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Abstract 

Thermodynamic properties of methane in the dense gas and liquid states have been calculated by 
the method of molecular dynamics. The methane pair interactions were modelled using a spherically 
symmetric m-6-8 potential, and the most significant three-body and quantum effects were included. 
Agreement between calculated and experimental values for the energy and pressure is generally 
good except at low temperatures and high densities. The specific heat at constant volume is also 
briefly discussed. 

Introduction 

Recently we have calculated the self-diffusion coefficient of dense gas and liquid 
methane using the method of molecular dynamics (Hanley and Watts 1975). The 
principal objective of that study was to investigate how well a simple spherically 
symmetric model pair potential, with parameters determined solely from the bulk 
properties of the dilute gas, represented transport properties of the liquid at moderate 
and high densities. The m-6-S potential of Hanley and Klein (1972) (also Klein 
and Hanley 1972) was selected as the model. Agreement between calculated and 
experimental coefficients was generally good, suggesting that it would be worth 
while to study other properties of the dense fluid. In this paper we report the thermo­
dynamic properties of methane corresponding to the self-diffusion coefficients in the 
previous study, again modelling the methane intermolecular interactions by the 
spherically symmetric m-6-S potential. Specifically, results for the pressure and 
energy at six densities, and (to a somewhat lesser extent) the specific heat at constant 
volume at five dertsities, are compared with comprehensive experimental measure­
ments carried out at the National Bureau of Standards (Goodwin 1971, 1974). We 
will show that agreement between calculations and experiment is generally satisfactory 
thus strengthening the conclusion from our previous study that the m-6-S is a good 
effective pair potential for methane in the dense gas and liquid states. 

The m-6-S potential has the form 

c/>*(r*) = 6+2y(!!)m _ m-y(m-S)(!!)6 _ (!!)8 
m - 6 r* m - 6 r* Y r* ' (1) 

where c/>* = c/>/6, with 6 the well depth; d = rmin/U and r* = r/u, with c/>(rmin) = -6 
and c/>(u) = 0; and m and yare parameters respectively determining the strengths 
of the repUlsive term and of the attraction due to an r - 8 contribution. Parameters 
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for equation (1) that are appropriate to methane were obtained from dilute gas data 
by the procedure discussed in detail by Hanley and Klein (1972); the values taken 
were: 

m = 11, Y = 3'0, (1 = 3·680x 10-10 m(rmin = 4·101 X 1O-10 m), elk = l68·0K. 

(2) 

These parameters were used without adjustment in our previous study of the self­
diffusion coefficient, and they are used again here. 

Computer Simulation 

The molecular dynamics calculations were based on the general techniques 
developed by several authors for a microcanonical ensemble (Verlet 1967, and 
references therein) and followed in particular the method discussed by Barker et al. 
(1971) for argon. Consequently no more than a very brief description is given here. 

A given number N (= 108 in our work) of particles were placed in a cubic box 
and the standard periodic boundary conditions were imposed to approximate an 
infinite system. For computational convenience the potential energy of the system 
was assumed to be pairwise additive, so that we defined an energy U~ by the relation 

N 

U~ r. 4>?J, (3) 
i<j 

where 4>Tj = 4>*(1 rT - r1 J) = 4>*(r*), and in addition the potential was truncated 
at a distance r = 2·5 (1. Corrections for the truncation together with terms including 
quantum and three-body effects are considered below. The equations of motion 
of the system, 

N 

d2r="/dt*2 = - " d,{,~/dr=" " i..J ¥'lJ '" i<j 
(4) 

were solved numerically using a finite difference algorithm for several values of the 
reduced number density p* = (N/V)(13 and reduced temperature T* = kT/e (here 
k is Boltzmann's constant, V the volume and T the temperature). We obtained 
values for the positions rT and velocities vT of the particles as a function of successive 
time steps bt*. The reduced time is given by the relation t* = t(e/m)t(1-l, where m 
is the molecular mass, and bt* was set equal to 0'008018, corresponding to a real 
time of 10-14 s. Having established that the system was in equilibrium (Fisher 
1971), we recorded the positions and velocities of the particles for about 5400 time 
steps and the thermodynamic properties of the system were obtained using approp­
riate time averages (Verlet 1967). Thus, for the reduced internal energy E* one has 

E* = < U~) = <.f. 4>?J) 
I<J 

and for the equation of state 

where 
pV/NkT = 1 + (NT*)-\Po) , 

Po = -t f r*d4>?J 
i<j dr ' 

r* ~ 2·5. 

(5) 

(6) 

(7) 
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If it is assumed that the pair distribution function has reached its asymptotic 
form at the distance r* = 2· 5, a straightforward correction compensates for the 
truncation of the potential. One adds terms to E * and p V / NkT given by 

and 

E:' = 2nN p* foo tPij r*2 dr* 
2·5 

(pV/NkT)oo = -1np*(T*)-1 fOO (dtPlj/dr*)r*3 dr*. 
2·5 

(8) 

(9) 

Barker and his co-workers have discussed in detail the importance of many-body 
forces in the liquid state (Barker et al. 1971, 1972, 1974). Their work has shown, in 
particular, that one cannot obtain an accurate representation of experimental thermo­
dynamic data from computer simulation methods using a realistic pair potential 
together with equations (5)-(9). Since preliminary molecular dynamics studies 
with the m-6-8 potential for argon (Jansoone and Verbeke 1972; W. R. Streett, 
personal communication) are consistent with this conclusion, one would expect 
therefore that many-body forces would have to be included in the calculations of 
the thermodynamic properties of methane discussed here. Accordingly, following 
Barker et al. (1971) we write for the potential energy 

N N 

U* L tPlj + L tPljk 
1<1 I<j<k 

(10) 

or 
U* = U~+U~, (lOa) 

where U~ is the sum over all pair interactions in the system as before and U~ is a 
three-body potential. We further assume that the three-body intermolecular inter­
actions are represented by the Axilrod-Teller triple dipole expression 

tP123 = v(1 + 3 cos 91 cos 92 cos (3)/S~ s~ sL (11) 

in which Sl' S2' S3 and 01, O2 , 03 are the sides and interior angles of the triangle formed 
by the centres of the three molecules. The coefficient v in the Axilrod-Teller equation 
is given approximately as v = !IXC6, where IX is the polarizability of the methane 
molecule and C6 the coefficient of the inverse sixth-power term of potential (1). Since 

C6 = {m-y(m-8)}d6q 6e/(m-6) 

and IX has been determined experimentally as 2·59 x 10- 30 m 3 (Straty and Goodwin 
1973), we have that v = 85 ·74 x 10-109 J m9 • Barker et al. (1972, 1974) have given 
convincing arguments that equation (11) adequately represents many-body forces 
in the liquid and solid states of the noble gases. As many of the properties of the 
methane molecule resemble those of the noble gas atoms, we assume without further 
discussion that the Axilrod-Teller potential is the dominant many-body interaction 
in methane. 

Three-body forces can be introduced into the calculation using perturbation 
theory. In principle, since the molecular dynamics method models a microcanonical 
ensemble, the perturbation expansion should be carried out in this ensemble. However, 
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in the thermodynamic limit, properties such as the internal energy are independent 
of the ensemble in which they are calculated. In addition, Lebowitz et al. (1967) 
have shown that, for intensive variables depending only upon the temperature and 
space coordinates, the differences between fluctuations measured in the canonical 
and microcanonical ensembles are proportional to the specific heat. Consequently 
it is convenient to calculate the contributions from three-body interactions by per­
turbation theory in the canonical ensemble (Zwanzig 1954). 

From perturbation theory it is found that one obtains, to first order in v (Barker 
et al. 1971) 

A = kTln{(r3N/N!)Zo} +<U3 ), (12) 

where A = (h2/2nmkT)t and Zo is the configurational integral for the two-body 
classical system: 

Zo = I .. · IexP{-PUo}dr1 ... drN , (13) 

where p = l/kT. The angle bracket notation indicates a weighted average of the 
form 

<X) = Z01 I ... I exp{ -PUo} X dr1'" drN • 

Note that the average is with respect to a system whose particles interact through 
the truncated pair potential and whose total internal energy is defined by equation (3). 

Perturbation theory is a powerful and flexible tool to use in the analysis of the 
computer results. For example, we can easily extend the above procedure to include 
quantum corrections, as was done in the argon work. Using the Wigner-Kirkwood 
expansion of the free energy in powers of h2 (Landau and Lifshitz 1958) and expanding 
the free energy to first order in v and h2 , one obtains a term additional to that given 
in equation (12), so that 

{(A- 3N) } Ph 2 < > A = kTln - Zo +<U3) + -6 2 L \lfcf>ij , 
N! 9 n m i<j 

(14) 

where \If is the Laplacian operator at rio 

Differentiation of equation (14) with respect to temperature gives the expression 
for the thermodynamic internal energy used in this work, before correction for the 
truncation of the potential: 

E* = <U~)+<U~) _(T*)-1{<U~ U~)-<U~)<U~)} +2<UQ) 

_(T*)-1{<UQ U~)-<UQ)<U~)}, 

In this expression we have, from equation (10), 

U: L cf>tk' 
i<j<k 

and 
h2(q2eT*)-1 d2 ,1.:I'. 

U* = " _'I'_'} 
Q 96n2m i~j dr2'2 . 

(15) 

(16) 
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Table 1. Calculated contributions to total energy and pressure, and comparison with experiment 

Note that at p = 440·9 and 347·4 kgm- 3, Eoo andpoo were calculated from equations (21) and (22) 
respectively 

(a) Total energy ET 

p T Contributions to ET (kJ mol- 1) ET Exp. ET 
(kgm- 3) (K) E2.5 Eoo EQ E3b EO (kJmol- 1) (kJmol- 1) 

440·9 121·5 -6,831 -0,214 0'074 0·168 12·206 5·403 4'641 
151·4 -6,577 -0,215 0·065 0·168 12·960 6·402 5'625 

347'4 172'7 -5,083 -0,169 0·036 0'095 13'498 8·376 7·697 
220'0 -4,854 -0,170 0'032 0·091 14'696 9'794 9·135 

258'7 202·8 -3,695 -0'129 0'023 0·056 14·257 10·51 9·931 
224'8 -3·598 -0,129 0·020 0·053 14·817 11·16 10·59 

192'4 196'7 -2,821 -0·096 0·018 0·040 14'103 11·24 10·64 
213'0 -2,743 -0,096 0·017 0·039 14·517 11·73 11'18 

171·0 205'9 -2'507 -0'085 0'015 0·028 14'315 11·78 11·25 
133·6 204'7 -1,988 -0'067 0'013 0·022 14'316 12·28 11·77 

233·0 -1,897 -0,067 0·010 0·020 14·967 13·03 12·67 

(b) Pressure p 

p T Contributions to p (MPa) p Exp.p 
(kgm- 3) (K) P2·5 Poo PQ P3b (MPa) (MPa) 

440·9 121·5 33·72 -12,89 4·57 12·28 37·68 39·93 
151·4 83·22 -12,94 3·98 12·59 86·84 91·76 

347·4 172·8 25·53 -8,25 1·17 4·62 23·07 17·44 
220·0 58·40 -8,32 1·33 4·93 56·36 49·81 

258·7 202·8 16·67 -4,75 0·38 1'10 13'41 10·12 
224·8 25'75 -4,75 0·34 1'39 22·74 17·81 

192·4 196·7 10·69 -2,62 0·13 0'45 8·64 5·74 
213·0 13'85 -2'62 0·13 0'42 11'78 8·85 

171·0 205·9 10·99 -2'08 0·04 0·27 9·23 7·02 
133·6 204·7 8'70 -1,27 0·11 0·25 7·80 6·24 

233·0 12·30 -1,27 0·06 0·24 11· 33 9·49 

Differentiation of the free energy with respect to the volume gives (Born and Green 
1947) the corresponding expression for the pressure p, written here in terms of the 
compressibility factor: 

pV/NkT = 1+(NT*)-1{(Po)+(P3 )+(PQ)} 

-(NT*2)-1{(U~ Po)-(U~)(Po)+(U~Po)-(U~)(Po)}, (17) 
where 

PQ = -j- L r*dU~/dr* (18) 
i<j 

and 
P3=3U~, (19) 

the last result following from Euler's theorem on homogeneous functions (Barker 
et al. 1971). 
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Results and Discussion 

Total Energy and Pressure 

For each thermodynamic state the two-body contributions to the energy and 
pressure were obtained from a time average using every fifth time step. The three­
body and quantum corrections were evaluated after every fiftieth time step and averaged 
accordingly. The results of the calculations are shown in Tables la and Ib, in which 
the total energy ET and the pressure p have been tabulated for the various temperatures 
and mass densities p. Experimental data for these properties are also included for 
comparison. The subscripts on the column headings have the following interpre­
tations: 2· 5, results from the two-body molecular dynamics calculation with the 
truncated potential; IX), from corrections due to the truncation; Q, from the quantum 
correction; 3b, from the three-body Axilrod-Teller corrections. EO is the energy 
of the isolated molecule, including intramolecular vibrational and rotational con­
tributions, extracted from an independent calculation (Tester 1961; Goodwin 1974). 

We note first from Table 1 the relative magnitudes of the various contributions 
to the energy and pressure. It is seen that the quantum and three-body corrections 
to the energy are small and thus justify using a perturbation expansion of the free 
energy to facilitate their calculation. However, as was observed by Barker et al. 
(1971) for argon, the effect of these corrections on the pressure is often substantial. 
Note, especially, the magnitude of the three-body correction terms. The long-range 
two-body corrections are of the order of 4-5 % for the energy and are definitely 
significant in the computation of the pressure. For this reason, we verified that the 
corrections given by equations (8) and (9) are sufficient using the following argument. 

An energy U! was defined as the sum of the pairwise molecular interactions for 
a potential acting over the interval 2·5 < r* ::::; 1·5Lja, where L = vt, V being 
the volume of the cubic box in the molecular dynamics calculation. The total energy 
becomes, therefore, 

U* = U~+U!+U~, (20) 

where U~ and U~ are defined by equations (10) and (lOa), and 

U! = L (pt(r*) for 2·5 < r* ::::; 1·5Lja. 
i<j 

Equation (20) was included in the equation for the free energy and the perturbation 
expansion was carried out as previously described, but now including terms of first 
order inpUz. Alternative expressions for E;, and (pVjNkT)oo result: 

E;, = (U!> _(T*)-l{(U~ U!>-(U~)(U!)} (21) 
and 

(PV/NkT)oo = (NT*)-l(PZ) -(NT*)-l{(U!PO)-(U!)(Po)}' (22) 

where 
Pz = -j- L r* d¢t/dr*, 2·5 < r* ::::; 1·5L/a. (23) 

i<j 

To these equations we must add contributions from (8) and (9) respectively with the 
qualification that the lower limit of the r* integrations becomes 1· 5 L/ a. The agree­
ment between energies calculated using equations (8) and (21), and between compress-
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ibility factors calculated using equations (9) and (22), was found by calculation to 
be very close (e.g. within 1 MPa in pressure at the highest pressure). We therefore 
include results from the more precise calculation in Table 1 for the two largest densities 
only. 

The statistical errors on our machine results can be estimated by comparing 
corresponding pressures and energies averaged over varying numbers of configurations 
for a given equilibrium state. We assigned an error of about ± 1 MPa in the pressures 
and about ± 0·05 kJ mol- 1 in the energies from such comparisons. A further estimate 
of the statistical errors can be obtained by referring to the calculation of Barker et aT. 
(1971) for liquid argon. In that work, equivalent results from molecular dynamics 
and Monte Carlo calculations were compared: values of the pressure differed by 
about 0 ·1-1 MPa and values of the energy by less than 0·05 to about 0·5 kJ mol- 1, 

depending on the thermodynamic state of the fluid. We would expect similar differ­
ences for methane. The approximation of the infinite system by a periodic system of 
108 particles can also be expected to introduce errors, and this possibility is discussed 
with reference to the specific heat in the last part of this section. Overall, a reasonable 
estimate of the precision of our molecular dynamics results is ± 5 MPa in the pressure 
and ±0·3 kJmo1- 1 in the energy. 

The experimental pressures and energies listed in Table 1 are taken from a very 
comprehensive experimental program used to determine accurately the thermo­
dynamic properties of methane. Data for p VT were measured over a wide range of 
experimental conditions (Goodwin and Prydz 1971) and coordinated with independent 
measurements of the melting and vapour pressures (Prydz and Goodwin 1972), 
dielectric constant (Straty and Goodwin 1973), refractive index (J. D. Olson, personal 
communication), specific heat (Younglove 1974) and the speed of sound (Van Dael 
et aT. 1965; Van Itterbeek et aT. 1967; Straty 1974). Based on these diverse data, 
an equation of state was proposed by Goodwin (1974). The interpolated experimental 
data given in this paper were obtained from a computer analysis of these data (McCarty 
1974). An approximate error of ± 0·5 MPa has been given to the experimental 
pressures and ± 0·02 kJ mol- 1 to the energy. These errors will be somewhat larger 
at very high densities and close to the critical density. 

Inspection of Table 1 shows that our calculated values tend to be somewhat higher 
than experiment. Nevertheless, the agreement between these values and experiment 
is considered satisfactory. It should be stressed at this point that the discrepancies 
can be reduced substantially if the parameters (1 and elk are very slightly adjusted. 
Barker et aT. (1971) emphasized the sensitivity of the pressure of the dense fluid to 
these scaling parameters when they proposed their accurate pair potential for argon. 
However, we did not pursue this approach, primarily because the parameters used 
here are firmly based on a correlation of the properties of dilute gaseous methane 
(Klein and Hanley 1972; Hanley and Watts 1975) and we do not wish to disrupt 
this agreement. In any case, the basic assumption used in this study of methane, 
namely the neglect of nonspherical effects, is such that revised values for (1 and elk 
would probably have no real significance. It is also worth recalling that the motivation 
for this work was to establish how effectively an approximate and simple pair potential 
determined from bulk properties of the dilute gas can be used at higher densities. 
We believe that this objective has been achieved for the internal energy and equation 
of state. 



322 H. J. M. Hanley and R. O. Watts 

Specific Heat at Constant Volume 

The comparison of our results with experiment is concluded with a discussion 
of results for the specific heat at constant volume, CV ' The comparison is interesting 
because it illustrates very well some of the problems associated with the computer 
simulation of a real liquid. 
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Fig. 1. Comparison between the density (p) variation of the specific heats at constant 
volume (Cv) calculated using equation (25) and the experimental curve from the equation 
of state. The results are compared with respect to an ideal-gas specific heat. Reasons 
for the disagreement between calculated values and experiment are discussed in the 
text. Estimates of the precision of our calculated values (indicated by the error bars) 
were arrived at by varying the subset chosen to obtain a time average of the quantities 
in equation (25) for a given equilibrium state. 

The interaction contribution to the internal specific heat, C~, is given by 

C! = (Cv-C?) = a<U)/aT, (24) 

where Cv is the total specific heat and C? is the ideal gas value. Let us consider the 
methane system, but neglect quantum and three-body forces. Given then that 
U* = U~+ U~, one can derive the expression (Fisher 1971) 

C!/k = (T*2)-1{«c5U~ U~)2)+«Ut U~)2)} 

+(T*3)-1{<U~)_<U~)«c5U~ U~)2) +«c5U~ U~ U~)2)}, (25) 

where the shorthand notation 

«c5XY)2) = <XY)-<X)<Y) (26) 

for the variances has been used for convenience. 
The specific heat for methane was calculated using equation (25) and the results 

are plotted in Fig. 1, together with the experimental curve from the equation of 
state for comparison. Both the molecular dynamics results and those from the 
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equation of state are reported with respect to a common ideal-gas specific heat 
(Goodwin 1971). Agreement between our values and experiment is not good, but 
the difficulties inherent in the molecular dynamics should be taken into account. 
We have established that the addition of three-body and quantum terms to equation 
(25) tends to decrease the calculated Cy at high densities, consequently improving 
the agreement with experiment. Unfortunately the amount of computation time 
required to obtain accurate values of these correlation terms is prohibitive. However, 
it can be argued that the basic difficulty in determining Cy accurately arises from the 
assumption that a system containing only lOS molecules can be treated as infinite. 
The effects of this restriction are most apparent near the critical density (Pc = 160·4 
kgm- 3). Upon approaching the critical region, a real system is known to show large 
thermal fluctuations, leadIng to anomalous behaviour in several thermodynamic 
properties. In particular, experimental results show that Cy diverges weakly, as 
indicated by the curve in Fig. 1. Our system is not large enough to include this 
collective molecular behaviour correctly. 

Table 2. Comparisons between internal specific heats calculated for canonical and microcanonical 
ensembles 

The internal energy of the system was assumed to be pairwise additive and ¢JI} was truncated at 2· 5 (1 

p T C!/Nk p T C!/Nk 
(kgm- 3) (K) canon. mcanon. (kgm- 3) (K) canon. mcanon. 

440·9 121·5 0·619 1·049 192·4 196·7 0'419 0·580 
151·4 0'570 0·915 213·0 0'385 0'517 

347·4 172·8 0'474 0·690 171·0 205·9 0·291 0·360 
220·0 0·380 0·508 

258·7 202·8 0·365 0·481 133·6 204·7 0·319 0'405 
224·8 0·316 0·400 233·0 0·282 0·347 

In this context, the paper by Lebowitz et al. (1967) on (in part) fluctuations in 
molecular dynamics calculations is relevant, since they discuss the analysis of machine 
results from various statistical mechanical ensembles. In our work we have estab­
lished a microcanonical ensemble, but the expression (25) for the specific heat is 
strictly that for a canonical ensemble. We have, therefore, made the usual assumption 
that the two ensembles are thermodynamically equivalent. However, this assumption 
may not hold for the specific heat, as can be shown by the following argument. Let 
us assume for convenience that C~ = iNk and U* = U~, so that for the canonical 
ensemble 

Cy/Nk = i +(NT*2)-1«c5U~ U~)2>. (27) 

Lebowitz et al. have derived the corresponding expression for a microcanonical 
ensemble, namely 

Cy/Nk = i/{l -i(NT*2)-1«c5U~ U~)2>}. (2S) 

We have calculated C! from these two equations and the results are shown in Table 2. 
It is seen that the two calculations disagree by from 20 % to 50 %, which is felt to 
be outside our estimate of precision on the variance «c5U~ U~)2>. The results of 
Table 2 therefore lend support to the suggestion that the specific heat cannot be 
estimated properly from a system of lOS particles. 
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Conclusions 

The molecular dynamics calculations of the thermodynamic properties of methane 
using a spherical m-6-8 potential are generally successful and complement the 
previous investigations of the dilute gas properties (Hanley and Klein 1972) and the 
dense fluid self~diffusion coefficient (Hanley and Watts 1975). The molecular dynamics 
method is not very satisfactory when applied to the specific heat, but it can be argued 
that this is a consequence of working with a small system. 
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