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Abstract 

In this paper are derived the basic equations for finite amplitude convection in a compressible 
medium with polytropic structure within the framework of the one-mode anelastic approximation. 
Only the case of non self-interacting planforms is considered, and the effects of viscous dissipation 
are not taken into account. These equations are solved numerically to illustrate the effects of com
pressibility and density stratification on the flow pattern and on the thermodynamic variables and 
their fluctuations. 

1. Introduction 

It is likely that convection will occur somewhere in most stars, and it is tperefore 
important to understand convective transport processes and their effect on stellar 
structure. There is considerable interest in this problem and in recent years a number 
of review articles have appeared on this subject (e.g. Brindley 1967; Spiegel 1971, 
1972). The theory which has been most extensively used in stellar convection problems 
is the mixing-length theory (for additional references, see e.g. Cox and Giuli 1968). 
Unfortunately there does not seem to exist a non-Boussinesq version of the theory, 
and it is therefore unlikely to be sufficiently accurate when applied to stellar con
vection zones in which the density varies by several orders of magnitude. 

The linear theory of convection in a compressible medium has been studied 
extensively, although attention has been focused mainly on the determination of 
growth rates in inviscid models (e.g. Skumanich 1955; Bohm 1958; Bohm and 
Richter 1959; Spiegel and Unno 1962; Spiegel 1964). The effect of viscosity and 
thermal diffusivity in the fully compressible linear case has been studied by Spiegel 
(1965) and also in the anelastic approximation by Unno et al. (1960) and Kato and 
Unno (1960). 

Unfortunately, when it comes to the nonlinear theory of convection in a com
pressible medium, very little has appeared in the literature so far. The full two
dimensional compressible equations were solved numerically in 1972 (E. Graham, 
personal communication), and a number of research workers such as E. A. Spiegel, 
J. Toomre, J. P. Zahn, E. Graham and J. Latour are actively working on the problem. 
Latour (1972) applied the theory of finite amplitude convection to the study of 
thermal convection in A stars. The one-mode fully compressible equations were 
derived by the present author some years ago (Van der Borght 1971). It is the 
purpose of the present paper to provide numerical solutions of these equations within 
the framework of the anelastic approximation in the case when the undisturbed 
compressible layer has a polytropic structure. 
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2. Basic Equations 

The basic equations have been derived previously (Van der Borght 1971), taking 
into account the viscous dissipation terms in the energy equation. If we neglect 
this effect and restrict ourselves to rolls or convective cells with square or rectangular 
planform, these equations can be written: 

Continuity equations 

Wo = -Pl/I/Po. 

D(WoP) +Po(DifJ-DW) +ifJDpo = o. 

Energy equations 

Po D Wo + II( - D W + DifJ) + Po Cv(FD W + ifJDF + Wo DTo) 

(1) 

(2) 

+CvP(ifJDTo + WoDF) = KD2TO' (3) 

Po Cv(ifJDTo + WoDF) +CvP(EFDW + WoDTo +3EifJDF) 

+Po(-DW+DifJ) +IIDWo = K(D2-a2)F. (4) 

Equations oj motion 

Po(ifJDW +ifJDifJ + WoDWo) = -DPo+gpo +tIlD2Wo, (5) 

PoD(ifJWo) +P{WoDWo +E(ifJDW+3ifJDifJ)} 

= - DII + gP + Il(D2 - a2)ifJ + ill(D2ifJ - D2 W) , (6) 

D[Po WOD2W +PHa-4(DW)2(a4E-H) +EifJn2W}1 

= -a2DII +Il( -a2D 2W+D4 W) +illa2(D2ifJ-D2W). (7) 

Equations oj state 

Po = R.(Po To +PF), 

II = R.(PoF+ToP). 

(8) 

(9) 

It should be noted that the pressure, density, temperature and velocity have been 
written as 

p = Po+IIj, p = Po+Pj, T= To+Fj, (10) 

( DWat DW at, Wo+ifJt). u = (u, v, w,) = 7 ax ' a2 ay (11) 

Here the quantities Po, II. Po, P, To, F, W, Wo and ifJ are functions of z that are 
to be determined, while D = d/dz, and j is a function of x and y which satisfies 
the differential equation 

a2j/ax2 +a2j/ay 2 = _a2j, (12) 
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with a being the horizontal wave number. The actual functional dependence of 
1 on x and y is determined by the shape of the convection cell. The quantities J.l, 
K and Cv are the viscosity, conductivity and specific heat at constant volume of the 
medium. We also have 

E = 1(/4 ) 

where 
and H = <{(ollox)2 + (olloy)2} 2) , 

< )=KII[ ]dxdy, 

(13) 

(14) 

the integration being taken over one convective cell. For a particular cell shape, 
the constant K is determined by the normalizing condition 

<p) = K fIpdXdy = 1. (15) 

It should also be noted that 
C = !<p) (16) 

has been put equal to zero, which is the case of rolls and square or rectangular plan
forms for the convective cells. 

3. Anelastic Approximation 

We assume, within the framework of the anelastic approximation (Ogura and 
Phillips 1962; Dutton and Ficht! 1969; Gough 1969), that the equations can be 
linearized with respect to the fluctuating parts in the thermodynamic variables P, 
F and II. It then follows from equation (1) that the mean vertical velocity Wo is 
small and that its square can be neglected. 

Neglect of the term in Wo P in equation (2) gives 

Po(Dt/!-DW) +t/!Dpo = O. (17) 

This equation will be automatically satisfied if one introduces a new variable W1 

defined by 
DW1 = PoDW and W1 = Pot/!· (18) 

Within the anelastic approximation, expression (9) for the pressure fluctuation 
remains unchanged but expression (8) for the mean pressure can be written 

Po = R..Po To· (19) 

Making use of equations (1), (18) and (19) it can be shown that equation (3) can be 
written 

KD2To = -R..TOW1P01DP-R.ToPp01DW1 

+2R. TOPW1 P02 Dpo - W1II P02 Dpo +CvD(FW1). (20) 

The second energy equation (4) can also be considerably simplified by linearizing 
the equation in the fluctuating parts of the thermodynamic variables. Keeping in 
mind that from equation (1) the average velocity Wo is a first-order quantity, one 
finds 

K(D2-a2)F = Po Cvt/lDTo +Po( -DW+Dt/I). (21) 
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In the anelastic approximation (e.g. Gough 1969) the density P on the left-hand 
side of the equations of motion is replaced by the average density Po. This corresponds, 
in our notation, to neglecting the density fluctuation term P in equations (5)-.(7) 
except in the buoyancy term gPo Neglecting also squares in the average velocity 
Wo, one can easily see that these equations reduce to the following 

Dpo = gpo +t1LD2Wo -Po ",(DW+D",) , 

IL(D2-a2)'" = DII -gP -11L(D2",-D2W) +Po D(",Wo), 

IL(D2-a1)DW = a2II -tIL02(D"'-DW) +Po WOD2W. 

(22) 

(23) 

(24) 

Equations (20)-(24) are the basic equations of the problem, within the anelastic 
approximation. 

The right-hand side of equation (20) is not a total differential and does not give, 
after integration, a simple 'local' definition of the convective flux. It simplifies 
considerably if one applies to this equation the usual Boussinesq approximation: 

(i) Neglecting the pressure fluctuation II, one obtains from equation (9) 

PoF+ToP = O. (25) 

Differentiating this equation and eliminating DP from equation (20) one gets 

KD2TO = (Cv+R.)D(FWl) +R. Wl POl {PDTo -FDpo}. (26) 

(ii) In the Boussinesq approximation both the fluctuation in the thermodynamic 
variables P and F and the density and temperature gradients DTo and Dpo are 
assumed to be small. It then follows that the last term on the right-hand side of 
equation (26) is of second-order and can be neglected within the framework of this 
approximation. 

Keeping in mind that 
Cp = Cv+R., 

one finds that equation (26) reduces to 

CpD(FWl) = KD2TO' 

(27) 

(28) 

and this is the same equation as the one for the incompressible case, except that the 
specific heat at constant volume has been replaced by the specific heat at constant 
pressure. If one eliminates Wand", from equations (21)-(24) with the help of (18) 
and (19) one obtains, besides equation (20), 

K(D2-a2)F = Cv WlDTo -R.ToPo l Wl Dpo, (29) 

D _ gpo -2Wl Po l DWl -R.PoDTo -tILD2(P lP02) 
Po - R T. W2 2 

, • 0 - 1 Po 
(30) 

ILPc;l D 3 Wl = 1L(2p02 D 2Wl +!a2Wl Po 2)Dpo 

+ ILPo 2 (D Wl )(D2 Po) - 21LPo 3(D Wl )(DPo)2 

+1L02PC;l DW1 +a1R.(poF + TOP)-PW1POl D(POl DWl), (31) 
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R. ToDP = (g -R.DTo)P +JlPo 1 D2W1 '-fJlDW1 po2.Dpo 

-tJlW1 P02 D2po +}JlW1 POl (DpO)2~R.FDpo 

-R.poDF-a2Jl WI POl +POD(PJV~POl). 
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(32) 

It should be noted that the above system of fundamental equations, together with 
equation (20), is a tenth-order system in the unknowns To, F, Po, WI and P. 

4. Boundary Conditions 

'We assume that there is no overshooting at the two boundaries z = zo (upper 
boundary) and z = zo+d (lower boundary), where d is the thickness of the layer. 
It follows from the expression (11) for the: velocity, the definition (I8b) of WI and 
the defi,ntion (1) of Wo that this condition can, be writtt;n 

Wi = 0 at Z = Zo' and Z = Zo + d. (33) 

We also assume that the temperature fluctuations vanish at the boundaries, i.e. 

'. 
F=O at z = zo and Z = Zo + d. (34) 

In the present paper we consider the case of free boundaries, i.e. we assume that the 
tangential stresses vanish on the bounding surfaces. Therefore we have 

( OU ow) _ 0 
Pzx = Jl oz + ox - and (ov Ow) = O. PZy := Jl az +fjy (35) 

Using the expression (11) for the velocity, we may reduce'these two conditions to 

D2W 01 +I{I"o1 = 0 
a2 ox ox and n2 woJ +I{I'81 = o. 

a2 oy oy. (36) 

Since these conditions have to be satisfied on the two boundary surfaces, irrespective 
of the x and y values, the following condition must be satisfied 

D 2 W +a21{1 = O. (37) 

It then follows from the equations (18) that this condition can be written as follows 

D2W1 -(DW1)P0 1 Dpo +a2 Wl = 0 (38) 

and, if the condition (33) of no overshooting applies, we also have at 'zo and Zo +d 

D 2 W1 -(DW1)Po I Dpo ;". O. (39) 

So far we have derived six boundary conditions. Since the nonlinear system of 
differential equations to be integrated is of the tenth order, we have to add four more 
boun~ conditions. These are discussed in greater detail in Section 7. 
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S. Dimensionless Form of Equations 

The basic equations derived in Section 4 are not in dimensionless form. Before 
starting on the numerical integrations we need to convert these equations into a 
more suitable form using a series of scalings. We transform the equations (20) 
and (29)-(32) into their dimensionless form with the aid of the following sub-
stitutions 

Z~ <pd and a ~ a/d. (40) 

If the convective layer extends between the limits z = Zo to Z = Zo + d, the dimen
sionless variable <p has the range 

<Po ~ <p ~ <Po+l, where <Po = zo/d. (41) 

In addition we scale the dependent variahles in the following way 

W1 ~ Poo(gd)tWl' To ~ (gd/R.) To , Po ~ Poo Po, (42a, b, c) 

F ~ (p,gt/R.Poodt)F, P ~ (p,/gl/2d3/2)p. (42d,e) 

With the help of the above substitutions the fundamental system of equations can 
be written in the dimensionless form 

-lD _ p~ -2W1DW1 -p~DTo -40'H- 1D2(PW1P0 2) 
Po Po - 2 T. W2 ' 

Po 0 - 1 

(43) 

D 3W1 = (2po1D2Wl +ta2pol W1)Dpo 

+Pol(DW1)D2pO _2Po2(DW1)(DPo)2 +a2DWl 

+a2(p~F+TopoP) -PW1{Po 1D 2W1 -Po2(DW1)Dpo}, (44) 

ToDP = (l-DTo)P+PolD2Wl-j{DW1)P02Dpo 

-4W1P02D2pO +tW1Po3(DPo)2 -FDpo -PoDF 

-a2W1P0 1 +PoD(pW~P03), (45) 

(D2-a2)F = H(DTo)Wl -(y-l)HToPo 1 W1 Dpo, (46) 

D2TO = {(y-l)JY}O'{-To W1P01DP-PToP01DWl 

+ 2To P02 P(Dpo) W1 - W1 Po 1 (Dpo)(Po F + To P)} 

+O'y-1D(FW1). (47) 

In these equations we have 

H = Cygd3p~o/p.K and 0' = p.Cy/K, (48) 

where 0' is the Prandtl number and 

y = 1 +R./Cy (49) 
is the ratio of specific heats. 
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6. Linear Case 

In the linear case the above fundamental equations take a much simpler form: 
(i) The structure equations are now independent of the velocity amplitude and 

can be written 
D2TO = 0 and PolDpo = (l-DTo)/To· (50a,b) 

They can be integrated separately subject to the following boundary conditions 
at rP = rPo 

To = rPo/(s+ 1), DTo = l/(s+ 1), Po = 1, (5la, b,c) 

resulting in a polytropic structure (of polytropic index s) of the undisturbed layer. 
(ii) The perturbation equations (44), (45) and (46) are already linear in WI> F 

and P, and remain unchanged for the linear case. 

1200 

1000 

800 

H 

600 

400 

o 2 4 

a 
6 

Fig. 1. Eigenvalue H in the linear 
problem (case B: "'0 = t. s = 2) 
plotted as a function of the 
horizontal wave number Q. 

The system of linear equations has been solved for a series of values of the hori
zontal wave number and the corresponding values of H are given in Fig. I for WI 
and F satisfying the boundary conditions (33), (34) and (39). The values of H given 
in this figure correspond to rPo = t and s = 2. This value of s has been chosen 
because it approximates fairly well the actual situation in the convective layer in 
the Sun, except for the upper region of this layer. The value of t selected here for 
rPo is of course arbitrary; it corresponds to a temperature stratification of 3. This 
would correspond in the Sun to a layer extending from a depth of 1000 to 6000 km 
inside the convective zone. 

The present theory could in fact be applied to the whole convective layer but the 
assumption of an elasticity introduced in Section 3 would have to be removed. More 
importantly, the effect of ionization and therefore the dependence of the specific 
heats on temperature and composition would have to be taken into consideration. 
In the following discussion, the values of Cv, Cp and yare assumed to be constant 
throughout the layer which, at rest, is assumed to have a polytropic structure, i.e. 
we also assume that the conductivity K is a constant. 
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7. Nonlinear Solutions 

The highly -nonlinear tenth-order system of differential equations (43)-(47) has 
been solved by a finite-difference method coupled with a Newton-Raphson procedure, 
subject to the eight boundary conditions (33), (34), (39), (51a) and (SIb), together 
with two additional boundary conditions that are introduced below. In order to 
illustrate the effect of initial density stratification on the character of steady-state 
stationary finite-amplitude convection, two families of solutions have been investi~ 
gated: (A) those in which the polytropic index s = 0·2 and the density varies by 
2'0406% across the layer, and (B) those in which s = 2, corresponding to a 900% 
change in the density across the layer. In order to achieve such initial density strati
fications, the parameter 4Jo must have the value of 10 in case A and 0·5 in case B. 

In addition to the two parameters sand 4Jo which appear in the two boundary 
conditions (51a) and (SIb) and which in essence determine the temperatures at the 
top and bottom of the layer, it is necessary to determine the values of the two param
eters (1 and y. The value of (1 is assumed here to be equal to one, which is the case 
for air. The ratio of specific heats y will determine the initial buoyancy of the layer. 
In the linear case we have 

LI = To1DTo -(y-1)p0 1Dpo = {1-(y-1)s}/4J, (52) 

and in order to have a positive buoyancy it is necessary to choose y in such a way 
as to ensure that the following inequality is satisfied: 

y«l+s)/s. (53) 

In case A we take y = 1·495 and in case B we take y = 1·4. 
We also have to select a value for the horizontal wave number a, and there is 

still some controversy about the way in which this value should be selected: whether 
the chosen value of a should correspond to maximum instability, i.e. to the minimum 
of the curve given in Fig; 1; or whether it should correspond to that particular 
value of a for which the Nusselt number is extremized. This particular value of a 
increases with the Rayleigh number and its determination requires a large number 
of numerical integrations. A compromise solution was adopted here, and the 
numerical integrations were carried out for a = n. 

As was explained in Section 6, the linear system of equations can be decoupled 
into the structure equations (50) and the perturbation equations (44), (45) and (46). 
This system may be solved subject to the additional boundary condition (SIc) and 
the resulting eigenvalues H are obtained. For case A we find that H = 8909·08 
and in case B that H = 337·884. 

It follows from the definition (48a) of the eigenvalue H that we have obtained in 
this wayan expression relating the thickness of the layer d and the density Poo at 
the upper boundary, once the physical characteristics of the fluid such as Cv, J.l and 
K are known. That Poo stands for the density at the upper boundary is a direct 
consequence of the boundary condition (SIc) and the scaling (42c). Once a value 
of Poo has been selected, the eigenvalue H determines the minimum thickness of 
the layer for which convection is about to start. 
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The temperature gradient is everywhere the same and is given by equation (51 b). 
The mass of the gas contained in the layer is given by 

j ZO+d f4>O+ 1 
M = A Po(z) dz = Adpoo Po(</» d</>, 

Zo 4>0 
(54) 

where A is the area of the base of the layer. In the linear case the mass of gas within 
the layer will be proportional to 

f
4>0+1 

mz = [po(</»]Jin d</> = {(</>O+ 1)"+1 _</>0+1}/(S+ 1)</>0' 
4>0 

(55) 

The nonlinear calculations have been carried out for increasing values of the tem
perature gradient DTo at the upper boundary where </> = </>0' These values are 
given by 

(DTo)4>o = N /(s+ 1). (56) 

The linear value of N is unity and we see that N is in fact the Nusselt number defined 
as follows 

N = [DTo/(DTo)lin]4>o' (57) 

The integrations that were carried out correspond to the case where the energy 
flux across the boundary is given, and this case corresponds more closely to the 
astronomical situation. Under laboratory conditions the convection is induced 
by increasing the temperature of the lower boundary. There is of course a one-to-one 
correspondence between the two approaches, and in Table 1 we can observe the 

Table 1. Variation of I1To with N 

I1To O·()() 0·65 4'13 7·40 10'58 13·75 16·95 20·18 
N 1·0 1·2 2'4 3·6 4·8 6·0 7'2 8·4 

11 To 23·42 26'65 29·88 32·97 35·98 38·86 41·53 44·78 
N 9·6 10·8 12'0 13·2 14·4 15·6 16·8 18·4 

relation between the Nusselt number and the percentage increase ATo of the temp
erature at the lower boundary above its critical or linear value, for case A, where 
we have 

ATo = lOO[{(s+ 1)/(</>0+ I)}To -1]. (58) 

In the Boussinesq approximation the system of differential equations is of the eighth
order and therefore the eight boundary conditions (33), (34), (39), (5Ia) and (5Ib) 
fully determine the problem, and the numerical integrations can be carried out on 
the assumption that the density is everywhere a constant except in the buoyancy 
term. 

In the compressible case the situation is quite different, and this can be seen from 
the system of fundamental equations (43)-(47) which is now of the tenth order. We 
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therefore need two extra boundary conditions which can be arrived at by the following 
considerations: 

(i) We are interested here in finding stationary solutions. This leads to the 
requirement that the energy flux at the top and bottom of the convective layer must 
be the same, i.e. to the condition 

(DTo)",o = (DTo)"'o+l = N. (59) 

In the linear case, such a condition is automatically satisfied since the temperature 
gradient is everywhere constant. In the incompressible case the mean energy equation 
(47) is in fact replaced by 

D2TO = D(FW1) or DTo = FW1 +N. (60) 

Note that in the present paper the integrations are carried out from top to bottom 
and that the temperature gradient DTo is in fact positive. 

It follows from boundary conditions (33) that the condition (59) is automatically 
satisfied for an incompressible fluid. In the compressible case one has to consider the 
full equation (47), and it is seen that the first term on the right-hand side of this 
equation is no longer a total differential. The condition (59) becomes therefore an 
extra condition to be satisfied at the boundaries. 

(ii) Since the fluid within the layer is now compressible we must make sure that 
the condition of conservation of mass is satisfied, i.e. we now require that 

f<l>O+l 
Po(¢) d¢ = mi· 

<1>0 
(61) 

This condition is of course automatically satisfied in the incompressible case. 

The full system of equations is of the second order in the average density Po. 
The extra boundary conditions (59) and (61) fix the density and its gradient at the 
upper boundary and consequently right across the layer. 

8. Discussion of Results 

As indicated in the previous section the basic system of nonlinear differential 
equations, which is of the tenth order in W1, F, P, To and Po, has been integrated 
numerically by a finite difference method, subject to the appropriate boundary 
conditions. The results are illustrated in Figs 2-7 and we consider here the main 
characteristics of these solutions. Case A is concerned with the effects of nonlinear 
convection on a layer with small initial density and temperature stratification, whereas 
case B is concerned with the situation where there is initially a strong density and 
temperature stratification throughout the layer. 

It is possible to push the numerical integrations for case A to much higher values 
of the Nusselt number than for case B. This is to be expected since highly nonlinear 
solutions of the more asymmetric case will require more integration points to achieve 
the same accuracy. Nevertheless the results obtained so far are sufficient to give a 
good indication of the general behaviour of the solutions and their dependence on 
the initial structure of the layer. 
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Vertical Velocity l{I (Fig. 2) 

The vertical velocity component l{I behaves in much the same way as in the 
corresponding incompressible case. The asymmetry of the curve increases with the 
amount of stratification in the layer; a result which is also obtained if one uses the 
mixing-length theory. A deep and highly stratified layer, such as the convection 
layer in the Sun, would lead to high vertical velocities near the upper boundary. 

As can be seen from the definition (11) of the velocity, the vertical component 
may be written 

w = Wo(z) +l{I(z)f(x,y). . (62) 

In the incompressible case the average vertical velocity Wo vanishes and only the 
component l{I, which is modulated by the convection, remains. In the compressible 
case the average vertical velocity Wo does not vanish everywhere in the layer, and 
its importance increases with the strength of the convection. This is discussed in 
Section 9. 

Average Temperature To (Fig. 3) 

We see that increasing temperatures across the bottom layer result in stronger 
convection with increased Nusse1t number. Case A shows already that there is an 
increased tendency for the average temperature To to become constant across the 
layer. 

Temperature Fluctuation F (Fig. 4) 

The temperature fluctuation F behaves in much the same way as in the incom
pressible case. At high Nusselt number two peaks appear near the boundaries, 
indicating the growing importance of boundary layers. 

Average Density Po (Fig. 5) 

The average density increases above its linear value at the top of the convective 
layer with a corresponding reduction at the bottom of the layer. In case B there is 
already an indication that the Po curve is about to take a negative slope at the bottom 
of the convective layer. This, according to equation (SOb), occurs when the tem
perature gradient DTo exceeds 1 at the boundary. A fully developed situation of 
this type is illustrated in Fig. SA which corresponds to the case of small initial 
stratification. An interesting feature is the appearance of a density inversion; the 
bottom layer, which is at a higher temperature, having a lower density than the 
top layer. 

Figs'1r-7 (pp. 448-9). Variation of the magnitudes of the following quantities as functions of the 
dimensionless position variable t/J across the layer: 

Fig. 2, vertical velocity component If/; Fig. 3, average temperature To; 

Fig 4, temperature fluctuation F; Fig. 5, average density Po; 

Fig. 6, density fluctuation P; Fig. 7, Lf = TOl DTo -(y-l)Pol Dpo. 

Case A is illustrated in the left-hand and case B in the right-hand parts of the figures. The quantities 
indicated on the curves are values of the Nusselt number N. 
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Density Fluctuation P (Fig. 6) 

The density fluctuation P behaves in a similar manner to the temperature fluctua
tion F in the case of low initial density stratification (case A). In the case of strong 
stratification (case B) there is a correspondingly strong asymmetry in the density 
fluctuation curve. 

Adiabatic Excess of Temperature Gradient (Fig. 7) 

It is generally assumed that in the case of strong convection the actual temperature 
gradient will be equal to the adiabatic one. In fact such an assumption is made 
when dealing with convection in the convective cores of massive stars. Figs 7 A and 
7B show plots of the values of L1 across the convective layer, where 

L1 = Tol {DTo-(DTo)ad} or L1 = To1 DTo -(y-l)p-ADpo' (63) 

We see that this quantity does in fact tend to zero in the central regions of the con
vective layer and that this tendency increases with the Nusselt number. It is interesting 
to note that strong buoyancy establishes itself in the boundary layers. This is not 
surprising since a residual buoyancy is necessary to drive the convection. 

Table 2. Variation across layer of I P /Po I = IWo/IfI I and I F/To I 

Case A CaseB Case A CaseB 
t/J-t/Jo (N = 18'4) (N = 1·8) t/J-t/Jo (N = 18'4) (N = 1·8) 

IP/PoIIF/Tol IP/Pol IF/Tol IP/PoIIF/Tol I P/Po I IF/Tol 

0'0000 0·0097 0·0000 0·0858 o·()()()() 
0·0625 0·0729 0·0736 0·0675 0·0419 0·5625 0·0882 0·0887 0·0546 0·0710 
0·1250 0·1015 0·1019 0·0129 0·0703 0·6250 0·1014 0·1002 0·0560 0·0653 
0·1875 0·1000 0·1024 0·0035 0·0877 0·6875 0·1153 0·1144 0·0575 0·0614 
0'2500 0·0930 0·0929 0·0350 0·0961 0·7500 0·1259 0·1235 0·0607 0·0583 
0'3115 0·0831 0·0844 0·0421 0·0972 0·8125 0·1170 0·1156 0·0616 0·0537 
0·3750 0·0802 0·0798 0·0538 0·0932 0·8750 0·0874 0·0865 0·0569 0·0434 
0'4375 0·0783 0·0790 0·0536 0·0861 0·9370 0·0435 0·0439 0·0412 0·0246 
0'5000 0·0825 0·0818 0·0558 0·0782 1 . ()()()() 0·0012 O·()()()() 0·0181 o·()()()() 

9. Accuracy of Anelastic Approximation 

The basic equations describing finite-amplitude convection which have been 
studied in this paper have been derived under the assumption that the anelastic 
approximation holds. This approximation consists in neglecting higher powers 
and products of the thermodynamic fluctuations such as F and P but retaining the 
nonlinear terms in the velocity components. It is therefore necessary to investigate 
at this stage how good such an approximation has been in the present case. In order 
to do this we have to introduce a scaling somewhat different from the one used so 
far. Although the scalings introduced in the equations (42) appear to reduce the 
basic equations to their simplest form, they do not allow a direct comparison of the 
fluctuations in the thermodynamic variables with their average values. An appropriate 
scaling to carry out such a comparison is the following one: 

W1--+(KjCv d)W1' Po--+PooPo, p--+pooP,} 

To --+ (K2jR.d2C; p~o)To, F --+ (K2jR.d2C; P~o)F. (64) 
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No new integrations are required since the change from the old to the new variables 
can easily be accomplished by the following transformations 

(HU)tWI ~ WI, (ulH)tp ~ p, HuTo ~ To, HI/2U3/2F ~ F. (65) 

Once these changes have been made, and in fact they are done automatically in 
the author's computer program, it is a simple matter to evaluate the ratio of the 
thermodynamic fluctuations to their average values. These ratios are given in Table 2 
for case A with N = 18 ·4, that is, for low initial stratification and strong convection, 
and for case B with N = 1·8, that is, for strong initial stratification and relatively 
weak convection. We see from this table that the ratios I PI Po I and IF ITo I can 
reaoh values as high as 12·6% somewhere in the convective layer for strong enough 
convection (case A), and a value of 9·7% for strong stratification and weak 
convection (case B). 

Since squares and products of such terms have been neglected in the anelastic 
approximation, it appears that an error of '" 1 % has already appeared in the results 
due to such an approximation. If the integrations were to be pushed much higher 
it would be advisable to integrate the full equations (Van der Borghi 1971) and 
the author hopes to do so in a subsequent paper. 

An interesting by-product of the comparison we have just made is that we have 

I PI Po I = I Woft/! I (66) 

and, as a consequence, the previous computations give straight away an indication 
of the importance of the average vertical velocity Wo as compared with the modulated 
component ",. We see that this ratio already reaches the value of 12·6 % in case A 
and that therefore the average vertical velocity Wo cannot be neglected in the formu
lation of the problem. 

That the anelastic approximation does in fact break down sooner in the case of 
strong initial stratification is not surprising in view of the fact that, in applying such 
an approximation, one has actually assumed that the scale height and thickness of 
the layer are of the same order of magnitude. In case B the density scale height is 
one-ninth the thickness of the layer, and the anelastic approximation cannot be 
expected to be sufficiently accurate for strong convection. 

10. Conclusions 

It has been shown above that the integration of the system of differential equations 
representing nonlinear convection within the framework of the one-mode anelastic 
approximation for non self-interacting planforms can throw some light upon the 
effect of density stratification and compressibility on steady convection. The equations 
to be solved are of course far more complex, and the resulting numerical integrations 
more difficult, than in the corresponding case of the Boussinesq approximation. 
Nevertheless, this paper shows that such an approach is possible and that it may 
be worth while to relax some of the assumptions underlying our calculations. 

One important step would be to drop the anelastic assumption and to integrate 
the full equations. The present investigation shows that this would be essential if 
a study were to be carried out of strong convection in a medium that is highly 
stratified. This would certainly be essential if the results of this study were to be 
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extended to astronomical applications. A study of convection in the outer layers 
of the Sun would necessitate the inclusion of the effects of ionization and variable 
conductivity in the basic equations. 

An even more important point would be to have a closer look at the boundary 
conditions to see which of them need to be relaxed in order to approximate more 
closely the astrophysical situation. For instance, the assumption that there are no 
temperature fluctuations on the boundary is probably the correct one under laboratory 
conditions but it is unlikely to apply to any degree of accuracy in stellar convective 
regions. The assumption of zero modulation in the energy flux is more likely to 
give a better representation of the actual situation, and numerical integrations within 
the Boussinesq approximation have already been carried out (Van der Borght 1974). 
This is now being extended to the anelastic approximation. 
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