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Abstract 

A theory of spontaneous plasma oscillations is developed from basic equations. Longitudinal 
modes in a one-dimensional system are presented in detail, while possible extensions to three di
mensions and the effects of external magnetic fields are indicated. The basic equations lead to a 
Van der Pol equation. Similarities are noted between plasmas and two-level lasers. 

Introduction 

We shall consider here a homogeneous plasma with no applied static electro
magnetic fields. This may be treated as a black body in thermal equilibrium with 
its own radiation field. The total energy of the particles may fluctuate about a mean 
value determined by the temperature and pressure at that time, but for an isolated 
system the particle energy fluctuations must be equal and opposite to the energy 
fluctuations of the radiation field. 

If the plasma dimensions are much smaller than any collective oscillation wave
length, the fluctuations may be evaluated using the fluctuation-dissipation theorem: 

c.) - Iii {* Ji1k k,ro - Av~fl;"""T '1'\_1 (Xij(m, k)-(Xjlm, k)}, 

where <jiA)k,ro is the ensemble-averaged Fourier transform of the current correlation 
function, expressing the interaction of particle velocities at different positions and 
times, due to the exchange of thermal photons of momentum k and frequency m. 
The (Xij are directly related to the dielectric tensor and they determine the effect of 
the medium on the population of the exchanged thermal photons. The correlations 
will be important near the zeros of the dielectric tensor (these correspond to poles in 
the (Xi), that is, near the plasma frequency mp' 

Scattered Radiation Spectrum 

The correlation between currents at the plasma frequency will affect the scattering 
of incident radiation on the plasma. The resultant field in the plasma is the sum of 
the incident, scattered and fluctuating fields. The incident and fluctuating fields are 
coupled nonlinearly by the Lorentz force so that the scattered field will be proportional 
to the product of the incident and fluctuating fields plus higher order terms. When the 
currents are uncorrelated, the scattered wave contains a gaussian spread of frequencies 
centred on the incident frequency mi' Given a sufficiently broad-band measuring 
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apparatus, the scattered wave amplitudes will be seen to increase because of the 
increase in the fluctuating field due to correlations. Higher order nonlinearities may 
produce further maxima at frequencies Wi ± nwp' The scattered radiation spectrum 
resembles a Raman spectrum with Stokes and anti-Stokes lines. 

Non-applicability of Fluctuation-dissipation Theorem 

In the preceding sections it has been assumed that: 
(1) the collective oscillation wavelength Ac = (Wp/C)-l is very much greater than L, 

the distance between boundaries, and 
(2) the radiation field is confined to the plasma. 

The second assumption is rarely true because (i) radiation at frequencies above wp 
is weakly screened and can escape, and (ii) radiation near the boundaries can be lost 
from the system. Thus the plasma may emit its own radiation spectrum which may 
be coupled to the incident radiation. This so-called collective bremmstrahlung has 
been widely analysed in the literature. 

Interesting phenomena may also occur when the assumption (1) above does not 
hold. This is the case in experiments carried out in our laboratory. In this situation 
the fluctuation-dissipation theorem is invalid owing to preferential thermal photon 
exchange at a series of well-defined frequencies and wave vectors, as analysed below. 
Physically this is because the plasma becomes temporally inhomogeneous owing to 
time delays between disturbances and their effects. 

Consider a simple one-dimensional plasma of dimension L. If an electrokinetic 
wave of wave vector k were established, the structure would resonate due to positive 
feedback at wave vectors kn = (n+t)n/L; this is the Tonks-Dattner resonance 
condition (Bekefi 1966). Such a system would closely resemble a laser or klystron 
oscillator, provided end losses and internal dissipation could be overcome. This 
could be achieved with suitable electromagnetic fields as, for example, in the Impatt 
diode. 

Buildup of Oscillations 

The frequency of longitudinal (space-charge) oscillation corresponding to the 
wave vector k n may be found from the dispersion relation 

e(k,w) = o. 
To first order this gives 

2 _ 2 +.J.k2 2 hk4/4 2 Wk. - Wp 5 n Vo + n m + ... 

for a quantum plasma. The longitudinal wave does not radiate to first order so that, 
in considering the interaction of resonant modes, radiative effects can be neglected. 
Thus the simplified Bohm-Pines Hamiltonian (Pines 1964) will suffice when considering 
the wave-particle interaction: 

H = LPf/2m + I,(2ne2/k2)(PkPk- N ) 
i k 

+ I, tilkilk + L !(4ne2/k2)(IlkPk + Ilk pZ) , 
k<kc k<kc 

where the Pi are particle momenta, Pk and Pk are Fourier transforms of the space 
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density distribution function and pt = P-k' The distribution function f(v, r, t) is 
assumed to be separable into fer, t)g(v, t) so long as inelastic collisional effects are 
negligible. Ilk and Ilt are momentum creation and annihilation operators for plasmons 
which apply for k < kc. This is an effective quantization of the long-range part of 
the Coulomb potential. 

Treating the Ilk and Pk as quantum mechanical operators, the equations of motion 
in the Heisenberg representation are 

. = [Pk' H] = .!.{(2m)-1 " [ ?] _ (2ne2) l(4ne2)t II }. 
Pk iii ih .,.. PbP, k2 Pk +z k2 k 

The last term in the braces may be neglected in comparison with the other two, the 
first of which is summed over some 1020 particles. Thus 

Pk+ e~:2)pk = -i f f d3r (\;i + ~:)f(r)eXp(ik .r) 

= -ipk 4: (k ,Pi + hk2) 
, m 2m' 

This equation may be rewritten 

Pk+(2ne2jk2)Pk = -iPk f d3vg(v)(k.v+hk2) +F(t). (1) 

Here the first term on the right corresponds to a coherent damping of spatial fluctua
tions by particles moving at the velocity corresponding to that of the fluctuation, 
i.e. Landau damping (Montgomery and Tidman 1964). The remaining term F(t) 
may be considered to be due to random velocity fluctuations about the time-averaged 
mean, and thus represents damping or enhancing space fluctuations. This term is 
henceforth called 'noise' and is the driving term of oscillations. 

The integral in equation (1) can be evaluated for a near-Maxwellian velocity 
distribution, to give 

A+(2ne2jk2)Pk = -ipikjm)(p) +F(t), (2) 

where <p) is the average linear momentum. The total momentum is a constant G 
of the motion, so that 

(P)+hkIltIl = G. (3) 

The time development of II is given by 

llk = [IlbH]jih = t(4ne2jk2)tpk -Ilk' 

Plasmon loss at the boundaries may be included by introducing a quality factor for 
the boundaries, which are here understood to be inhomogeneities in plasma properties 
of sufficient magnitude to cause particle reflections and occurring over a spatial 
distance much smaller than the wavelength of plasma oscillations. Thus introducing 
the loss term KIl, with K ~ 1, we have 

llk+ KIlk = t(4ne2jk2)tpk' (4) 

If we neglect llk in equation (4) in comparison with KIlk and then use this expression 
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together with equations (3) and (2), we obtain 

rdlk+(2ne2jk2)a.IIk = -ia.(kjm)IIk(G -hkIIIIIJ +F(t) , (5) 
where 

a. = 2K(4ne2jk2)-t. 

Equation (5) may be rewritten as 

llk-P(d -III IIJIIk = F(t) , (6) 

which is a form of the Van der Pol equation (HarnwellI949). 

Analogy with Laser 

Equation (6) is analogous to the time-development equation for the radiation 
field in a two-level laser (Risken 1965; Risken and Vollmer 1967), but the coupling 
constants are quite different. In the plasma the coupling comes from the Fourier 
transform for a Coulomb potential, while in the laser the coupling comes from an 
electromagnetic dipole moment. The analogy is, however, quite physical and we 
can consider the plasma as a two-level laser; The ground state of an interacting 
Fermi gas is a mixture of combinations of a filled core and a set of low lying quasi
particle excitations. In the case under consideration, the boundaries produce an 
effective force driving the system towards an eigenstate which is reached by a process 
described by equation (6). This state is not stable for two reasons: (i) It has a finite 
lifetime associated with the imaginary part of its self energy, which is of order k- 2 ; 

thus quantum damping should increase as the mode number increases. (ii) On a more 
classical level, the oscillations will be damped by inelastic collisions. Here kinetic 
energy is interchanged with potential energy and the former is velocity dependent 
only to first order while the latter is position dependent. Such an interchange could 
mean that our separation of the distribution function into f(r, t)g(v, t) would not be 
valid. In effect, then, the present analysis is only justified on a time scale that is 
short compared with the inelastic collision time. Thus the waves should grow in the 
Van der Pol manner over a time scale equal to the shorter of the two damping times 
and decay thereafter. If the oscillation period is much shorter than either of these 
decay times a relatively long-lived oscillation will be maintained. If the converse is 
true, short erratic bursts of oscillation are to be expected. 

The driving term F(t) is a stochastic variable describing the inherent fluctuations 
of the system. Physically this can be visualized as arising from two sources: 

(1) Particles moving in the correct way at the correct time and place produce 
positive feedback. Such particles may participate directly in the growth of the 
wave. 

(2) Fast particles in the tail of the velocity distribution, moving faster than the 
wave velocity in the medium, may leave a core of longitudinal Cerenkov 
radiation which is fed back in the correct phase. The wave is established 
in the wake of such particles and they need not participate in the wave directly. 

In a qualitative way the noise creates a driving force which moves the system 
from its incoherent ground state towards the coherent oscillatory state. The transition 
is effected by the emission of plasmons which are later reabsorbed. If external energy 
can be provided to inhibit the reabsorption, the system may reach threshold and lase. 
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Extensions of the Theory 

In three dimensions the same principles as outlined above should hold, but the 
k vector will have transverse components. For highly asymmetrical systems the mode 
patterns should resemble those of a laser of equivalent geometry. For a quantum 
plasma the dominant mode and direction may be determined by finding the lowest 
possible k vector. 

It has been assumed here that the plasma oscillations do not produce a radiation 
field or interact with the radiation field of the plasma. The latter is essentially in
coherent. We have neglected the effect of the magnetic field, and the nonlinear 
Lorentz force of this field, and the effect of boundary radiation including surface 
waves. When these effects are included it is found that, to second order, the radiation 
accompanying the wave satisfies an inhomogeneous Klein-Gordon equation, which 
has been treated by Montgomery and Tidman (1964). Thus the effect of longitudinal 
oscillations is not confined to scattering experiments but also causes weak emission 
at the resonant frequencies. This radiation field should be included in the equations 
of motion, but the main effect will be to produce further damping. 

In an external magnetic field the normal collective oscillatory modes are helicons. 
Electrons then have a regular circular drift on top of their random motion. Also the 
Fermi surface for a quantum plasma becomes distorted and split along the field 
direction, which in turn alters the effective masses. In this case, radiative effects 
come in at zero order since helicons have transverse fields. There is in addition a 
synchrotron spectrum radiated by accelerated electrons along the direction of the 
tangent to the electron trajectory. The spectrum is peaked around integraI'multiples 
of the Doppler-shifted cyclotron frequency. If the amplitude of any of these radiations 
is appreciable at frequencies above the plasma frequency, the system is capable of 
radiating directly from local fluctuations. This is a complex problem which is currently 
being examined. 

Conclusions and Some Typical Values 

The fluctuation theory presented here is a simple low order theory. Plasma 
behaviour is usually much more complex and higher order wave-particle interactions 
can be expected to produce significant effects. The many and diverse cooperative 
phenomena observed in solid and gaseous plasmas exemplify this. 

Some typical numerical values for spontaneous emission due to resonances in a 
solid state plasma would be: 

L = 2x 10-3 m, k n = (n+-!). -!n x 103 m-l, ko Ri 103 m- 1 ; 

mf = m; +tv~k~ = m; +t(kBT/2m)x 106 Ri m~+1016, m~ Ri 1024 rad2.s-2 , 

and thus 
mle Ri mp Ri 1012 rads- 1 ; V.oll Ri 1011 s- 1 • 

Here we could expect reasonably long lived bursts of radiation at mp since the inelastic 
collision rate should be much less than 1011 S-1. However, the modes would be 
closely spaced giving a large line width. A purer sample with, say, m~ = 1016 and a 
smaller dimension L of 10-4 m would give much more widely separated resonant 
modes, all of which could be observable. 
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