Accurate Branching Ratio Measurements in ${ }^{23} \mathrm{Na}\left(\mathbf{p}, \gamma{ }^{24} \mathbf{M g}\right.$

S. G. Boydell and D. G. Sargood
School of Physics, University of Melbourne, Parkville, Vic. 3052.

Abstract

The reaction ${ }^{23} \mathrm{Na}(\mathrm{p}, \gamma)^{24} \mathrm{Mg}$ has been investigated in the proton energy range $0 \cdot 3-1 \cdot 75 \mathrm{MeV}$. Gamma ray spectra were measured for 22 resonances with $\mathrm{Ge}(\mathrm{Li})$ detectors which were carefully calibrated for relative peak efficiencies. Allowance was made for the effect of anisotropies in all the emitted γ-rays. The spectra have been analysed to give branching ratios for bound and unbound levels.

Introduction

The use of $\mathrm{Ge}(\mathrm{Li})$ detectors in the measurement of γ-ray branching ratios has made it possible to obtain results which are unambiguous, accurate and reproducible. Such results can be obtained with relatively simple analysis techniques, provided detector calibrations and experimental arrangements are carefully made and well understood. This paper describes a series of such measurements, of branching ratios of levels in ${ }^{24} \mathrm{Mg}$ up to 13.4 MeV excited via the reaction ${ }^{23} \mathrm{Na}(\mathrm{p}, \gamma){ }^{24} \mathrm{Mg}$.

Experimental Details

The measurements were carried out with the 800 kV electrostatic accelerator at the University of Melbourne, and with the 3 MV Van de Graaff accelerator at the AAEC Research Establishment at Lucas Heights, N.S.W. Targets of $\mathrm{Na}_{2} \mathrm{WO}_{4}$ and NaBr were prepared by evaporation onto 0.025 cm tantalum or gold backings. Target thicknesses were chosen to be larger than the natural resonance widths, but much smaller than the resonance separation. The backings were sealed directly onto a knife-edge on the stainless steel target chamber, which was machined to orient the target at 55° to the incident beam. The target chamber was isolated from the main vacuum system by an in-line liquid nitrogen trap, and was maintained at a pressure of 2×10^{-7} torr during experimental runs by means of a getter-ion pump.

The measurements at the University of Melbourne were made using a five-sided coaxial $\mathrm{Ge}(\mathrm{Li})$ detector of $35 \mathrm{~cm}^{3}$ active volume, with a resolution of 2.3 keV for $1 \cdot 33 \mathrm{MeV} \gamma$-rays (the shaping time being $3 \mu \mathrm{~s}$). The detector pulses were amplified by standard electronics and analysed into 4096 channels. The measurements at the AAEC Research Establishment were made using a $40 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector with 2.0 keV resolution at 1.33 MeV (shaping time $2 \mu \mathrm{~s}$), and the pulse height analysis was also into 4096 channels.

Detector Efficiency

In the analysis of the spectra, peak areas were used in preference to total line shapes because the latter are not well understood at low pulse heights, and analysis of complex (i.e. more than 10 components) 4096 channel spectra would have required prohibitive amounts of computer storage. In this work, a physical understanding of the spectral regions immediately adjacent to the peaks allowed consistent and reproducible extraction of peak areas from spectra containing up to 25γ-ray components. Peak areas were defined by reference to these adjacent spectral regions.

Calculated relative peak efficiencies (Wainio and Knoll 1966; Aubin et al. 1969; Peterman et al. 1972) show good agreement with experiment at energies below 4 MeV , but at higher energies the estimation of bremsstrahlung losses is difficult and can lead to significant errors (Wainio and Knoll; Aubin et al.; Seyfarth et al. 1972). An empirical calibration of the relative peak efficiency of each detector was therefore undertaken in the energy range $0 \cdot 5-11 \mathrm{MeV}$.

Below 3 MeV , the method used for the calibration of the $40 \mathrm{~cm}^{3}$ detector was an extension of that of Freeman and Jenkin (1966), using the sources ${ }^{88} \mathrm{Y}$ and ${ }^{24} \mathrm{Na}$ to extend the range of the calibration up to 2.8 MeV . For higher energies, the calibration method adopted (Boydell 1973) was based on that suggested by van der Leun et al. (1967), using γ-ray pairs from ${ }^{26} \mathrm{Mg}(\mathrm{p}, \gamma)^{27} \mathrm{Al}$. The method was independent of previous $\mathrm{Ge}(\mathrm{Li})$ measurements.

Fig. 1. Relative peak efficiency curves of the $40 \mathrm{~cm}^{3} \mathrm{Ge}(\mathrm{Li})$ detector for the full energy peak (FEP) and the double escape peak (DEP). The FEP efficiency at 0.511 MeV has been taken as 10 .

The relative peak efficiency curves are displayed in Fig. 1. An overall uncertainty of $\pm 6 \%$ was assigned to both curves. This degree of accuracy was confirmed from tests of the internal consistency of decay schemes from ${ }^{56} \mathrm{Co}$ and ${ }^{27} \mathrm{Al}(\mathrm{p}, \gamma)^{28} \mathrm{Si}$, ${ }^{23} \mathrm{Na}(\mathrm{p}, \gamma){ }^{24} \mathrm{Mg}$ and ${ }^{31} \mathrm{P}(\mathrm{p}, \gamma)^{32} \mathrm{~S}$. All the spectra for these tests were measured in the same geometry as that in which the efficiency calibration was measured, and angular distributions were measured where necessary in order to average out any anisotropies.

The $35 \mathrm{~cm}^{3}$ detector used with the 800 kV Melbourne electrostatic accelerator was calibrated using the $40 \mathrm{~cm}^{3}$ detector calibration curves as standard. This was achieved by comparing peak areas in the pulse height spectra from the two detectors obtained from a ${ }^{56} \mathrm{Co}$ source and from the 655 keV resonance in ${ }^{27} \mathrm{Al}(\mathrm{p}, \gamma){ }^{28} \mathrm{Si}$. The calibration curves are displayed in Fig. 2; they are considered accurate to $\pm 10 \%$.

Detector Geometry

Gamma rays from the reactions under study are in general anisotropic, their angular distributions being normally written in the form

$$
\begin{equation*}
W(\theta)=a_{0}+a_{2} P_{2}(\cos \theta)+a_{4} P_{4}(\cos \theta) . \tag{1}
\end{equation*}
$$

Higher order terms are very unlikely, since their presence requires the combination of octupole or higher multipole radiation with f-wave or higher angular momentum protons. Branching ratios are given by the relative values of a_{0} for the γ-rays of interest, and measurements must therefore be made in such a way that nonzero values of a_{2} and a_{4} do not contribute to the observed intensities.

The finite solid angle subtended by a detector will modify equation (1). However, for a cylindrically symmetric detector whose axis passes through the target spot, this modification takes the simple form (Yates 1965)

$$
W_{\mathrm{m}}(\theta)=a_{0}+Q_{2} a_{2} P_{2}(\cos \theta)+Q_{4} a_{4} P_{4}(\cos \theta),
$$

where Q_{2} and Q_{4} are the solid angle attenuation coefficients, functions of the detector efficiency and geometry but not dependent on θ. For the above class of detector, therefore, subtension of a finite solid angle does not affect the complexity of the angular distribution. Also, the effect of the $P_{2}(\cos \theta)$ term is eliminated if measurements are made at $\theta=55^{\circ}$. At this angle, the effect of the term in $P_{4}(\cos \theta)$ relative
to a_{0} is

$$
Q_{4}\left(a_{4} / a_{0}\right) P_{4}\left(\cos 55^{\circ}\right)=Q_{4}\left(a_{4} / a_{0}\right) 0 \cdot 38
$$

Calculations of Q_{4} carried out for the detectors used indicated that at detector-target distances of $<1.5 \mathrm{~cm}$, the value of Q_{4} was always sufficiently small $(\sim 0 \cdot 15)$ to reduce the effect of the $P_{4}(\cos \theta)$ term to a few per cent of a_{0} (for realistic a_{4} / a_{0} values, i.e. $<0 \cdot 25$). This geometrical arrangement also maximized the count rate.

The calculations were also extended to include off-axis positions of the detector and finite target spots. These indicated that neither the experimental size of the target spot nor the experimental uncertainties in the detector location had any significant effect on the γ-ray relative intensities.

Table 1. Comparison of measured relative intensity values
The intensities have been normalized to a value of 100 for the least anisotropic γ-ray. In method A the detector-target distance was 1.3 cm in the 55° direction, while in method B the distance was 8.5 cm and a full angular distribution was measured. The errors displayed are the sum of the uncertainties in the peak area and the detector placement

Reaction, resonance	$\begin{gathered} \boldsymbol{E}_{\gamma} \\ (\mathrm{MeV}) \end{gathered}$	Angular distribution coeffs $a_{2} / a_{0} \quad a_{4} / a_{0}$		Relative intensity	
${ }^{26} \mathrm{Mg}(\mathrm{p}, \gamma){ }^{27} \mathrm{Al}$,	$0 \cdot 84$	Isotropic	Isotropic	100	100
$E_{\mathrm{p}}=2141 \mathrm{keV}$	$7 \cdot 35$	0.42 ± 0.01	-	$74 \cdot 7 \pm 0 \cdot 8$	$74 \cdot 3 \pm 0 \cdot 7$
	$9 \cdot 33$	0.54 ± 0.03	-	$9 \cdot 3 \pm 0 \cdot 2$	$9 \cdot 7 \pm 0 \cdot 2$
	$9 \cdot 49$	$0 \cdot 38 \pm 0.04$	-	$6 \cdot 5 \pm 0 \cdot 2$	$6 \cdot 5 \pm 0 \cdot 1$
${ }^{31} \mathrm{P}(\mathrm{p}, \gamma)^{32} \mathrm{~S}$,	$1 \cdot 62$	0.33 ± 0.01	0.25 ± 0.01	$166 \pm 1 \cdot 5$	$168 \pm 0 \cdot 5$
$E_{\mathrm{p}}=1438 \mathrm{keV}$	$2 \cdot 16$	0.31 ± 0.03	0.01 ± 0.03	$38 \cdot 0 \pm 0 \cdot 6$	$37 \cdot 9 \pm 0 \cdot 3$
	$2 \cdot 23$	$0 \cdot 27 \pm 0.01$	-0.04 ± 0.01	277 ± 2	$276 \pm 0 \cdot 6$
	$2 \cdot 78$	-0.20 ± 0.01	-	100	100
	$3 \cdot 65$	$0 \cdot 44 \pm 0.01$	0.01 ± 0.02	$86 \cdot 5 \pm 0 \cdot 5$	$87 \cdot 6 \pm 0 \cdot 3$
	$5 \cdot 01$	0.40 ± 0.07	0.00 ± 0.09	$1 \cdot 8 \pm 0 \cdot 2$	$1 \cdot 6 \pm 0 \cdot 1$
	$5 \cdot 25$	-0.54 ± 0.04	0.06 ± 0.04	$5 \cdot 2 \pm 0 \cdot 2$	$4 \cdot 7 \pm 0 \cdot 1$
	$5 \cdot 80$	0.43 ± 0.02	-0.01 ± 0.03	$22 \cdot 1 \pm 0 \cdot 2$	$21 \cdot 8 \pm 0 \cdot 5$

The calculations depend on the assumption of detector symmetry, and this was checked with narrow beam scans. The location of the germanium crystal within the detector can was also checked, by X-ray photography.

The reliability of the calculations was tested at two resonances: the 2141 keV resonance in ${ }^{26} \mathrm{Mg}(\mathrm{p}, \gamma){ }^{27} \mathrm{Al}$ and the 1438 keV resonance in ${ }^{31} \mathrm{P}(\mathrm{p}, \gamma){ }^{32} \mathrm{~S}$. Branching ratio measurements were made with a detector-target distance of 1.3 cm in the 55° direction, and with a detector-target distance of 8.5 cm , at which distance a full angular distribution was measured and used in determining the branching ratios. The results obtained from the two methods were in excellent agreement; they are displayed in Table 1, together with the angular distribution coefficients of the γ-rays.

Branching Ratio Results

Resonance levels

The measured branching ratios of resonance levels in ${ }^{23} \mathrm{Na}(\mathrm{p}, \gamma){ }^{24} \mathrm{Mg}$ for $E_{\mathrm{p}}<1750 \mathrm{keV}$ are presented in Table 2. The errors (displayed as superscripts) arise from peak area errors and the estimated uncertainty (6%) in the relative peak
efficiency curve. The values in parentheses are those for which secondary components were obscured, and are tentative. The relative intensities displayed in Table 2 are normalized so that the sum of all non-tentative primary transitions equals 100%. The energies quoted in Table 2 and elsewhere are taken from Meyer et al. (1972) and Switkowski et al. (1975), as are the J^{π} values given. A typical γ-ray spectrum is displayed in Fig. 3.

A recent measurement (Switkowski et al. 1975) of the ${ }^{23} \mathrm{Na}(\mathrm{p}, \gamma)^{24} \mathrm{Mg}$ excitation function lists 26 resonances with $E_{\mathrm{p}}<1.75 \mathrm{MeV}$ whose total strengths are greater than 0.2 eV . All these were investigated, with the exception of the resonances at $1092,1136,1638$ and 1652 keV . Of these, two (1136 and 1638 keV) are very broad (25 and 45 keV), and the other two are 5 keV wide and weak compared with the ($\mathrm{p}, \mathrm{p}_{1} \gamma$) and ($\mathrm{p}, \alpha_{1} \gamma$) channels, causing pile-up difficulties. Machine time considerations precluded measurement of resonances with total strengths below 0.2 eV .

Off-resonance 'background' spectra were measured above and below the resonances to check for nonresonant, contaminant or competing reactions. The most prevalent of these was ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha \gamma){ }^{16} \mathrm{O}$, with ${ }^{12} \mathrm{C}(\mathrm{p}, \gamma){ }^{13} \mathrm{~N}$ and ${ }^{13} \mathrm{C}(\mathrm{p}, \gamma){ }^{14} \mathrm{~N}$ also being observed at several resonances. Such reactions did not mask any of the primary transitions, though in a few cases peak area errors were increased where peaks were superimposed on the severely Doppler-distorted $7 \cdot 12 \mathrm{MeV} \gamma$-ray from ${ }^{19} \mathrm{~F}(\mathrm{p}, \alpha \gamma){ }^{16} \mathrm{O}$.

Two resonances, at 1021 and 1395 keV , were measured using both target materials (NaBr and $\mathrm{Na}_{2} \mathrm{WO}_{4}$), as a spot check on any possible contaminant γ-rays from target constituents other than sodium; none was observed.

Measurements of branching ratios of the resonance levels in the energy range considered here have been made by other workers with $\mathrm{NaI}(\mathrm{Tl})$ detectors (Flack et al. 1954; Glaudemans and Endt 1962, 1963; Prosser et al. 1962; Nordhagen and Steen 1964), and by workers with $\mathrm{Ge}(\mathrm{Li})$ detectors (Baxter et al. 1969; Meyer et al. 1972). The most comprehensive of these is the study by Meyer et al. (1972).

Comparison of the present work with previous $\mathrm{NaI}(\mathrm{Tl})$ results showed overall good agreement. Some ambiguities present in the decay schemes deduced from $\mathrm{NaI}(\mathrm{Tl})$ measurements were removed by the present work, and weak components were more easily detected with the $\mathrm{Ge}(\mathrm{Li})$ detector.

Comparison of the present work with the $\mathrm{Ge}(\mathrm{Li})$ results of Baxter et al. (1969) and Meyer et al. (1972) showed excellent agreement for most resonances. However, a number of cases arose where weaker transitions observed in the present work were not reported by Baxter et al., possibly because of poorer counting statistics, and in a number of cases it was not possible to reconcile the present results with those of Meyer et al. within combined errors. The latter authors quote very small errors ($\sim 5 \%$) for their measurements of γ-rays of intensity $>10 \%$ of the total decay, but do not quote the accuracy of their relative efficiency calibration, which seems unlikely to be better than 5%.

In the list of further comments which follows, note is made of discrepancies with other workers only where the results fall outside two error bars of each other.

Resonance Level at 512 keV

At this resonance, Meyer et al. (1972) report a transition to a non-existing level at 10.26 MeV , of strength 3.6%. If this is assumed to be a typographical error, the level being at 10.06 MeV , then the present results agree with those of Meyer et al. and Baxter et al. (1969).
Table 2. Branching ratios of resonance levels in ${ }^{23} \mathrm{Na}(\mathbf{p}, \boldsymbol{\gamma})^{24} \mathbf{M g}$
The branching ratios shown for each resonance are normalized so that the sum of all non-tentative primary transitions (printed in bold) equals 100%. The errors which arise from uncertainties in the peak areas and in the efficiency calibrations are displayed as superscripts

Final level		Proton energy (keV) and J^{π} of resonance										
E_{x}	J^{π}	309	512	592	677	739	744	872	988	1009	1011	1021
(MeV)		2^{+}	$1^{(+)}$	$2{ }^{-}$	$3+$	$3+$	2^{+}	$1{ }^{+}$	4	$2^{ \pm}, 3^{ \pm}, 4^{+}, 5^{-}$	$3{ }^{-}$	2-
0	0^{+}	$0 \cdot 9{ }^{0 \cdot 4}$	$5 \cdot 4^{0.5}$	$1 \cdot 6^{0 \cdot 4}$	$<0 \cdot 1$	<0.9	$2 \cdot 6^{0.3}$	52^{4}	$<0 \cdot 6$	$<1 \cdot 5$	<3	<0.6
$1 \cdot 37$	$2+$	32^{4}	$74{ }^{5}$	31^{4}	$13{ }^{1}$	15^{1}	$3 \cdot 6^{0 \cdot 4}$	6.90.6	$1.9{ }^{0.4}$	<4	33^{10}	11^{1}
$4 \cdot 12$	4^{+}	<0.7	$<0 \cdot 3$	<0.8	$3 \cdot 0^{0.4}$	$1 \cdot 7^{0 \cdot 4}$	$0 \cdot 8{ }^{0.3}$	$<0 \cdot 6$	$74{ }^{7}$	$8 \cdot{ }^{3}$	$18{ }^{9}$	<1
$4 \cdot 24$	2^{+}	43^{5}	9.2 ${ }^{\text {0.7 }}$	44^{4}	46^{4}	42^{4}	$68{ }^{4}$	$15{ }^{1}$	$3 \cdot 5{ }^{1}$	24^{15}	23^{23}	72^{6}
$5 \cdot 24$	3^{+}	$8 \cdot 6^{0.6}$	$<1 \cdot 1$	8.8 $\mathbf{8}^{3 \cdot 2}$	20^{2}	16^{2}	$1 \cdot 3^{0.3}$	$<1 \cdot 2$	7-2 ${ }^{1}$	10^{3}	<5	<1
$6 \cdot 01$	4^{+}	<0.5	<0.8	<1.6	<0.3	$<0 \cdot 8$	<0.5	$<0 \cdot 5$	10^{1}	<4	<3	<1
6.43	0^{+}	<0.5	$1^{0.2}$	$<1 \cdot 2$	$<0 \cdot 3$	$<1 \cdot 1$	<0.8	4.10.9	<0.6	<3	<4	<1
$7 \cdot 35$	2^{+}	<0.6	<1	$5 \cdot 1{ }^{1}$	12^{1}	$14^{1.4}$	<1.6	<0.6	<0.6	12^{4}	10^{10}	<1
$7 \cdot 55$	1^{-}	$(1 \cdot 8)^{0.3}$	<0.5	<1	$<0 \cdot 3$	<1.2	<0.7	<0.7	<0.6	<3	<3	$<1 \cdot 2$
$7 \cdot 62$	3-	$<0 \cdot 6$	<0.5	<1	$3 \cdot 7^{0 \cdot 3}$	$3 \cdot 4^{1}$	$7 \cdot 3^{0.5}$	<0.6	<0.7	<3	<3	$<1 \cdot 3$
7.75	$1+$	$4.9{ }^{0.5}$	3.10.4	<1	<0.3	<1	<0.7	7-0.6	<0.5	$(4 \cdot 0)^{2}$	<3	$3 \cdot 4^{0.7}$
$7 \cdot 81$	(5+)	<0.5	<0.5	<1	<0.3	<1	<0.8	<0.6	$3 \cdot 4^{0.5}$	<3	<3	$<1 \cdot 4$
$8 \cdot 36$	$3{ }^{-}$	-	-	-	-	-	<0.8	-	-	<2	-	$(1 \cdot 3)^{0.9}$
$8 \cdot 438$	1^{-}	$2 \cdot 90 \cdot 4$		$3 \cdot 5.7$			$2 \cdot 3^{0 \cdot 5}$	$3 \cdot 9^{1}$				
8.65	2^{+}		$2 \cdot 3.5$		$0 \cdot 5^{0 \cdot 2}$		$10^{1.2}$	$5 \cdot 4^{0 \cdot 4}$				
$8 \cdot 86$	2-	$6^{0.5}$		6^{1}			$2 \cdot 8^{0.8}$	$2 \cdot 2{ }^{0 \cdot 3}$		<4	2^{2}	14^{2}
$9 \cdot 00$	2^{+}	$(0 \cdot 4)^{0.2}$		<2.6	1.9 .5	$(1 \cdot 5)^{0.4}$	$(0 \cdot 6)^{0.4}$					
9.28	2^{+}	$(0 \cdot 5)^{0.3}$										
9.46	$3+$					$(0 \cdot 9)^{0.2}$			$(1 \cdot 3)^{0.4}$			
$9 \cdot 52$	4^{+}					$7 \cdot 90 \cdot 9$				$28{ }^{9}$	9^{9}	
9.83	$1{ }^{+}$			$(4 \cdot 3)^{2}$			$\mathbf{1} \cdot \mathbf{2}^{\mathbf{0} \cdot 2}$	$(1 \cdot 1)^{0 \cdot 2}$		<2		$(1 \cdot 3)^{0.4}$
9.97	$1+$		$(1 \cdot 3)^{0.7}$	<1.9								
10.06	$1^{+}, 2^{+}$	$0 \cdot 8.1$	$5{ }^{1}$	$(2 \cdot 5)^{0.7}$		$(1 \cdot 1)^{0.5}$		$2 \cdot 3^{0 \cdot 2}$		18^{2}	2^{2}	
$10 \cdot 36$	2^{+}						$(0 \cdot 6)^{0.2}$					
$10 \cdot 66$					$0 \cdot 6^{0 \cdot 1}$							
$10 \cdot 73$	1^{+}	$1^{0.3}$	$<1 \cdot 2$					$\mathbf{1} \cdot \mathbf{1}^{\mathbf{0} \cdot 1}$		$(1)^{0.5}$	$2 \cdot 6{ }^{1 \cdot 5}$	$(0 \cdot 8)^{0 \cdot 3}$
$11 \cdot 21$	$1^{+}, 2^{+}$		$(1 \cdot 4)^{0 \cdot 2}$									

Table 2 (Continued)

Final level		Proton energy (keV) and J^{π} of resonance										
E_{x}	$J^{\boldsymbol{\pi}}$	1164	1174	1205	1255	1283	1318	1395	1416	1457	1726	1748
(MeV)		2^{+}	$1{ }^{+}$	$2^{+}, 3^{ \pm}, 4^{+}$	$1{ }^{+}$	$2+$	1	3^{+}	4^{+}	$3-$	$3-$	$1^{-}, 2^{ \pm}, 3^{ \pm}, 4^{ \pm}, 5^{-}$
0	0^{+}	$7{ }^{7}$	36^{3}	<1	<2	<0.2	$8.7{ }^{0 \cdot 9}$	$<0 \cdot 3$	<0.2	<1	0.90 .2	<1
$1 \cdot 37$	$2+$	26^{3}	10^{1}	9.8 $\mathbf{8}^{1.0}$	$91{ }^{10}$	3^{2}	90^{9}	2.70 .6	$0.8{ }^{0.2}$	$5 \cdot 8{ }^{1}$	$4{ }^{0.6}$	20.5
$4 \cdot 12$	4^{+}	<2	<0.4	37^{3}	<4	15^{2}	<0.7	3.0.4	$91{ }^{7}$	$18{ }^{4}$	9.0.8	$4{ }^{1.5}$
$4 \cdot 24$	2^{+}	$4 \cdot 0.5$	20^{2}	47^{5}	$5{ }^{2}$	23^{4}	<1	26^{2}	$<0 \cdot 9$	13^{4}	9.71.5	<5
$5 \cdot 24$	$3+$	<2	$2^{0.6}$	$2^{0.7}$	4^{4}	36^{17}	<0.7	46^{4}	$2 \cdot 2^{0 \cdot 3}$	27^{9}	<1	<8
6.01	4^{+}	<2	<0.5	$4{ }^{1}$	<10	<3	<0.5	<0.6	$2{ }^{\mathbf{0} \cdot 3}$	<4	$<1 \cdot 1$	<11
$6 \cdot 43$	0^{+}	$<2 \cdot 2$	$6 \cdot 8{ }^{2}$	<2	<11	<3	$1.4{ }^{1}$	<0.5	<0.5	<5	<1.2	<12
$7 \cdot 35$	2^{+}	<1.4	$(0.5)^{0.2}$	<1.4	<10	<3	<0.5	<0.6	<0.4	<4	1.5 $5^{0.6}$	<24
$7 \cdot 55$	1^{-}	<3	<0.5	<1.3	<8	<3	<0.5	<0.6	<0.4	<2	<1	<10
$7 \cdot 62$	$3-$	<1.4	<0.5	<1.3	<8	<2.5	<0.5	$1{ }^{1}$	<0.4	<2	$9 \cdot 2^{3}$	<11
$7 \cdot 75$	1^{+}	<3	10^{2}	<1.4	(8) ${ }^{3}$	<2.5	<0.6	<0.6	<0.4	<2	<1	<11
$7 \cdot 81$	(5+)	<1.4	<0.6	<1.4	<7	<2.5	<0.6	<0.6	<0.4	<2	<1	24^{3}
$8 \cdot 36$	$3-$	-				$18{ }^{2}$				24^{5}		
$8 \cdot 437$	4^{+}							$1 \cdot 6{ }^{0.2}$			41^{3}	
8.438	1^{-}		2.90 .4									
$8 \cdot 65$	2^{+}		$6.9{ }^{0.8}$		<15	<3		$1 \cdot 2^{0.7}$		4^{1}		
$8 \cdot 86$	2 -		$2 \cdot 3^{0.3}$									
9.00	$2+$							3.8.3			<1.2	
$9 \cdot 28$	2^{+}					52.5						
$9 \cdot 30$	$2^{+}, 3,4$						$(0.9)^{0.3}$	$3 \cdot 1{ }^{1}$			11^{1}	
9.46	3^{+}							1.7 ${ }^{\text {0.3 }}$	$2 \cdot 1^{0 \cdot 3}$		6.73.5	
9.83	1^{+}		$1.7{ }^{0.3}$				$(1 \cdot 2)^{0.3}$			8.98		
10.02									$(0.5)^{0.3}$			
$10 \cdot 36$	2^{+}		1.2 ${ }^{\mathbf{0} \cdot 2}$				(1) 0.2	$1^{0.2}$				
10.58a	$3^{ \pm}, 4$								$1.5{ }^{1}$			
10.58 b	3,4,5											70^{15}
10.66		-									$7 \cdot 3^{1}$	
10.73	$1{ }^{+}$		$0 \cdot 3^{0.1}$									
11.52	2^{+}										$<0 \cdot 5$	

Fig. 3(a,b). Gamma ray spectrum from the $E_{\mathrm{p}}=1395 \mathrm{keV}$ resonance in ${ }^{23} \mathrm{Na}(\mathrm{p}, \gamma){ }^{24} \mathrm{Mg}$ measured with the $40 \mathrm{~cm}^{3}$ detector. The full energy (F), single escape (S) and double escape (D) peaks for the transitions are labelled. Between the peaks only every fifth point is plotted.

Resonance Level at 744 keV

The strength of the transition to the 9.002 MeV level reported by Meyer et al. (1972), $2 \cdot 8 \%$, is significantly stronger than the tentative strength in the present work, $0 \cdot 6 \pm 0 \cdot 4 \%$. Glaudemans and Endt (1962), who observed transitions as weak as 0.7%, did not observe this transition. However, Meyer et al. would not have resolved the DEP of the $8 \cdot 654 \rightarrow 4 \cdot 239 \mathrm{MeV}$ transition from the FEP of the transition from the resonance to 9.002 MeV (these peaks were not clearly resolved in the present work, and our overall resolution was some 3 keV better than that of Meyer et al.). Analysis of the combined peak in our spectrum, as if it were simply the FEP of the primary transition, led to a value of $2 \cdot 4 \pm 0.4 \%$, consistent with the value of Meyer et al. of $2 \cdot 8 \%$. The tentative value of $0 \cdot 6 \pm 0 \cdot 4 \%$ reported here for the transition from the resonance to 9.002 MeV corresponds to the residue after the $8 \cdot 654 \rightarrow 4 \cdot 239 \mathrm{MeV}$ DEP contribution to the peak area was subtracted. This DEP contribution was calculated from the FEP area and the known DEP-FEP area ratio at this energy.

Resonance Level at 872 keV

Meyer et al. (1972) list the intensity of the branch to the 6.432 MeV level as 14%; the present result is $4 \cdot 1 \pm 0 \cdot 9 \%$ (consistent with the observed decay of this level, which was $4 \cdot 3 \pm 0 \cdot 4 \%$. This case is very similar to the previous one. Meyer et al. may not have resolved the DEP of the $R \rightarrow 6.432 \mathrm{MeV}$ transition from the FEP of the $6 \cdot 432 \rightarrow 1 \cdot 369 \mathrm{MeV}$ transition, and their high value for the primary transition may be explained if they attributed the whole peak to the primary transition.

The results for the ground state transition are: $52 \pm 3.3 \%$ (present paper) and $42 \pm 2 \cdot 1 \%$ (Meyer et al.). However, the value of Meyer et al. increases to $47 \pm 2 \cdot 4 \%$ if it is assumed that the strength of the branch to the 6.432 MeV level was overestimated (by 10%), as just suggested, and this 10% is distributed amongst the other primary transitions.

Resonance Level at 988 keV

There is general disagreement at this resonance concerning the relative intensity of the branch to the $4 \cdot 239 \mathrm{MeV}$ level. Prosser et al. (1962), using an $\mathrm{NaI}(\mathrm{Tl})$ detector, give it as 7%, the present result is $3 \cdot 5 \pm 1 \%$, Meyer et al. give $0 \cdot 5 \%$ and Baxter et al. (1969) did not observe it at all. The cause of this disagreement is not understood.

Resonance Levels at 1009 and 1011 keV

Meyer et al. (1972) did not resolve these resonances, and they quote branching ratios for the two combined. Comparison with their results is difficult, as both resonances sit on the quite significant tail of the strong broad 1021 keV resonance located 10 keV (about $2 \cdot 5 \Gamma$) away. Contributions from this tail will depend on target thickness and beam energy. However, a comparison did show agreement as to which transitions were present. Intensities also were in general agreement, except for the branch to the 4.24 MeV state, which is also excited strongly by the 1021 keV resonance. The present result is $48 \pm 4 \cdot 5 \%$, whereas Meyer et al. estimated 37%.

In the present work, correction was made for the contribution of the 1021 keV resonance to the spectra measured at 1009 and 1011 keV , using Breit-Wigner resonance shapes together with the total strength and width values of Switkowski et al. (1975). The 1009 and 1011 keV resonances were separated by careful monitoring of
the $1.63 \mathrm{MeV} \gamma$-ray from the α_{1} channel, which is strongly fed by the 1011 keV resonance but not observed at the 1009 keV resonance (Endt and van der Leun 1973). Some unavoidable overlap of the spectra of these two resonances gave rise to errors rather larger than normal.

Resonance Level at 1748 keV

At this resonance, there is general agreement between the present results and those of Meyer et al. (1972) for the branches with relative intensity greater than 10%, but for branches weaker than 10% there is general disagreement, for which no explanation could be found.

Table 3. Decay modes of bound levels in ${ }^{24} \mathbf{M g}$
The errors which arise from uncertainties in the peak areas and in the efficiency calibrations are displayed as superscripts

Initial level		Relative intensities for decay to $E_{\mathrm{f}}(\mathrm{MeV})$						
E_{1}	$J_{i}^{\text {i }}$	$E_{\mathrm{f}}=0$	$1 \cdot 37$	$4 \cdot 12$	$4 \cdot 24$	$5 \cdot 24$	$6 \cdot 01$	$8 \cdot 437$
(MeV)		$J_{f}^{n}=0^{+}$	2^{+}	4^{+}	2^{+}	$3+$	4^{+}	4^{+}
$1 \cdot 37$	2^{+}	100						
$4 \cdot 12$	4^{+}	$<0 \cdot 8$	100					
$4 \cdot 24$	2^{+}	$77^{1 \cdot 5}$	$23^{1.5}$					
$5 \cdot 24$	$3+$	$<0 \cdot 9$	98.5 ${ }^{3}$	$<0 \cdot 5$	$1 \cdot 5^{0.3}$			
$6 \cdot 01$	4^{+}	<6	87^{3}	<3	13^{3}			
$6 \cdot 43$	0^{+}	<15	79^{2}	<6	21^{2}	< 4		
$7 \cdot 35$	2^{+}	60^{4}	40^{4}	<7	$<1 \cdot 5$	<1	<1	
7-62	3^{-}	23^{6}	68^{4}	$9{ }^{4}$	< 5	<11	$<1 \cdot 5$	
$7 \cdot 75$	$1{ }^{+}$	25^{3}	75^{3}	<6	<7	<4	<3	
$7 \cdot 81$	$\left(5^{+}\right)$	<23	<21	25^{12}	<18	55^{21}	20^{9}	
$8 \cdot 36{ }^{\text {A }}$	$3-$	<15	<11	34^{10}	<8	20^{6}	16^{3}	
8.437	4^{+}	<2	60^{13}	34^{13}	6^{3}	<4	<1	
$8 \cdot 438$	1 -	82^{5}	18^{5}	<12	<13	<13	<7	
$8 \cdot 65$	2^{+}	<6	73^{3}	<10	27^{3}	<9	<3	
$8 \cdot 86$	2^{-}	<7	93^{5}	<13	$7{ }^{5}$	<10	<5	
$9 \cdot 00^{\text {A }}$	2^{+}	62^{15}	<15	<16	<14	<14	<11	<2
$9 \cdot 28$	2^{+}	<17	100	<26	<26	<26	<17	<11
$9 \cdot 30$	$2^{+}, 3,4$	<40	$58{ }^{11}$	42^{11}	<18	<11	<15	<8
$9 \cdot 46$	$3+$	<12	100	<62	<20	< 39	<20	<8
9.52	4^{+}	< 5	< 8	57^{4}	<9	<12	<16	43^{4}
$9 \cdot 83{ }^{\text {A }}$	$1{ }^{+}$	60^{12}	<29	<33	<34	<42	<37	-
10.06	$1^{+}, 2^{+}$	<6	100	<13	<21	<13	<16	<5
10.58a	$3^{ \pm}, 4^{+}$	<30	<70	<27	43^{18}	57^{18}	<26	<14
$10.58 \mathrm{~b}^{\text {A }}$	3,4,5	<2	-	< 10	<15	28^{10}	13^{4}	<25
$10 \cdot 66^{\text {A }}$		<7	60^{20}	<16	<16	<28	<40	<14
$10 \cdot 73$	$1{ }^{+}$	<60	57^{20}	<50	43^{20}	<35	<35	<20

${ }^{\text {a }}$ The decay of these levels is not fully accounted for by the observed transitions (see also Meyer et al. 1975); but see Table 5 for $10 \cdot 58 \mathrm{~b} \rightarrow 8 \cdot 437 \mathrm{MeV}$ transition.

Bound levels

The measured branching ratios of bound levels in ${ }^{24} \mathrm{Mg}$ excited in this work are displayed in Table 3. The errors (displayed as superscripts) arise from uncertainties in the peak areas and in the relative efficiency curves. Where the branching ratios were measured at more than one resonance, the weighted mean has been taken,
with an appropriate reduction in the size of the errors. Upper limits were found for all unobserved transitions in the energy range of the spectrum, and those not displayed in Table 3 may be seen in Table 4. A number of levels were clearly excited but too weakly for extraction of useful branching ratios; they are not listed in Table 3. Table 5 gives a comparison, for a number of levels, of the present work with previous results. The decays of some of the levels require further comment.

Table 4. Upper limits on unobserved decay modes of bound levels in ${ }^{\mathbf{2 4}} \mathbf{M g}$
The upper limits are expressed as a percentage of the total decay of each level

$\begin{gathered} E_{\mathrm{i}} \\ (\mathrm{MeV}) \end{gathered}$	$E_{\mathrm{f}}=6.43$	$7 \cdot 35$	$7 \cdot 55$	Upper limits for decay to $E_{\mathrm{f}}(\mathrm{MeV})$					$8 \cdot 438$	$8 \cdot 65$	8-86
				$7 \cdot 62$	$7 \cdot 75$	$7 \cdot 81$	$8 \cdot 36$	$8 \cdot 437$			
$7 \cdot 35$	1										
$7 \cdot 55$	3										
$7 \cdot 62$	$0 \cdot 6$	$0 \cdot 6$									
$7 \cdot 75$	3	3									
7-81	10	3									
$8 \cdot 36$	4	5	11								
8.437	2	3	-	2							
8.438	8	4	3	4	3	3					
$8 \cdot 65$	8	2	2	2	3	3					
$8 \cdot 86$	4	3	3	3	3	3	3				
$9 \cdot 00$	9	4	4	4	3	3	2	2	2		
$9 \cdot 28$	2	8	7	-	7	14	19	11	12		
$9 \cdot 30$	24	7	-	6	8	11	8	8	8		
$9 \cdot 46$	18	9	8	-	8	-	9	8	8	5	
$9 \cdot 52$	6	5	5	5	10	6	6	Obs. ${ }^{\text {a }}$	4	3	3
$9 \cdot 83$	14	12	12	12	22	11	23	-	20	20	40
10.06	25	9	8	8	7	7	5	5	5	5	5
10.58a	27	20	33	19	16	-	23	14	14	13	11
$10 \cdot 58 \mathrm{~b}$	14	10	10	Obs. ${ }^{\text {a }}$	20	7	7	$25^{\text {A }}$	$25^{\text {A }}$	5	5
$10 \cdot 66$	32	28	12	21	11	17	7	14	14	6	7
$10 \cdot 73$	45	50	40	40	30	30	20	20	20	18	16
E_{1}	$E_{\mathrm{f}}=9 \cdot 00$	9•28	$9 \cdot 30$	$9 \cdot 46$	$9 \cdot 52$	$9 \cdot 83$	9.97	$10 \cdot 02$	$10 \cdot 06$	$10 \cdot 36$	
$10 \cdot 06$	5	4									
10.58a	11	13	13	14	12						
10.58b	5	7	7	7	Obs. ${ }^{\text {a }}$	3	-	3			
$10 \cdot 66$	-	-	10	16	8	7	7	8			
$10 \cdot 73$	13	12	12	15	15	13	10	10	10	10	

${ }^{A}$ See Tables 3 and 5.

Bound Level at 8.36 MeV

The present results differ significantly from those of Ollerhead et al. (1968) and Meyer et al. (1972) with regard to the branch to the $4 \cdot 12 \mathrm{MeV}$ level, which was not reported by these authors. The 8.36 MeV level was strongly excited at both the $E_{\mathrm{p}}=1283$ and 1457 keV resonances. The source of the disagreement may lie in the fact that the transition to the $4 \cdot 12 \mathrm{MeV}$ level, of energy $4 \cdot 237 \mathrm{MeV}$, is indistinguishable from the strong transition from $4 \cdot 239 \mathrm{MeV}$ to the ground state which is also present at both the above resonances. In the present work, this combined spectral
peak had too large an intensity to be accounted for solely in terms of the $4 \cdot 239 \mathrm{MeV}$ to ground transition. The intensity of the $4 \cdot 239 \rightarrow 1.369 \mathrm{MeV}$ transition (and knowledge of the relevant branching ratio) was used to subtract the intensity of the $4.239 \mathrm{MeV} \gamma$-ray, leaving the intensity of the $4 \cdot 237 \mathrm{MeV}$ transition.

The present work (together with that of Meyer et al.) cannot account for $30 \pm 20 \%$ of the decay of the 8.36 MeV level. A careful search for other transitions was made; the upper limits are displayed in Tables 3 and 4.

Table 5. Comparison of results with previous work
The present results for branching ratios are compared with those of Meyer et al. (1972) and Ollerhead et al. (1968)

Bound level $E_{1}(\mathrm{MeV})$	$\begin{gathered} E_{\mathrm{f}} \\ (\mathrm{MeV}) \end{gathered}$	Branching ratios (\%)		
		Present	Meyer	Ollerhead
$8 \cdot 36$	$1 \cdot 37$	<11	48 ± 5	Yes
	$4 \cdot 12$	34 ± 10	-	Maybe
	$5 \cdot 24$	20 ± 6	17 ± 5	Yes
	$6 \cdot 01$	16 ± 3	6 ± 5	Yes
	Unknown	30	29	-
$8 \cdot 437$	$1 \cdot 37$	60 ± 13	69 ± 5	53
$\left(J^{n}=4^{+}\right)$	$4 \cdot 12$	34 ± 13	23 ± 5	47
	4.24	6 ± 3	(8 ± 5)	-
$8 \cdot 438$	0	82 ± 5	80 ± 10	$>70^{\text {A }}$
$\left(J^{\pi}=1^{-}\right)$	$1 \cdot 37$	18 ± 5	(20)	$<23{ }^{\text {A }}$
	$4 \cdot 24$	<13	<10	$<7^{\text {A }}$
10.58a	$4 \cdot 12$	<27	70 ± 15	-
$\left(\right.$ from $\left.E_{\mathrm{p}}=1416 \mathrm{keV}\right)$	$4 \cdot 24$	43 ± 18	-	-
	$5 \cdot 24$	57 ± 18	30 ± 15	-
$10 \cdot 58 \mathrm{~b}$	$4 \cdot 12$	<10	70 ± 15	-
(from $E_{\mathrm{p}}=1747 \mathrm{keV}$)	$5 \cdot 24$	28 ± 10	30 ± 15	-
	$6 \cdot 01$	13 ± 4	-	-
	$7 \cdot 62$	(11) ± 4	-	-
	8.437	$<25^{\text {B }}$	-	-
	$9 \cdot 52$	34 ± 12	-	-

[^0]
Doublet at 8.44 MeV

The present work established the existence of an 18% branch to the 1.37 MeV level from the $J^{\pi}=1^{-}$level of the 8.44 MeV doublet, confirming the tentative 20% branch proposed by Meyer et al. (1972). There is no support in our work for the branch from this level to the $4 \cdot 24 \mathrm{MeV}$ level proposed by Ollerhead et al. (1968), of strength $<7 \%$, though the upper limit on this transition is not inconsistent with such a branch. The branching ratios for this $J^{\pi}=1^{-}$level were derived solely from the spectrum obtained at the $872 \mathrm{keV}\left(J^{\pi}=1^{+}\right)$resonance, to ensure that the 8.44 MeV level with $J^{\pi}=4^{+}$was not excited at the same time. The results of the
present work for the $J^{\pi}=4^{+}$member of the doublet agree with those of Meyer et al. and confirm the branch to the $4 \cdot 24 \mathrm{MeV}$ level proposed tentatively by them.

Bound Levels at $10 \cdot 58 \mathrm{MeV}$

A level of this energy was excited at both the 1416 and 1748 keV resonances, but decayed quite differently in the two cases, as may be seen in Table 5. A doublet is therefore proposed at this energy, labelled $10 \cdot 58 \mathrm{a}$ and $10 \cdot 58 \mathrm{~b} \mathrm{MeV}$. The results of Meyer et al. (1972) do not agree with either proposed scheme of decay.

Acknowledgments

The authors wish to thank Dr J. R. Bird for the hospitality of the Australian Atomic Energy Commission Laboratory. One of us (S.G.B.) acknowledges the support of an Australian Institute of Nuclear Science and Engineering Studentship during the course of the work.

References

Aubin, G., Barrette, J., Barrette, M., and Monaro, S. (1969). Nucl. Instrum. Methods 76, 85.
Baxter,. A. M., Mabey, C., Gillespie, B. W. J., and Kuehner, J. A. (1969). Can. J. Phys. 47, 2327.
Boydell, S. G. (1973). Ph.D. Thesis, University of Melbourne.
Endt, P. M., and van der Leun, C. (1973). Nucl. Phys. A 214, 1.
Flack, F. C., Rutherglen, J. G., and Grant, P. J. (1954). Proc. Phys. Soc. London A 67, 973.
Freeman, J. M., and Jenkin, J. G. (1966). Nucl. Instrum. Methods 43, 269.
Glaudemans, P. W. M., and Endt, P. M. (1962). Nucl. Phys. 30, 30.
Glaudemans, P. W. M., and Endt, P. M. (1963). Nucl. Phys. 42, 367.
van der Leun, C., Sheppard, D. M., and Endt, P. M. (1967). Nucl. Phys. 100, 316.
Meyer, M. A., Reinecke, J. P. L., and Reitmann, D. (1972). Nucl. Phys. A 185, 625.
Nordhagen, R., and Steen, H. B. (1964). Phys. Norv. 1, 239.
Ollerhead, R. W., Kuehner, J. A., Levesque, R. J. A., and Blackmore, E. W. (1968). Can. J. Phys. 46, 1318.
Peterman, B. F., Hontzeas, S., and Rystephanick, R. G. (1972). Nucl. Instrum. Methods 104, 461. Prosser, F. W., Unruh, W. P., Wildenthal, B. H., and Krone, R. W. (1962). Phys. Rev. 125, 594.
Seyfarth, H., Hassan, A. M., Hrastnik, B., Gottel, P., and Delang, W. (1972). Nucl. Instrum. Methods 105, 301.
Switkowski, Z. E., O’Brien, R., Smith, A. K., and Sargood, D. G. (1975). Aust. J. Phys. 28, 141.
Wainio, K. M., and Knoll, G. F. (1966). Nucl. Instrum. Methods 44, 213.
Yates, M. J. L. (1965). In 'Alpha-, Beta- and Gamma-ray Spectroscopy' (Ed. K. Siegbahn) (NorthHolland: Amsterdam).

[^0]: ${ }^{\text {a }}$ Definite decays, but the intensities were uncertain.
 ${ }^{\text {B }}$ This transition possibly exists, but was not resolved from other spectral components.

