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Abstract 

As a generalization of Seymour's (1959) exact solution for the drift velocity of a charged particle in 
a static magnetic field of constant gradient, exact solutions are obtained for charged particle 
drift in a static magnetic field represented by B. = AX', where A and IX are constants. Four cases of 
bound orbits are analysed. Exact solutions in terms of hypergeometric, confluent hypergeometric 
and gamma functions are obtained for the displacement Ay per cycle, the periodic time T and the 
drift velocity Vd. The special solutions in terms of complete elliptic integrals obtained by Seymour 
(1959) are also recovered. Calculated exact drift velocity characteristics for representative conditions 
are presented, and the manner in which the exact curves merge into the Alfven approximate drift 
velocity region is indicated. 

1. Basic Equations for Bound Orbits 

The basic equations for the motion of a charged particle in a field are con
veniently written for an electron of charge -e moving in a straight and parallel static 
magnetic field having the z direction of a cartesian coordinate system. For proton 
motion in such a field, the change of charge to + e leads principally to a reversal 
of sign in the displacement and drift velocity expressions derived. Since \l . B = 0, 
the field 

B = (O,O,Bz ) (1) 

in general has a coordinate dependence of the form 

Bz = Bz(x,y). (2) 

In this treatment Bz is taken to depend on the x coordinate only, say, so that here 

Bz = Bz(x), 

with attendant simplicity of analysis. 
In the absence of electric fields the nonrelativistic Lorentz force law becomes 

mdvfdt = -ev X B (e.m.u.) (3) 

in the usual nomenclature. With B in the z direction, the z component of v is con
stant and does not require explicit consideration, while the x and y components of 
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v vary as 

dvx/dt = - (e/m)Bz Vy 

From equation (3), 

and dVy/dt = + (e/m)Bz vX ' (4a, b) 

v. dv/di = d(!v2 )/dt = 0, 

and so v2 = v;+v; is a constant of the motion. In the notation of Fig. 1, which 
shows electron motion in the x-y plane, it is of physical significance in this treatment 

0r-____________________________________________ _ 

Drift for IX > 0 

[B. (0) = 0 (IX>O) 
<Xl (IX<O)] 

[S,(x> 0) 
upwards] 

---------B2>Bo 

x 

~y 

Fig. 1. Electron drift in B. = Ax". Case 1: tX # -1, motion does not cross the line x = O. For 
tX < 0 the indicated drift motion reverses direction and has a pattern of the form shown in Fig. 2. 

to introduce the angular variable t/I, so that Vx and Vy are represented parametrically as 

Vx = dx/dt = vcost/l and Vy = dy/dt = v sin t/I . (5a, b) 

Substitution of equations (5a) and (5b) into either equation (4a) or (4b) leads to 

cos t/I dt/l = (e/mv)Bz(x) dx, 
so that 

sin t/I - sin t/lo = (eJmv) IX Bix') dx' , 
Xo 

(6) 

where t/I = t/lo when x = Xo. 

Various forms of Bz(x) lead to useful drift velocity results. The cases of Bix) 
having sinusoidal, exponential and power law dependence on x have been found 
tractable. In upper atmosphere and laboratory plasma physics the power law is a 
particularly useful general form since, to give one example, it permits exact analysis 
of problems associated with the neutral sheet of the magnetosphere tail. Accordingly, 
in this paper the magnetic field is taken as 

B.(x) = Ax", (7) 
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where l and a: are constants. Then provided a: :f: -1 and Xo > 0, equation (6) yields 

x = xo{1 +{rl(Po/xo)(sint/l -sint/lo)}p, 
where, with 

Bo = lXQ, 

Po = mv/eBo 

(8) 

(9) 

(10) 

is the electron gyroradius for circular orbital motion in a uniform magnetic field of 
strength Bo, and 

p = (1 +a:)-l • (11) 

The electron motion sketched in Fig. 1 is for Xo > O. For simplicity of mathe
matical formulation and without particular loss of generality, Xo is chosen to 
correspond to t/lo = O. Then equation (8) becomes 

x = xo{1 +{rl(Po/xo)sint/l}p. (12) 

Recalling that equation (12) is valid for all a: except a: = -1, the electron orbits are 
bound between the limits 

Xl = xo(l _p-l Po/xo)P for t/I = }1t, (13) 

and 
X2 = xo(1 +{rl Po/xo)P for t/I = !1t, (14) 

so that 

o ~ Xl < X < X2 < 00. (15) 

For a: > 0 the magnetic field Bz vanishes on the line X = 0, and the electron m.otion 
is as shown in Fig. 1. For a: < 0 the field Bz becomes infinite on the line X = O. 
Then the drift motion reverses direction and has the same general form as shown in 
Fig. 2 for a: = -1, which is considered in Case 2 of Section 2 below. 

Another class of motions of practical interest (Seymour 1959) occurs when Xo = 0 
and a: > 0, so that Bz is always zero on the line X = O. Then with t/I = t/lo when 
Xo = 0, equation (6) gives 

X = {{rl(mv/el)(sint/l -sint/lo)}p. (16) 

Under these conditions the electron enters a region of reversed magnetic field when 
it crosses the neutral plane x = 0 if a: is an odd integer, and symmetrical electron 
motions of the type shown in Fig. 3 occur. From equation (16) x for any t/I is thus 
given by 

x = ±{{rl(mv/el)(sint/l-sint/lo)}P, (17) 
with limits 

X2 = -Xl = {/r l(mv/el)(1-sint/lo)}p for t/I = !1t, (18) 

so that 
Xl < 0 and Xl < X < X2 < 00. (19) 
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For (X an even integer, the magnetic field does not reverse direction when the elec
tron crosses the neutral plane into the region x < O. Particle motions of the type 
shown in Fig. 4 now occur, and from equation (16) the corresponding limits are given 
by 

Xl = - {p-l(mv/e).)(1 + sin l/Io)}P 

X2 = {p-l(mv/e)')(l -sint/lo)}P 

so that the conditions (19) again apply. 

for 

for 

l/I = tn, 

l/I = tn, 

(20) 

(21) 

° [8.(0)=00] .Y i 

Drift 

x 

-------80 
[8. (x>O) 

upwards] 

Fig. 2. Electron drift in B. = AX'. Case 2: IX = -1, motion does not cross the line x = o. 

In terms of B:zCx} the magnitude of the angular gyrofrequency ro of the electron 
motion is given by (see e.g. Seymour 1970) 

ro = (e/m)B,.(x). (22) 

From Fig. 1 it is geometrically evident that dl/l/dt = ro, and hence with the aid of 
equations (7) and (22) 

dt = (m/e)..)x-a. dl/l . (23) 

From equations (5b) and (23) 

dy = (mv/e).)x-a. sin l/I dl/l . (24) 

Results corresponding to those presented above for (X = - 1 are given in Case 2 of 
Section 2 below. 

2. Exact Solutions in Terms of Hypergeometric Functions 

Case 1: (X # -1, Electron Does Not Cross Line x = 0 

Consider the case in which (X # - 1 and the electron does not cross the line 
x = 0, on which B,. = 0 when (X > 0 and BIZ = 00 when (X < O. From equations (9), 
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Drift Zero drift 

[Bz (x<O) 

downwards] 

01 -....... ooc::: ;»,.,-= :::::"" oooc:::: >r< [Bz(O)=O] • Y 

x 

x 

x 

[Bz (nO) 
upwards] 

[Bz (x<O) 

downwards] 

J( ',\:;' [Bz(O)=O] .. Y 

[Bz (x>O) 
upwards] 

Fig. 3. Electron drift in B. = Ax". Case 3: IX is a positive odd integer, motion crosses the line x = O. 

(10), (11), (12) and (24) 

f sin t/J dt/J 

Y = Po {1 + P l(po/xo) sin t/J p p' 
(25) 

and thus from Fig. 1 the exact drift in the y direction is given by 

A f2" . 
Lly = Po o. sm t/J dt/J (26) 

At x = X2 (as defined by equation 14) equation (7) becomes B2 = A.x~, and so 

P2 = mv/eB2 = mv/eAx~l-P)/P . (27) 
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Then use of. a new variable </J = in - tl/l in equation (26), with the help of 
equations (10), (14) and (27), leads to 

it" d</J it" sin2 </J d</J Ay = 4P2 -8p2 D' 
o (I-O'sin2</J)1 II 0 (I-O'sin2</J)1 

(28) 

where 
0' = 2{3-1PoX~1-1I)/II/xyll = 2p-lp2/X2 . (29) 

Combination of equations (14) and (29) leads to the useful relationships 

X2/XO = (1 -to')-1I and X2/PO = 2(O'P)-1(1 -to')1-1I . (30,31) 

For Xl ;;;::: 0 (cf. equation 15), equations (13), (14) and (29) yield 

X2 ;;;::: xo(2Po/{3xo)1I ;;;::: X2 0'11 , (32) 

so that the upper limits of P-lpO/XO and 0'11 are unity. 
The theory of hypergeometric functions gives the result (for its derivation, see 

~ppendix 1), 

F(a,b;c;x) = 2r(c) ., Ltlt(Sin</J)2b_~1(COs_</Jt~~b-1d</J, (33) 

which for b = t and c = 1 reduces to 

i tlt d</J 
F(a,t; l;x) = (2In) . 2 • 

o (1 -xsm </Jt 
(34) 

Noting that the result (29) gives P2 = to'{3X2' equation (28) can be further manipu
lated to the form 

Ay = 2{3X2(2 ftn (I-O'sin2</J)1I d</J -(2-0') (tlt ~</J2 1-11). (35) Jo Jo (1 -O'sm </J) 

Hence in terms of hypergeometric functions of the form (34), by putting X = 0' 

and a = -{3 for the first integral of equation (35) and a = 1-{3 for the second 
integral, Ay can be written as 

Ay = n{3x2[2{F(-{3,t; 1;0') -F(I-{3,t; 1;0')} +O'F(I-{3,t; 1;0')]. (36) 

From equations (9), (10), (11), (12) and (23) 

t = (Po/v) f . dl/l (37) 

and so, with reference to Fig. 1, the periodic time T corresponding to Ay is obtained 
with the help of equations (14) and (29) as 

ftx d</J 
T = (20'{3x2Iv)Jo O-O'sin- -. ft· (38) 
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Putting a = 1 - P and x = u in the result (34), equation (38) becomes 

T = (nupx2/v) P(I-P, t; 1; u). (39) 

Elimination of X2 from equation (39) by means of equation (31) and use of the 
zero-order circular orbit result 

To = 2npo/v, (40) 

gives the interesting form 

T= To(1-tu)l-Pp(l-p,t;l;u). (41) 

Equation (41) expresses the periodic time T for noncircular orbital motion in terms 
of the zero-order periodic time To corresponding to electron circular orbital motion 
in a constant magnetic field Bo = A~. 

Prom equations (36) and (39) the exact drift velocity for electron motion in the 
magnetic field Bz = AX(l-P)/P is given by 

Vd = i1y/T = -v[2u- 1{l-F(-P,t; l;u)/F(I-P,t; l;u)} -1]. (42) 

When rx = 1 equation (7) reduces to a magnetic field of constant gradient A. The 
results (36), (39) and (42) above then reduce to those obtained by Seymour (1959, 
Section III, Case 1) since rx = 1 gives p = -t, and thus from equation (34), with 
x = u = ki, 

It" 
!nF(t,t;l;ki) = 0 (1-kisin2 cf»-tdcf> = K, (43a) 

It" ' 
!nF(-t,t;l;ki) = (1-kisin2 cf»tdcf> = E, 

, 0 
(43b) 

the complete elliptic integrals of the first and second kinds respectively. Both elliptic 
integrals are of modulus kl' where kl is bounded by the inequality 

o ~ kl ~ 1. (44) 

It has been seen in Section 1 above that for rx > 0 the electron drift has the pattern 
and direction shown in Fig. 1, and that for rx < 0 the electron drift is in the positive 
direction of the y axis and has a pattern like that shown in Fig. 2, which relates to 
Case 2 below. When rx = 0 equation (7) gives the magnetic field as Bz = A = const. 
Then, with p = 1, F(O, -!-; 1; u) = 1, F( -1, t; 1; u) = I-tu and equations (13), (14), 
(36), (41) and (42) respectively reduce to 

Xl = Xo-Po, x2 = xo+Po, i1y = 0, T= To, Vd = 0, (45) 

as is correct for zero-order circular electron orbital motion in a constant magnetic 
field. 

Case 2: rx = - 1, Electron Does Not Cross Line x = 0 

Consider the case in which rx = -1 and the electron does not cross the line 
x = 0 on which Bz = 00. When rx = -1 equation (7) becomes Bz = A/x, and p 
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becomes infinite. For electron motion in this magnetic field, the results (36), (39) 
and (42) for Ay, T and Vd respectively are not valid. The infinite value of P here 
suggests solutions for these quantities in terms of confluent hypergeometric functions. 
Again choosing Xo to correspond to 1/10 = 0, use of equations (7) and (10) in (6) 
yields in this case 

x = Xo exp{ (Po/ xo)sin I/I} . (46) 

From this result the electron motion of Fig. 2 in the field Bz = A/x is bounded by 

Xl = Xo exp( - Po/xo) 

X2 = Xo exp(po/xo) 

From equations (24) and (46), 

for 

for 

1/1 = I n , 

'" = tn. 

Y = Po I exp{ (Po/ xo)sin I/I} sin 1/1 dl/l , 

and similarly equation (23) yields 

t = Po V -1 I exp{ (Po/ xo)sin I/I} dl/l . 

Thus, with reference to Fig. 2, equation (49) gives 

It" 
Ay = 2po exp{ (Po/ xo)sin 1/1 } sin 1/1 dl/l . 

-t" 

From equations (7) and (27) it is found in this case that 

mv/d = Po/xo = P2/X2' 

With the substitutions v = 2po/xo = 2P2/X2 and -r = sin 1/1, Ay becomes 

Ay = 2po I~l -r(I--r2)-t exp(tv-r) dr. 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

The theory of confluent hypergeometric functions yields the result (for its 
derivation, see Appendix 2) 

M(!; 1; -v) = n- l exp( -tv) Il (1- .. 2)-t exP(tv-r) d-r. (54) 
-1 

By means of the standard result (e.g. Hochstadt 1971) 

dM(a;b; -v)/dv = -ab- 1 M(a+l;b+l; -v) (55) 

(which can be derived directly from the series (A6) of Appendix 2) and the result 
(54), equation (53) becomes 

Ay = 2nPoexp(tv){M(t; 1; -v) -M(1;2; -v)}. (56) 



298 M. Headland and P. W. Seymour 

Similarly equations (40), (50) and (54) yield for the periodic time 

T = To exp(!-v)M(!; 1; -v), (57) 

and so the drift velocity for an electron in a magnetic field Bz = A/x becomes from 
equations (40), (56) and (57) 

Vd = fly/T = v{1 -M(!;2; -v)/M(t; 1; -v)}. (58) 

Case 3: ex a Positive Odd Integer, Electron Crosses Line x = 0 and Enters Reversed Field 

. Consider the case in which ex is a positive odd integer and the electron crosses 
the line x = 0 on which Bz = 0 and enters a region of reversed magnetic field. When 
ex is a positive odd integer, equation (7) shows that the magnetic field reverses for 
x < 0, and the symmetrical motions of Fig. 3 occur. Here equations (17) and (24) 
give for x> 0 

y = (mv/e)..)p p1-P f (sint{! -sint{!0)P-1 simp dt{!, 

and similarly equation (23) yields 

t = v- 1(mv/e).')pp1- P f(Sint{! -sint/!o)P-1 dt{!. 

(59) 

(60) 

Using t{! = tn-2ef>, then t/!o = !n-2ef>0 where, from Fig. 3, -!n :::; t/!o :::; tn and 
o :::; ef>o :::; tn. In terms of ef>o the limits given by equation (18) reduce to 

X2 = -Xl = {2mvsin2(ef>0)/PeA,}p. (61) 

Utilizing the symmetry of the drift patterns of Fig. 3, equation (59) gives 

fly = 4(mv/d)P pi -P It" sin t{! dt{! 
1/10 (sin t{! - sin t{! 0)1- P 

( (t/>o cos2 ef> def> 
= 23+P(mv/d)P p1-P Jo (sin2ef>0 -sin2ef»1 

(t/>o def> ) 
P -! Jo (sin2 ef>0 -sin2 ef»1-P . 

(62) 

If another variable of integration is defined by sin ef> = sin ef>o sin (), equations (27) 
(61) and (62) give 

fly = 23+P(mv/e).')p p1-P y2P-1 

( (t" (1 - y2 sin2 ()t d() (t7t d() ) 
x Jo (cos ())1-2p -! Jo O-,,2sin2())t(cos())1-2/1 ' 

where 

y = sinef>o = (tPX2/P2)t. 

The result (33) enables equation (63) to be written as 

fly = 2Iy2/1-1(2F1-F2), 

(63) 

(64) 

(65) 
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where 
r = nt 2fJ(mv/extpl- fJ r(fJ)/r(J3+-!) , 

Fl = F(_!,!;p+!;y2) and F2 = F(!,!;p+!;y2). 

Similarly equation (60) yields for the periodic time 

T = 2v-lry2fJ-lF2. 

299 

(66) 

(67,68) 

(69) 

From the results (65) and (69) the drift velocity for (J( a positive odd integer may be 
written 

Vd = l1y/T = v(2FdF2 -1). (70) 

Recalling the forms (43), when (J( = 1 and thus p = .!, the results (65), (69) and (70) 
reduce to those obtained by Seymour (1959, Section III, Case 2). 

Case 4: (J( a Positive Even Integer, Electron Crosses Line x = 0 and Enters Non
reversed Field 

Consider the case in which (J( is a positive even integer and the electron' crosses 
the line x = 0 on which Bz = 0 and enters a region of non-reversed magnetic field. 
When (J( is a positive even integer, equation (7) shows that the magnetic field does not 
reverse direction for x < O. In this case the magnetic field itself has symmetry about 
the neutral plane defined by x = 0, and typically the electron drift patterns are as 
shown in Fig. 4. From equations (16) and (24) the form (59) is again obtained for y, 
while use of equation (23) gives the form (60) for t. 

In terms of tPo the limits given by equations (20) and (21) are 

Xl = -{2mvcos2(tPo)/pe)..}fJ and x2 = {2mv sin2(tPo)/pe)..}fl. (71,72) 

From the drift pattern of Fig. 4, l1y can be expressed by means of equation (59) as 

l1y = 2(mv/e)..)fl Pl-fJ( It" sint/t dt/t + f"-I/IO __ Sin_t/t,,--d..:...t/t~--::). 
1/10 (sint/t -sint/to)l fJ 3,,/2 (sint/t -sint/to)l fJ 

(73) 

Again using t/t = !n - 2tP, and t/to = !n - 2tPo, equation (73) becomes 

I1Y =21+ fJ(mv/e)..)flPl-fJ(i.p0 ~2cos2tP~l)dtP +f-t " (1-2sin2tP)dtP ). 
o (sm2tPo -sm2tP)1-fJ -.po (COS2tP -COS2tPO)1-fJ 

(74) 

. Changing the variable tP to 0 in the first integral of equation (74) by means of the 
relationship sin tP = sin tPo sin 0, and changing tP to jJ. in the second integral by use 
of cos tP = cos tPo sin jJ., equation (74) can be written 

l1y = 22+fJ(mv!e).)fl Pl-fJ(y2fJ-l it" COS2fJ - l 0 dO _-!- 2fJ-l it" COS2fJ - l 0 dO 
o (1 - y2 sin2 0) -t Y 0 (1 _ y2 sin2 O)t 

+g2fJ -l it" COS2fJ - l jJ. djJ. _e2/J-l it" COS2/J-l jJ. djJ. ) 
o (l-e2sin2jJ.)t 0 (l-e2sin2jJ.)-t' 

(75) 
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where, from equations (27) and (72), 

y = sin ¢o = (t/3X2/ P2)t and ~ = cos¢o = (I_y2)t. 

In terms of the result (33), equation (75) finally becomes 

~y = r{y2P-l(2F1-F2) _~2P-l(2F3 -F4)} , (76) 

where r is given by equation (66), Fl and F2 are given by equations (67) and (68) 
respectively (but with /3 determined for or: a positive even integer), and F3 and F4 
are given by 

F3 = F(-t,t;/3+t;~2) and F4 = F(t,t;/3+t; e). (77,78) 

Similarly, reference to Fig. 4 and equation (60) enables the periodic time Tin this case 
to be expressed as 

T = v-1r(y2P- 1F2 +ep- 1F4). (79) 

From the results (76) and (79) the drift velocity for or: a positive even integer becomes 

Vd = ~y/T = V{y2P-l(2F1 -F2) _~2P-l(2F3 - F4)}/(y2P-l F2 +ep- 1F4). (80) 

Since or: cannot be assigned the value unity in this case, there is no solution here which 
can be expressed in terms of the complete elliptic integrals given by the forms (43). 

3. Alfven's Approximate Drift Velocity 

In Cases 1 and 2 of the previous section, the electron does not cross the neutral 
plane, and Alfven's drift velocity is readily obtained from the exact results (42) and 
(58) as follows. Considering first the ratio of hypergeometric functions appearing in 
the result (42), use of the series (AI) of Appendix 1 and the binomial expansion 
(1 +X)-l = 1 -x +x2 _x3 + ... leads, for (1 ~ 1, to the approximate result 

F(-/3,t;I;(1)/F(1-/3,t;I;(1) ~ I-t(1-i-(1-/3)(12. (81) 

It can be seen from equation (29) that the smallness of (1 relative to unity implies 
orbital motion far from the neutral plane. Insertion of the result (81) into equation 
(42) yields the first-order /3-dependent Alfven drift velocity expression 

Vd/V = -!(I - /3)(1 . (82) 

When or: = 1 and /3 = t, equation (29) gives (1 = 4P2/X2 and equation (82) reduces to 

Vd/V = - i-(1 , (83) 

as obtained by Seymour (1959, Section III, Case 1). 
Considering now the ratio of confluent hypergeometric functions appearing in the 

result (58) for or: = -1, use of the series (A6) of Appendix 2 similarly leads, for 
v ~ 1, to the approximate result 

M(l;2;-v)/M(t;I;-v) ~ I-!-v. (84) 
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Substitution of this result into equation (58) gives the Alfven drift velocity expression 

Vd/V = tv for 0(=-1. 

From equation (29) 

PO/P2 = (X2/XO)(1-{J)!{J. 

Elimination of a from equation (82) by means of equation (29) leads to 

Vd _ ! I-P P2 
-V--P X2' 

(85) 

(86) 

(87) 

When 0( approaches -1, P approaches infinity, and the limiting forms of equations 
(86) and (87) lead to the conclusion that 

Vd/V = tv, (88) 

which is consistent with the result (85) in the small-perturbation limit. 

4. Discussion 

For Cases 1 and 3 of Section 2 above, which yielded Ay, T and Vd/V in terms of 
hypergeometric functions, it was noted that when 0( = 1 these results assumed forms 
containing the well-tabulated complete elliptic integrals E and K (see e.g. Byrd and 
Friedman 1971). For 0( = - 2 in Case 1, equation (42) simplifies by means oflinear 
transformations of hypergeometric functions (Abramowitz and Stegun 1965) to 

Vd/V = a/(a-2) , (89) 

where, from equation (29), 

a= -2p2/X2, with -oo~a~O. (90) 

Similarly, when 0( = - 3 in Case 1, equation (42) becomes 

Vd/V = -{2a-1(1-KjE)-1}, (91) 

where the complete elliptic integrals K and E have modulus 

k = {a/(a-1)}t, with a = -4P2/X2 and O~k~ 1. (92) 

The results (89) and (91) were used respectively to obtain the curves for 0( = -2 
and - 3 shown in Fig. 5. However, in general, when particular values of 0( are chosen 
in Cases 1, 3 and 4 the hypergeometric functions so determined are not related to 
well-tabulated functions of mathematical physics. Since F(a, b; c; x) is not extensively 
tabulated for the great range and variety of combinations of a, b, c and x that may 
be encountered in practical situations, the most effective way of utilizing the principal 
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results for Vd/V given by equations (42), (70) and (80) of Cases 1,3 and 4 of Section 2 
is to first calculate the specific F(a, b; c; x) that are required. 

Although the confluent hypergeometric function appearing in Case 2 is better 
tabulated (see e.g. Slater 1960; Abramowitz and Stegun 1965) the above conclusion 
appeared also to apply to the numerical evaluation of equation (58), which expresses 
Vd/V in terms of M(a; b; x). Accordingly, one of us (P.W.S.) developed programs for 
use with the Monroe 1656 desk top computer--calculator (having 256 program step 
capacity) to obtain F(a,b;c;x) and M(a;b;x), and hence normalized drift velocity 
characteristics for selected values of IX in Cases 1, 2, 3 and 4, as shown in Fig. 5. 
The parameter X used in this figure is defined for the different cases in Table 1. 
While the calculations leading to Fig. 5 were tedious, it is a simple matter to extend 
the Alfven drift velocity region to smaller values of Vd/V for selected values of IX by 
employing the small-perturbation results (82) and (85). 

Case 

1, P> 0 

1, P < 0 

2 

3 

4 

Table 1. Definition of parameter X for different cases 

0.::; X.::; 1 

Not applicable 

X = 10"1-* = HIPlx2/P2)* 
X = v-* = Hh/P2)* 

X = l' = HPX2/P2)* 
X = l' = HPX2/P2)* 

X~1 

X = 0"-* = (tPX2/P2)* 

X = 10"1-* = (tIPlx2/P2)* 
X = v-* = (tX2/P2)* 
Not applicable 

Not applicable 

The motion of a charged particle in the magnetic field of a straight current-carrying 
conductor of infinite length has been investigated by Hertweck (1959). (One of us 
(M.H.) recently translated this paper from German into English.) In terms of a param
eter A (the reduced angular momentum of the particle), Hertweck considers four 
special cases of particle motion in the magnetic field external to the conductor. The 
only case which is analytically tractable is that of A = 0, in which the particle motion 
is confined to a meridian plane. Detailed examination of Hertweck's case of A = 0 
shows that it corresponds in effect to the present Case 2 of IX = - 1. Expressing 
our ratio Vd/V for an electron in terms of Hertweck's analysis parameters, 

Vd 1 aC -iJ1(i(2e)t) 
v = (2e)t at = Jo(i(2e)t) , 

(93) 

where e is a dimensionless parameter formed from the ratio of .two energies. From 
standard Bessel function theory (e.g. Bell 1968), equation (93) can be expressed in 
terms of modified Bessel functions as 

Vd _ 1 aC _ Il«2e)t) 
v - (2e)t at - Io«2e)t)· 

It is readily shown that (2e)t = !v, and so 

Vd/V = Il(!v)/IoHv), 

(94) 

(95) 
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an alternative form of our result (58). In direct confirmation of this result one can 
show that equations (56) and (57) may be further expressed as 

.1.y = 21tPoI1G-v) and T = (21tPo/v)IoG-v) , (96,97) 

after a number of transformations, whereupon, with Vd = .1.y/T, the result (95) is 
immediately obtained. Calculations of Vd/V from equation (95), using suitable mathe
miltical tables of modified Bessel functions (e.g. British Association for the Advance
ment of Science Mathematical Tables 1937, 1952), lead to results agreeing generally 
to four decimal places with those calculated from equation (58) by means of the 
Monroe 1656 computer-calculator approach described above. The advantage of the 
latter approach is, of course, that for all characteristics appearing in Fig. 5, the 
plotted points can be obtained as required for any selected value of the variable X, 
as defined in Table 1. On the other hand, for the particular characteristics which 
may be plotted using mathematical tables of special functions, one does not have this 
freedom of choice, and this may prove to be inconvenient. 

With reference to Table 1 for the region 0 ~ X ~ 1, the angle t/lo corresponding 
to zero drift velocity is found from the numerical work to be approximately -40° 
for IX = 1, precisely zero for IX = 2 and approximately -21° for IX = 3. From 
Fig. 4, for IX = 2 and electron drift in the negative direction of the y axis, the left
hand part of the drift cycle has zero displacement when t/lo ~ -28°. For electron 
drift in the positive direction of the y axis, the right-hand part of the cycle has zero 
displacement when t/lo ~ +28°. 
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Appendix 1. Derivation of Equation (33) 

The hypergeometric differential equation has a series solution of the form 

F(a,b;c;x) = f (a)r(b)r r 
r=O (c)rr! x , 

where the Pochhammer symbol (a)r is defined by 

(a)r = a(a+l)(a+2) ... (a+r-l). 

In terms of gamma functions, 

(a)r = r(a+ ){r(a) for r a positive integer. 

Hence, using the beta function 

B(x,y) = (1 ~-l(l-t)Y-l dt = r(x)r(y) Jo r(x+y), 

the solution (AI) may be written as 

i l 00 

F(a,b;c;x) = {r(c)jr(b)r(c-b)} t"-l(1_ty-b-l dt L(a)r(tx)'1r!. 
o r=O 

Since by expansion 
00 

L (a)r(tx)'jr! = (l-tx)-a, 
r=O 

it follows that 

F(a,b;c;x) = r(c) f1 tb- 1 (1_ty-b-l dt 
r(b)r(c-b) Jo (l-tx)a . 

305 

(Ai) 

(A2) 

(A3) 

(A4) 

(AS) 

The trigonometrical substitution t = sin2 l/J reduces the form (AS) to the result (33) 
of Section 2, as quoted by Erdelyi (1953). 

Appendix 2. Derivation of Equation (54) 

The confluent hypergeometric differential equation has a series solution of the form 

00 

M(a; b;x) = L {(a)rj(b)rr!}xr. (A6) 
r=O 

Following the procedure adopted in Appendix 1, the series (A6) may be written 

M(a;b;x) = {r(b)jr(a)r(b-a)} I: exp(xt)ta- 1 (1-tt-a- 1 dt (A7) 
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since 
ao 

L (xt)'!r! = exp(xt). 
r=O 

Changing the variable in equation (A7) by means of the relationship 2t = l-'t", the 
solution (A 7) becomes 

M(a;b;x) = TV_U"VL _~ exp(-tX't")(1-'t"t- 1 (1+'t"t- a - 1 d't", 
21-br(b)exp(~x) II 

(A8) 
-1 

and in particular, when a = t, b = 1 and v = -x, the result (54) of Section 2 is 
obtained. 
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