po +oco exp ipo , Fl '" Pl exp iPl , Fl '" Pl exp iPl • 

where loco 11 is the probability of elastic scattering and kl kall Plil and kl kall Plil 
the probabilities for inelastic scattering into exit channels 1 and 2 respectively. 
Fitting the general solutions to' the asymptotic forms and also fitting their slopes 
gives six simultaneous equations for the six unknowns a, b,c, OCo, Pl and Pl. Each of 
the quantities OCO,Pl andPl may be expressed in terms of the quotient of two determin­
ants; the determinant in the denominator in each case is the same and is of no 
particular significance for us here. We are interested in Ph and for this quantity the 
determinant in the numerator is found, on reduction, to contain the terms 

fi sin(c5l -'h)exp( -itPl) +/lhl sin('h -tPl)exp( -ic51) 

+figl hl Sin(tPl -c5l)exp( -i'11). (14) 

If we replace the factors f, g and h by the corresponding Vij according to the 
relations (13), the three terms in (14) have as coefficients VOl' V02 Vll and VOl Vn Vll 

respectively, and so are identified as first-order, second-order and third-order terms 
respectively. The determinant in the denominator for Pl contains a term of zero order 
in Vij. We now note that there is a phase difference 152 - tPl between the first-order 
and second-order terms, and '11 -tPl between the first-order and third-order terms. 
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When the projectile is incident with the threshold energy E2 for the two-stage process, 
it emerges in channel 2 with zero energy, and then CP2' (j2 and '12 are integral multiples 
of n, so that the first-order, second-order and third-order terms are all in phase. 
As the projectile energy increases, the terms get increasingly out of phase. 

Polarization may be taken into account in the above formalism by replacing the 
Vik by the V1k of Section 2, and this should be done, for we may expect the effects of 
polarization and channel coupling to be of comparable magnitude. This last point 
has been confirmed for the simpler case of elastic scattering with only two channels, 
taking square wells of various depths. The change in zero-order phase shift produced 
by channel coupling has an imaginary component which increases from zero at the 
excitation energy to a value comparable in magnitude with the real component at 
twice the excitation energy, at which energy the (real) change in phase shift produced 
by polarization is of comparable (and slightly greater) magnitude. 

In short, we should use the pseudopotentials VIj in the coupled equations, not 
just in the distorted wave Born approximation. 

7. Conclusions 

The usual treatment of core polarization cannot be relied upon to give more than 
the magnitude of its effect. To obtain more reliable results one should use matrix 
diagonalization in place of perturbation theory, and take account of dynamic effects 
and channel coupling. 
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