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Abstract 

This paper presents a development of a well-known class of Einstein gravitational fields which 
describe, in comoving coordinates, spherically symmetric perfect fluids with spatially uniform 
density but with nonuniform pressure. It is noted that the sign of the spatial curvature for these 
distributions may vary with time, in contrast with the situation for the uniform model theory used 
in most cosmological applications. It is shown, however, that this entails physically unacceptable 
behaviour of the fluid. In conclusion there is given a preliminary investigation of isolated fluid 
spheres, and a description of their noncovariant 'spatial geometry' is discussed. 

1. Introduction 

Considerable interest has been shown over the past decade in classes of spherically 
symmetric Einstein gravitational fields which describe nonstatic fluids with spatially 
uniform density (see Nariai (1967) and Vaidya (1968), while Rao (1973) lists some 
recent work). The metric for such fields is known, in the 'sense that the field 
equations have been reduced (in general) to a system of ordinary differential equations 
for two functions of the time coordinate. It is intended to give in the present 
paper an alternative development of these solutions, which focuses attention on 
their close analogy with the standard· Robertson-Walker field. This development 
provides simpler equations for classifying the dynamical behaviour of objects de
scribed by subclasses of solutions of this type (Bonnor and Faulks 1967; Thompson 
and Whitrow 1967, 1968; Bondi 1969; Banerjee 1972), although it is not our 
intention in this paper to duplicate the work of other authors in this way. 

With some exceptions (e.g. that of Cahill and McVittie (1970) who discuss negative 
mass shells), global distributions have not been fully discussed in the literature. 
This is possibly because, while the solutions are physical, they do not satisfy any 
sort of cosmological principle. Nevertheless we consider here, and dispose of, an 
interesting possibility for the behaviour of a global distribution. Finally it is noted 
that the present approach provides a simple picture of the spatial geometry of isolated 
fluid spheres. 

2. Solutions with Uniform Density 

We begin with the metric 

ds 2 = exp(v) dt 2 _c- 2 exp(A){dr2 +r2(d02 +sin2 Odq,2)} , (1) 

where v = v(r, t) and A = A(r, t). (Thompson and Whitrow (1967, 1968) and others 
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initially choose a more general metric, but then immediately impose a dynamical 
condition which reduces it to the above form up to a transformation of the type 
r = r(r*).) If we require that the coordinates be comoving then the field equations 
(and appropriate Cauchy data) completely specify the functions v and A. This class 
of solutions contains a subclass for which Pr = 0, that is, the density is spatially 
uniform. 

The appropriate conservation equations are: 

pt+1At(p+p/c 2) = 0 and Pr+tv.(pc2 + p) = o. (2a, b) 

The field equations Gg = - KTg and G~ = - KT~ reduce respectively to (e.g. 
McVittie 1965, p. 74; the typographical error therein should be noted) 

-2KP = -1exp( -v)A; +c2 exp( -A){2Arr +4Ar/r +-!A;} 

and 

(3a) 

- 2Kp/C2 = exp( - v){2Att +1,1,; - At vt} _c2 exp( - A){Arr + Vrr + (Ar+ vr)/r +tvn . 
(3b) 

The remaining field equations are 

G~ == G~ = -Kn == -Kn == -KT~ and 

We thus have G~ = G~, which gives 

Arr+vrr-(Ar+vr)/r-Arvr+!v;-tA; = O. 

The equation G~ = 0 leads to 

Art = tVrAt 

which, when integrated once with respect to r, becomes 

At = O'(t)exp(-!v) , 

G~ = O. 

(4) 

(5a) 

(5b) 

where 0' is an arbitrary function of t. We use equation (5b) to replace the field 
equations (3a) and(3b) respectively by 

Kp = i0'2 _-!c2 exp( - A){2Arr +4A,/r +!An (6a) 
and 

Kp/C2 = -uexp( -tv) -i0'2 +tc2 exp( - A){Arr + Vrr + (Ar+ vr)/r +-!vn, (6b) 

where u == dO'/dt. 
The conservation equations (2), though not independent of the field equations, are 

sometimes more convenient to work with, however, and we shall need to refer to them 
later. If we now put P = pet) then we may integrate equation (2b) with respect to r 
to obtain 

p = - pc2 +h(t)exp( -tv), (7) 

where h(t) is an arbitrary function. This expression, once we have determined 
vCr, t), gives per, t), apart from arbitrary functions. We shall use the correspond
ing field equation (3b) to identify h(t). We next use the condition P = pet) in 
equation (3a). If we define - 4c2b = i0'2 - KP, where b = b(t), and if we put 
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A = 410g A then equation (3a) becomes (for A 1= 0) 

Arr +2Ar/r +bA5 = O. 

One family of solutions to equation (8) is 

A2 = S(t){1 +tlX(t)r2} -1. 

415 

(8) 

(9) 

This result is obtained by generalizing from the Robertson-Walker solutions which 
must also satisfy equation (8), which is an equation of the 'super-linear' type and 
is one form of the Emden-Fowler equation. This family of solutions (9) contains 
all solutions that are regular at r = 0 (J. A. Hempel, personal communication). The 
functions IX and S are related by bS 2 = 121X, but are otherwise arbitrary. 

Now the function A(r, t) defined in this fashion also satisfies the equation 

Arr -Ar/r --tA; = 0, 

since equation (4) reduces to this in the case Pr = 0 (or by direct substitution). 
Thus equation (4) now becomes 

Vrr-(Ar+r-1)vr+-tv; = O. (10) 

On integrating equation (10) twice with respect to r (using the integrating factor 
r -1 exp( -A) to obtain vr ), we obtain 

exp v = F2(t) {f(t)+tlX(t)r2}2 {I +tlX(t)r2} -2, (11) 

where F and f are arbitrary functions of t that are determined by substituting 
equation (11) into (5b). After some elementary calculation this substitution gives 

(jF = 2(S/S -ri/IX) and f = (S/S)(S/S -ri/IX)-l. 

If we now transform t according to 

(j(t) S(t) dt * = 2S(t) dt , 
giving 

(j = 2S -ldS/dt*, 

and then relabel t * by t, we obtain 

where 

and 

exp(-tv) = {I + tlX(t) y(t) r2}{1 + tIXCt) r2} -1, 

y(t) = 1- riS/IXS , 

exp(-tA) = S(t){1 +tlX(t)r2} -1. 

(12) 

(13) 

(14) 

We now substitute from equations (12) and (14) into equations (6a) and (6b) and 
obtain, ultimately, 

Kp = 3S-2(S2+IXC2) (15) 
and 

Kp/C2 = S-2{ -2S8+2S 2+IXC2(1 +y)} exp(-tv) -3S- 2(S2+IXC2). (16) 

Equations (12)-(16) complete the solution. 
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The functions IX and S are arbitrary but may be determined by imposing extra 
conditions. One expects such conditions to be based on some physical assumptions 
about the distribution of matter-energy to be described. However, it is not necessary 
for IX and S to be completely determined in order to investigate the properties of a 
general space-time described by equations (1), (12) and (14), and it is to this 
investigation that we devote the remaining sections. 

3. Behaviour at Infinity for Global Distributions with Positive Curvature 

In an investigation of this type we hope to obtain indications of what features 
are important by considering those that correspond to important quantities in the 
uniform distributions described by the Robertson-Walker metric. Undoubtedly the 
first such quantity is the spatial curvature R which determines the 'size', rate of 
expansion, finiteness or otherwise, sign of curvature, 'age', and most of the features 
of interest in observational cosmology. Usually the fundamental quantity is taken 
to be the so-called scale factor I R I- t , which satisfies the Friedmann differential 
equations (see e.g. McVittie 1965, p. 142, equations 8.209 and 8.210), but here we 
take R = IRI- t and k = sgnR. 

In general for a line element of the form (1), the term 'spatial curvature' denotes 
the gaussian curvature R of the three-parameter manifold described by the line 
element 

dl 2 = exp(A){dr2 +r2(de2 +sin2 ed</J2)}, (17) 

i.e. the hypersurface in the space-time (1) defined by dt = O. For this line element, 
t is constant and (r, e, </J) are co moving, since R is not a tensor but is invariantly 
defined for all comoving systems, i.e. for those related by transformations of the 
type Xi = Xi(xi*) and t = t (t *). 

For the space-time described by the equations (1), (12) and (14) we obtain 

R = IX(t) S - 2(t ) . 

We thus have the rather surprising result that, simply by prescribing as IX any function 
of time which changes sign, there are classes of solutions for which the sign of the 
spatial curvature (fixed in the Robertson-Walker models) may vary with time. As 
this has rather odd consequences for the geometry and for what we normally regard 
as the spatial volume (e.g. transition between finite and infinite values is now 
apparently possible), it seems worth while to examine this aspect more closely. (We 
note in passing that equation (6a) is Kp = tU2 + 3e2 R, which is valid for all 
space-times described by the metric (1) and u1 = 0, not just those with uniform 
density. We also note that the quantity u is that introduced in the previous section, 
while !U corresponds directly to the Hubble parameter of uniform model theory.) 
Since not all such solutions are likely to provide realistic models of actual objects, 
we now consider what restrictions might follow from some reasonable physical 
assumptions. 

Let us suppose that P ~ 0 which, from equation (15), is equivalent to e21 IX I ~ S 2. 

Since the visible region, to which we expect our results to ultimately apply, may be 
regarded as being of overall nonnegative density, a model possessing only a uniform 
distribution of negative mass~nergy is unlikely to be satisfactory. 
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It is more difficult to reject the possibility that p < 0, and thereby to assume that 
p ~ 0 for all (r, t). Although negative pressure would be regarded as unusual in 
the current astronomical context (Synge 1960, p. 186) we should not, for that reason, 
preclude the possibility that a model which may be quite reasonable from the 
standpoint of present physics at some particular time, e.g. the current epoch, might 
evolve to display regions of negative pressure under some extreme conditions. We 
therefore adopt the following neutral position. We do not reject p < 0 out of hand, 
although we expect that p ~ 0 describes the observable universe during the current 
epoch. Furthermore, we hold reservations on those models which evolve to a negative 
pressure state, and we investigate the conditions under which this might occur. 
Some additional physical assumptions are discussed in the following section, but 
here we confine our attention to global distributions with a ~ O. 

If we differentiate equation (7) with respect to r, we obtain 

Pr = th(t)raS- 1(I+tayr2)-2. 

For fixed t this expression does not change sign in the range 0 ~ r < 00 and it is 
therefore sufficient, when investigating the circumstances under which p may become 
negative, to consider only the behaviour of p(O, t) and p( 00, t), always provided that 
p is not singular in this range. Our approach is to require p(O, t) ~ 0 and then 
investigate p(oo,t). We remark that p(O,t) ~ 0 implies that h(t) ~ 0 by equations 
(7) and (12), and thus we have sgn(Pr) = sgn(ajS). 

Returning now to models which may undergo transition, and thus taking a < 0, 
we firstly consider the case S < O. From the preceding remark we know that 
p( 00, t) > 0 unless exp( - tv) is singular, and from equation (12) we have that 
exp( -tv) is nonsingular provided ay > 0, that is, we have a-aSjS > 0, or 
as-aS < O. Hence we find that S < const.a as a --+ 0+. We infer that there are 
no nonsingular transition solutions having S < 0 as a --+0+. 

For the case S > 0 as a --+ 0+, we may show by a more complicated argument 
(see Appendix) that there do not exist C 1 functions (required for metric smoothness) 
a and S for which p(oo,t) > 0 or for which p(oo,t) --+ 0+ as a --+ 0+. We may 
therefore conclude that there are no global transition solutions which do not 
develop a region of negative pressure as the transition from a > 0 to a < 0 proceeds. 
Hence, in the absence of some known physical mechanism permitting p . < 0, we 
must regard such models as being of mathematical interest only. 

4. Preliminary Remarks on Isolated Matter with Negative Curvature 

In this section we establish that the only distributions with negative spatial 
curvature which make sense physically are isolated ones. We note in passing that 
it is of course possible to have isolated distributions with positive curvature simply 
by introducing a boundary into the corresponding global distribution. Then the 
restrictions (considered in the previous section) on transitions of sign of curvature 
do not apply in all cases. In fact, for some subclasses of solutions to (15) and (16), 
this behaviour does occur, but without the interesting consequences noted above. 

It will be convenient to introduce the terms 'open' and 'closed' to describe 
solutions with a < 0 and a > 0 respectively. The basis for these terms is the 
definition for the spatial volume (of a global distribution) which gives the volume V 
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associated with the line element (17) for fixed t. Thus 

v = 2n2 S3(t)IX- 3/2(t) for IX > 0, 

00 IX < 0. 

We retain this terminology for isolated distributions although V is no longer infinite 
when IX < 0. 

We now consider open distributions. The metric coefficient exp v may, depending 
on the sign of IX}" have one or two singularities. One of these, at r ro(t), defined by 
1 +tlXr~ = ° for IX < 0, defines the limits of the distribution since the volume enclosed 
in the region ° ::;;; r ::;;; r ro is infinite. The other is at rs(t) defined by 1 + tlX}'r; = ° 
for IX}' < 0, for which p(r., t) = 00 by equation (16). If we are not to permit infinite 
pressures within the distribution then we must assume that rs > r ro' which is 
equivalent to IX}' > IX. Hence, by equation (13), this implies that rilS < 0, that is, 
ri and S are of opposite sign. 

From equations (7) and (12) we have p(r ro' t) = - pe2 • Thus any open global 
distribution possesses a region of negative pressure at all times. In view of the 
remarks in the preceding section, and since we lack the physical knowledge of the 
behaviour of such regions that is needed in order to apply extra conditions to 
determine IX and S, we confine our attention to isolated distributions. We therefore 
place a boundary at r = r * (a constant, since the coordinates are comoving). We 
note that we might now allow r * < rs < r ro and still meet the requirement for 
finite pressure, and we consider this case in Section 6. However, the result for global 
distributions remains true, namely that to avoId a singularity ri and S must have 
opposite signs. 

To conclude this section, we briefly consider the possible choices of boundary 
conditions to impose at r *. We assume that the metric components are always at 
least continuous across hypersurfaces with space-like normals (cf. Lichnerowicz 1955). 
This avoids a discontinuity in the velocity of a material particle crossing the boundary 
(with arbitrary velocity). However, this requirement provides in general no additional 
information to determine IX and S. Further conditions, which we will use in the 
determination of IX and S, include p(r *, t) = ° and continuity in the first derivatives 
of the metric at r *. These conditions are not independent if the distribution is located 
in vacuum, in which case the exterior field is Schwarzschildian. This result for a 
general spherically symmetric isolated fluid has been obtained by Misner and Sharp 
(1964). For the field defined by equations (1), (12) and (14), it is possible to give a 
quite elementary and direct proof of this result (Cook 1973). Of course we need not 
impose the boundary condition p(r *, t) = ° and still require metric smoothness. 
In such a case we need to assume that the distribution is surrounded by something 
other than vacuum, for which there may be difficulty in determining the exterior 
field, although this is by no means necessary for some applications. 

5. Geometric Picture 

The geometry of the class of space-times corresponding to the models considered 
in this paper is completely determined by the line element (1) considered in 
Section 2 and is independent of the coordinate system used. It is illuminating, 
however, to construct a picture of the geometry of 'space' (which does depend on 
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the coordinate system) and to consider how this evolves with time, in comparison 
with the corresponding picture for the Robertson-Walker solutions (Robertson and 
Noonan 1968, p. 340). 

If we define the restriction of the line element (1) to the hypersurface t = const. 
by dl 2 = _c2 ds 2 for dt = ° then we have 

d/ 2 = S2(t) {1 +ict(t)r2} -2 {dr2 +r2(d02 +sin2 Odcf>2)}. (18) 

This is also the 'spatial distance' element dl'z measured by light signals. It is well 
known that for a line element of the form 

ds 2 = goo (dxO) 2 +2c- l gojdxOdxj -c- 2gijdxidx j , 
we have 

d/ '2 = (gij +goigOj/goo)dxidxj . (19) 

Since the line element (1) is orthogonal in the chosen coordinate system, we have, 
for this choice of coordinates, d/ 2 = d/ 'z . It was remarked in Section 3 that 
equation (18) is the line element for a 3-space of (spatially) uniform curvature ctS - 2. 
For ct > 0, we apply the term 'spherical', following Robertson and Noonan (1968), 
and define its 'radius' by Sct- t in the usual way. 

For the Robertson-Walker solutions we may take ct = 1, and in this case the 
transformation 

r = 2 tan(!lfJ), 

which corresponds to stereographic projection of the surface of a 4-sphere onto a 
'flat' 3-space, transforms the line element (18) with ct = 1 to 

dl 2 = S2(t)(dlfJ2 +sin2lfJdw2), 
where 

dw2 = d02 +sin20dcf>2. 

This is the line element for a 4-sphere in 4-spherical polar coordinates (lfJ,O,cf», and 
so we have for the case ct = 1 a picture of a 4-spherical surface with a time-dependent 
radius S (t). 

For the case & =f. 0, the corresponding transformation for equation (18) is 

cttr = 2 tan(tlfJ), (20) 

which tranforms the line element into 

d/ 2 = S2(t)ct- l (t)(dlfJ2 +sin2lfJdw2). 

However, lfJ is no longer a comoving coordinate and d/ 2 in this system is no longer 
equivalent to d/ ,2 (as it was for ct = 1) since the term corresponding to gOl in 
equation (19) is not zero after the transformation (20). 

If we differentiate equation (20) with respect to t then, for any particular fluid 
particle, we have after some slight simplification 

dlfJ / dt = -!-& sine lfJ / ct) • 

Now for Robertson-Walker solutions which describe global distributions of matter, 
the range of lfJ is (0, n). Since we are here concerned with isolated distributions, the 
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range of '" becomes (0, "'*) where from equation (20) "'* is defined by 

"'* = 2 arctan( oct K) , where K= 2Ir*. 

We note that "'* is thus a function of t and that"'* -+ n as oc -+ 00. In·conclusion 
then, we have the picture of a uniform 4-spherical surface with a time-dependent 
radius Soc- t , with a 'cap' (that is, n ~ '" > "'*) removed, and with motion of the 
particles on the surface given by H~ sin "'/oc, 0, 0), such that for a contracting model 
(~ > ° and oc -+ 00) the 'cap' shrinks ("'* -+ n) and the model approaches a -global 
distribution in this limit. 

6. Conclusions 

In order to justify the remark in Section 4 concerning the sign of ~/S we need 
only substitute from equations (12) and (15) into (16) to obtain 

( ) p(O,t) +tr2{p(O,t) +c2p~SIS} 
p r, t = 1 1 ~ + "4ocyr 

and observe that the value of r for which the numerator vanishes will be less than 
that for which the denominator vanishes provided ~ and S have opposite signs. 
Applications of the models of isolated fluid spheres studied here have been clearly 
documented in the works quoted. For global distributions the requirement for 
spherical symmetry must be seen as being physically implausible, although it is 
significant that there is no nonzero lower limit to the extent of departure from 
uniformity necessary for the behaviour described here to ensue. To this point we have 
considered fields described by equations (1), (12) and (14) for oc and S any admissible 
functions of time. Various subclasses which permit further integration of equations 
(15) and (16) have been extensively studied in the literature. We consider one 
particular case here because this integration is particularly simple and because of 
an interesting physical interpretation. 

Let us choose to regard the nonzero pressure gradient in a fluid sphere as 
describing a varying proportion of radiatio!1 to particle matter throughout the 
distribution, and put 

p(O, t) = c2pln and p(r*,t) = mp(O,t), 

where m and n are dimensionless constants and n ~ 3 and ° ::;;;; m ::;;;; 1. . The case 
n = 3 describes a sphere with a pure radiation core. The case m = ° describes a 
pressureless boundary and m = 1 a uniform fluid. These conditions now completely 
determine oc and S, and integration yields 

S = A(oc+K2)/I, where p = (m+n)/(1-m), 

A is a positive constant and K = 21r *. This condition is similar to that chosen by 
Banerjee (1972) to define a subclass of the general system. We are left with a first
order ordinary differential equation for oc which is autonomous and, while it has no 
closed form solution, it may be readily integrated numerically. This equation is 

p2~2 +c2ocA-2(OC+K2)2+2/1 = B2 A-3(1-1/n) (oc+K 2)2+3(1+1/n)/I , 

where B is a constant. 
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Appendix 

This appendix gives in detail the argument which establishes the result mentioned 
in Section 3: that there do not exist 'transition solutions' with nonnegative pressure. 
Our first step is to rewrite equation (2a) as 

t3{p exp(tA) }/8t = _pc- 2 8 {exp(tA) }/8t, 

that is, from equation (14), 

8 ( PS3) -2 8 ( S3 ) at (l+tocr2)3 = -pc at (l+tocr2)3 . (AI) 

Designating p(O, t) and p( 00, t) as Po and Poo respectively, we have for, r = 0, 

d(pS3)/dt = -Poc- 2 dS 3/dt, (A2) 

and, for r = 00, after multiplying equation (AI) by r6 and taking limits as r ~ 00, 

d(pS3oc -3)/dt = -Pooc- 2 d(S3 CX -3)/dt. (A3) 

Expansion of equation (A3) gives 

oc- 3 d(pS3)/dt +pS3 doc- 3/dt = -Poo C- 2{oc- 3dS 3/dt +S3doc- 3/dt}. 

Following substitution into the first term on the left-hand side of this equation from 
(A2), we obtain after some simplification 

Poo = (PoocS +pc2ciS)/(ocS-ciS). (A4) 
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This indicates that as a -+ 0+ we have Pro < 0 unless ci -+ 0 also. We require S # 0 
to avoid a global singularity at a = 0 and, since ci/a # 0 as a -+ 0, the right-hand 
term in the denominator of equation (A4) is always dominant as a -+ O. Hence to 
maintainpro > 0 as a -+ 0+, we need firstly that p -+ 0 (and thus 8 -+ 0 by equation 
15) and secondly that Po a8 >- pc2ciS, where the symbol >- denotes 'dominates'. 

If we put p ~ (3/K)g(a), where g >- a (since 8 2 -+ 0+), we obtain 

8 ~ gtso, where So = lim S. 
12-+0+ 

From equation (A2) we have 

Po = - c2(pS + 3p8 )/38, 
and hence 

KC- 2pO ~ -(cig'So +3g3/2S0)/gtso 

~ -(cig-tg' +3g), where g' == dg/da. 

Therefore, from equation (A4) we have 

KC- 2pro ~ {-(cig-tg' +3g)agt So +3gSoci}/(agt So-ciSo). 

Now, we have ag t -< ci since ci >- a and g t -+ 0, and hence it follows that 

KC- 2pro ~ ag' +3(a/ci)g3/2 -3g. 

However, as ag3/2/ci -< g (since agt -< ci), we have 

KC- 2pro ~ ag' -3g. 

Now ag'-3g > 0 holds if and only if g -< a3, so that we therefore have: if Pro ~ 0 
then 

g -< a3 -< a -< g . 

This statement is, of course, self-contradictory, thus completing our argument. 
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