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Abstract 

Results are presented for the first of two extensive computer tests for nonrandomness in the inter
object positions of astronomical objects. The aim is to test the two predictions: the geometrical 
effect that it is impossible to put an arbitrarily large number of objects on the surface of a sphere 
and have them all randomly equivalent; and the physical effect that any astronomical objects which 
occur in clumps or clusters (like galaxies) should show the predicted regular-chain effect of Scott 
et at. (1954). Four other physical effects expected to give rise to nonrandomness are also discussed, 
including the Arp hypothesis. The nonrandornness investigated pertains solely to the difference of 
latitude or longitude (in a suitable reference system) between astronomical objects. Nonrandornness 
was detected in the inter-object positions of a large class of bright stars (1Oa deviation) and of bright 
galaxies (1511' deviation). However, peculiar objects from the Arp catalogue were found to be uncorre
lated in position at the 111' level (analogous to those just quoted). These results confirm either or 
both of the above predictions, and suggest that nonrandomness exists a priori in the inter-object 
positions of astronomical systems generally. Because of controversy surrounding the Arp hypothesis 
and statistical tests of the type reported here, confirmation has been sought via a different statistical 
test in Part II (Wesson 1975). 

1. Introduction 

It is only within the last decade or so that the randomness of the distribution of 
astronomical objects in the sky has been questioned. The argument of Arp (1970) 
and others, namely that condensed objects are periodically shot out of peculiar 
galaxies, has received much criticism. However, the subject has virtually degenerated 
into a stalemate owing to the difficulty of applying statistical tests to small groups 
of data and the subjective aspect of selection effects in the original data, which latter 
are yery difficult to delineate. 

Stockton (1972) has examined the hypotheses proposed as explanations for the 
presence of strings of knots projecting radially from elliptical and SO galaxies. It 
has been suggested that blobs of matter, shot out of peculiar or condensed objects 
into an intergalactic medium, experience a ram pressure which results in the formation 
of objects of the approximate type observed (Mills and Sturrock 1970; Chiao and 
Wickramasinghe 1972; Wesson 1973). The mechanism suggested by Sturrock and 
Barnes (1972) is typical of such proposals. Alternatively, Hoyle and Harwit (1962) 
suggested that intergalactic bridges, considered as cylinders of gas, might break up 
into '" 10 blobs due to hydrodynamical instabilities following on the outbursts of 
supernovae located in the bridge. (A similar well-known hydromagnetic instability 
can produce the same effect; see e.g. Chandrasekhar 1961, p. 565). Supernovae 
as a means of producing correlated astronomical objects have also, of course, been 
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implicated in the study of the distribution of pulsars over the sky (Wielebinski et al. 
1969; Prentice 1970). A statistical investigation .of pulsars in space has been carried 
out by Gold and Newman (1970) using histograms plotted from data derived by 
Monte Carlo methods. 

Another aspect of the problem of nonrandomness involves clusters of galaxies. 
Firstly, it has been realized for a long time that the lifetime for escape of galaxies 
from clusters is of the order of the ages of the component galaxies (see e.g. Tuberg 
1943). At present, studies are under way to see if the interaction of a small number 
of dense objects (say three or four) in the nuclei of giant elliptical galaxies or in 
clusters of galaxies can produce, via Newtonian interaction, bodies which are lost 
from the system along diametrically opposite directions at roughly the same speed. 
This problem has obvious connections with the claims of Arp (1970) and with those 
concerning correlation in the angular momenta of the galaxies comprising a cluster 
(Opik 1970; Reinhardt 1972). Secondly, as regards clusters in general, it should 
be noted that a hierarchical cosmology produces spurious 'chains' of galaxies, and 
these have been claimed as causal chains in the same (erroneous) way that star chains 
had been previously acclaimed as causal phenomena (Scott et al. 1954). Three 
physical chains of galaxies have been reported by Burbidge (1962), Sersic and AgUero 
(1972) and Markarian (1961) containing six, seven and eight components respectively. 

It must not be thought that only correlations in position are to be expected from 
extragalactic objects. Fundamentally, it is impossible to put more than a finite 
number of points on the surface of a sphere (e.g. the celestial sphere) and have them 
appear uncorrelated (C. Hazard, personal communication), since there exist in 
Nature only five regular solids. This means that the points of intersection of the 
vertices of the faces comprising the highest-order solid with the surface of an encom
passing sphere are limited in number. Consequently, the presence of any large 
number of imposed points necessarily means that all points are no longer equivalent, 
in the sense of being indistinguishable from one another in location. There is thus a 
compelling fundamental reason to expect that statistical tests on a popUlation of 
astronomical objects will 'discover' nonrandomness in the given class of objects. 
No analysis of this problem from a practical point of view (i.e. of testing for such 
nonrandomness and, if found, of evaluating it) is known to me, and hence I present 
here such an analysis. 

Several methods may be used to test for possible nonrandomness in a class of 
astronomical objects. The most attractive, that of Fourier analysis, did not seem 
feasible even though it is theoretically the most elegant method. The reasons for 
this were practical ones: in recording the positions of '" 103 objects for use with 
a computer program, a human being will almost certainly make mistakes, such as 
recording the same object twice or misreading the catalogue from which the positions 
are being abstracted. To avoid incidents of this type, which were found in practice 
to occur more often than might at first be expected, I decided to use a computer 
program based on an elementary idea but which could both display and deal with 
the unavoidable human errors. This program (program I), which works by examining 
a great circle of the celestial sphere, is essentially a test of ordering of the positions 
of objects in one dimension. It takes no account of the distances of the objects 
involved, using only their positions. To underline this point, recently McCrea (1972) 
gave a historical account of how nine QSOs, on being plotted on a sphere, were 
all found to fall on a great circle with the exception of only one of them. 
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I have also developed a second program (program II) which is described in Part II 
(Wesson 1975, present issue pp. 463-73). Program II works in a plane (or in reality 
a strip of sky around the equator of a given system of coordinates) and uses the Von 
Neumann ratio test to detect nonrandomness. The objectives of these programs 
were (1) to make an explicit test of the expected non-equivalence of a large number of 
astronomical points on the celestial sphere; (2) to investigate the possible nonrandom 
distribution of galaxies as a consequence of their being members of a clustered 
hierarchy. I also attempted (3) to test for ordering in the positions of QSOs (for 
instance, if all quasars originated by double and symmetrical ejection from a central 
object this would be immediately apparent) avoiding the old problem of the ineptitude 
of statistical testing by taking a gross sample of objects and treating it, so to speak, 
macroscopically; (4) to perform the same analysis on the peculiar objects listed by 
Arp (1966). 

I point out here that the plan just outlined is not dependent on which part of 
the sky one is looking at, nor does it depend on the presence or absence of obscuring 
matter along the line of sight. Only the difference in angular measure of any two 
given sources is employed for, given the coordinates of points on a line (over a great 
circle, if a sphere is being considered), all the information contained therein is 
exhausted when the differences between points are tabulated. There is some reason 
for advocating that the plan I have put forward would be best "Suited to radio data 
obtained in a complete survey down to some limiting level, instead of optical data. 
Such a survey is at present in progress (Gent et al. 1973) but the results of it will not 
be available for some time. After I had completed the present work, a paper by 
Bogart and Wagoner (1973) appeared which extended earlier unpublished work by 
Castro (1971). The method of randomness testing used by these authors is the same 
in basis as the one I have used, except that my technique seems to give better statistical 
data on the results. Bogart and Wagoner found nonrandomness in the positions of 
clusters of galaxies, while the present work, which is applied to a much more diverse 
series of objects, shows that the nonrandomness found by them is part of a more 

, general astronomical phenomenon. 

2. Method and Outline of Program I 

This section describes the program used to test for correlation in astronomical 
objects. A flow-chart of the program (based on the method of Forsythe et al. (1969) 
for use with an IBM 370) is available from me on request. The basic data are the 
coordinates I; of objects on or near to a great circle encompassing the celestial sphere. 
FOr a group of N objects so chosen, the differences hj are formed after the I; have 
been ordered in ascending magnitude, where 

hJ = 1;-1;+1 for i = 1, ... ,N-1 and j = 1, ... ,N-I. (1) 

At every stage of dealing with the h j so-formed from the data, the computer carried 
out an exactly similar treatment of another set of h j formed from I; which were 
generated by the IBM subroutine RANDU and are random. The two calculations, 
one using h7 (where a superscript D denotes the data set) and one using h~ (random 
set), are carried out in a parallel fashion throughout the entire program, and this is 
henceforth assumed to be understood. 
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From the ~ i' the ratios Rk are formed: 

Rk = ~i/~N-J for k = 1, ... ,N-2, (2) 

where J is fixed as j varies, giving a sequence of N - 2 ratios that correspond to 
division by the smallest interval present (between any two adjacent objects) into all 
those intervals larger than it. The objective of the test to be applied is to compare 
RP with R~ and see if there is any significant difference. If the data are in any way 
ordered at the Ii level, RP will fall more nearly around integer or fractional-integer 
values than will the corresponding R~. In order to carry out this comparison, I 
devised a function HI which can be thought of as operating on the Rk and checking 
for a possible tendency for the Rk to fall near integral or fractional-integral values. 
The function HI uses the IBM function AINT, which latter gives the next nearest lower 
integer to its argument (any real number). In the present case it is required to find 
the nearest integer, whether above or below the actual value of Rk , and also to find 
the nearest fraction (e.g. if fractions of t are used then the operation of HI would 
seek out the nearest multiple of t, viz one of 0, t, 1- or i). This can be done by operat
ing on any real number x with HI' such that 

HI[x] == f*AINT(j-lX + sin(O· 5 sin x» , (3) 

where f is the fraction with respect to which one wishes to categorize and the asterisk 
denotes computational multiplication. That equation (3) indeed gives what is needed 
can be checked by working numerically through a few examples. In program I 
f = 1 was used exclusively but in program II (Wesson 1975) I employ f = 1/4, 
1/8, 1/16, .... It should be noted that, while HI gives a hint as to possible order present, 
it is a closed operator with respect to the unit interval on the real line. 

Various operations are carried out by the computer on a quantity defined by 

Pk = HI[RJ, (4) 

details of which can be found by examining the flow diagram referred to above. 
Execution times on an IBM 370 are about 30 min for a class of 400 objects, and it is 
not feasible to treat N > 400 even on a very fast machine. Order in the data basically 
means that 1 Rk-Pk 1 is systematically smaller than in a random sample. The relevant 
parameters that emerge are: (1) HRMs, an r.m.s. value of the cumulated sums of 
IRk-Pkl, suitably confined by a cutoff ratio for the ~/s of objects lying too near 
each other (the influence of varying this in the range 20-80 was investigated thoroughly; 
see also Section 5) and calculated for data and random points; (2) Xs and Ys, which 
measure the summed number of times that the inequality 1 PP - RP 1 ~ 1 ~ - R~ 1 
holds and vice versa (inequality reversed) respectively; (3) 'V, the cumulated sum 
of the differences 1 PP - RP 1 - 1 pf - R~ I. The results one would expect if the 
input data for the program were not random but showed some degree of correlation 
or ordering are: 

HfMS < H:Ms , x. < Y., 'V < 0, 1'V1~1. (5) 

3. Data 

Although the main objective was to test for randomness in those groups of objects 
for which possible nonrandomness has been suggested (QSOs, objects from the 
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Arp atlas, and certain classes of galaxies) I eventually chose only six groups, of which 
three or four were not expected to show any nonrandom effects and have never 
been suggested as possibly possessing such properties. A synthetic group of ordered 
objects was also used as a check. The six real groups were (i) QSOs, (ii) pulsars, 
(iii) bright stars, (iv) Arp atlas peculiar objects, (v) planetary nebulae, (vi) bright 
galaxies. The results obtained with program I were negative for all except groups 
(iii) and (vi), and so only these and the synthetic group are considered here. 

Synthetic Group 

The members of the synthetic group of 35 objects were produced by dividing the 
intervals 0° to 360° and -90° to +90° into roughly 10° and 3° unit intervals. The 
programs I and II were checked before and after every run with real astronomical 
data by running them with the synthetic group. In this wayan assurance of reliability 
was gained from the consistency of the results obtained from this group. 

Bright Stars 

Bright stars from the Yale catalogue compiled by HofHeit (1964) were selected 
in R.A., Dec. and III,bII such that' Dec., < 2°. This gave a group of 279 objects 
which were used in program I as groups of 276 objects in [II, bII and 241 objects in 
R.A., Dec. A special subgroup of 51 objects having' bII , < 11 ° was also used. The 
positional accuracies were ±0·5 sand ± I' (R.A.,Dec.) and ±0·5' and :to·5' 
(III, bII), both ignoring peculiar velocities. Computational restrictions in program I 
imposed the use of such groups by forcing the deletion of sources which gave Rr = O. 
This bias tended to favour the upholding of the hypothesis of randomness in astro
nomical objects. It was overcome in program II, and in any case is not a serious 
biasing effect. 

Bright Galaxies 

Bright galaxies have been tabulated by de Vaucouleurs and de Vaucouleurs (1964) 
in supergalactic longitude and latitude (SGL, SGB), i.e. with respect to a proposed 
coordinate system based on the (still hypothetical) local supercluster. I chose all 
the objects listed in the de Vaucouleurs catalogue having, SGB, < 3°. These com
prised a class of 344 objects, which were listed on cards in SGL, SGB and also in 
111, bII. Of these, some produced zeros in the parameter Rf of the program as 
mentioned above and were temporarily discarded, leaving two groups of data com
prising 274 objects in SGB, SGL and 337 objects in III, bII. The positional accuracies 
were ±0·005° and ±0·005° (lll,bll) and ±0·05° and ±0·05° (SGL,SGB). 

The procedure adopted with all the data was: (1) to perform a preliminary manual 
check of the computer data against the catalogues, (2) to obtain a computer listing 
of all the data, (3) to re-arrange the data in various ways by computer so that errors 
could be spotted and corrected. The resulting positions of the members of the various 
groups· of data, after exhaustive checking of this type, were thus assuredly as good 
as given in the original source catalogue. 

4. Results 

The values of H:MS were derived from a set of purely random numbers generated 
by the computer, and so should have a normal distribution when the results of a 
large number of runs are considered. I decided on 20 program runs having N = 50, 
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in each of which two lots of random numbers were generated, giving 40 values of 
H~s. As expected, negative values of V were found to occur roughly as often as 
positive values, and the variance calculated by the computer was approximately 
constant from run to run. By finding the mean of the 40 values of H:MS , and calcu
lating the deviations from this mean «H:MS ) = 0·24585), as listed in Table 1, a 
histogram could be drawn. A normal probability curve fits this histogram very 

Table 1. Results of program I 

(1) (2) (3) (4) 

Run Data No. in Coord-
No. group sample inates 

Synthetic 35 

2 Random 35 

3 Bright 241 R.A., Dec. 
stars 

4 Random 241 

5 Bright 276 [II, bIl 

stars 
6 Random 276 

7 Low-b 51 [II, bIl 

bright stars 
8 Random 51 

9 Bright 274 SGL, SGB 
galaxies 

10 Random 274 

11 Bright 337 [I1,b" 
galaxies 

12 Random 337 

13 Bright 274 SGL, SGB 
galaxies 

14 Random 274 

15 Bright 274 SGL, SGB 
galaxies 

16 Random 274 

(5) 

H~MS 
H~MS 

0'0031472 
0·2311080 
0·2430285 
0·2445498 
0·1621603 
0·2409960 
0·2470460 
0·2337546 
0·2386169 
0·2406673 
0·2471058 
0·2334161 
0·2254565 
0·2428179 
0·2478150 
0·2370601 
0·1352252 
0·2221438 
0·2478023 
0·2240213 
0·2306556 
0·2334445 
0·2481715 
0·2372813 
0·1316876 
0·2330955 
0·2474730 
0·2358766 
0·1328756 
0·2416829 
0·2488290 
0·2442387 

(6) 

Xs 

38 

261 

9295 

3839 

7418 

8555 

538 

633 

1590 

7522 

5189 

7160 

1422 

7127 

7127 

7127 

(7) 

Ys 

522 

298 

18443 

13523 

19184 

17293 

683 

582 

24026 

16497 

28523 

27066 

25265 

8055 

0819 

8231 

(8) 

\7 

-127,6580 

-0,2014 

-239·5389 

56·8256 

1272·7150 

70·6907 

-14·2675 

10·5289 

-2479·9340 

116·8409 

-301·1450 

105·7891 

-3045,9800 

4·5993 

-3273,4800 

31'4549 

well and demonstrates the consistency of the analysis so far. The points of inflexion 
of the normal curve occur at ± (J on either side of the mean, giving the standard 
deviation for N = 50 as (J ~ 0·007. This semi-empirical way of deriving the standard 
deviation is much simpler than working back through the program. The two methods 
can be shown to be consistent with each other. 

The full data for the crucial runs of program I are given in Table 1, in which all 
values are rounded off to the last decimal place quoted, mostly from an original 15 
digit field. Table 1 represents the refinement of a large amount of computational 
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data, with only pertinent results being presented. Columns 2 and 3 specify the class 
of object being tested for randomness, and column 4 lists the coordinate system in 
which the objects were tabulated. The remaining column headings are self explana
tory. The most valuable program runs used data from narrow strips of width'" 2° or 
3° about a specified great circle, the width being taken as narrow as was consistent 
with obtaining a sample class that was still usefully large. One such subgroup is 
that listed in run 7, the low-b subgroup of bright stars described in Section 3. 

Perhaps the most useful feature of the complete results is the fact that the com
putational variance is approximately constant over the range of N employed. This 
implies that a is roughly a constant independent of N for these data, as expected 
from the close fit of the histogram of random runs to a normal probability curve 
with a ~ 0 ·007 since (see e.g. Weatherburn 1968) the normal law is obtained from 
the binomial distribution as the number of discrete data tend to infinity. The prob
ability density can hence be taken as that of a normal distribution 

</>(HfMS) = (2n)-ta - 1 exp{ --t(HfMS-H~s)2Ia2}, (6) 

and I assume as usual that the probability of HfMS deviating from H~s by la and 
2a is '" 30 % and '" 4 % respectively. 

The quickest way to spot which data of Table 1 contain nonrandom elements 
is to employ the inequalities (5). Large negative values of V lead one to suspect the 
presence of some ordering (but this is not in itself sufficient proof of the presence of 
ordering). Correlation is definitely present if Xs < Ys to a significant degree (by the 
random runs present in Table 1, statistical variations in Xs or Ys from the random 
mean are mostly confined to within a multiple discrepancy of '" Nt) and ordering is 
definitely present if HfMS < H:MS with regard to the adopted standard deviation a. 
One may verify that the purely random runs of Table 1 do not contradict the adoption 
of a ~ 0·007 for all the results. 

5. Discussion of Nonrandomness 

In this section the significance level for those classes of objects which show evidence 
of nonrandomness is discussed. Examination of columns 5-8 of Table 1 discloses 
some remarkable results, and these are considered below. 

Synthetic Group 

The synthetic group of 35 objects examined in runs 1 and 2 show, as designed, 
an enormous departure from a random distribution. The l00a deviation from ran
domness corresponds to the almost-perfect order built into this group of test data. 

Bright Stars 

Bright stars (listed in R.A., Dec.) forming the 241 member class of runs 3 and 4 
show a definite departure from randomness, the extent of which ('" lOa) is consid
erable. Because the members of this group have far from negligible proper motions, 
the argument of the Introduction involving the finiteness of the number of equivalent 
points it is possible to put on a sphere is borne out by this empirical validation of 
the expected effect. The runs 3 and 4 are with relatively low-declination objects. 
When the coordinate system is changed to galactic coordinates, the conditions 
necessary for program I to function as constructed no longer hold. Consequently 
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the 276 member group of bright stars examined in III, bII should not be expected to 
show the same departure from randomness as those of low declination. This is 
confirmed by runs 5 and 6. If the III, bII class is now cut down to admit only 10w-bII 
stars, as noted in Section 3, the resulting 51 member class might be expected to show 
some slight nonrandomness, since the objects are now reasonably near to being 
'points' on a great circle and program I can examine them as it was designed to do. 
Runs 7 and 8 confirm this, and the departure from randomness is "" 2a from the 
results of run 7. 

Bright Galaxies 

Bright galaxies, when expressed in the supergalactic coordinates SGL, SGB of 
de Vaucouleurs, show a definite departure from randomness (in the 274 member 
class of runs 9 and 10) which is of the relatively large size of 15a. This inference of 
the presence of ordering, as expected from the analogous case of bright stars dis
cussed in the previous subsection, is destroyed when the bright galaxies are expressed 
in III, bII and used as a 337 member group (runs 11 and 12). When the runs using 
SGL, SGB are repeated with cutoff ratios of 40 (runs 13 and 14) and 80 (runs 15 
and 16), as opposed to the original value of 20 (runs 9 and 10), the departure from 
randomness is found to be still present and still about 15a. 

The above results show that astronomical objects do, in general, show a non
random distribution in position. As mentioned in Section 3, four other groups of 
objects were also tested, but with null results. Arp catalogue objects, comprising 
a 328 member group, surprisingly showed no significant departure from randomness, 
although a low-declination 81 member subgroup did show some hint of a departure 
from randomness but only at the "" 1 . 5a level. Fuller results for these four groups 
of objects are presented in Part II. 

6. Conclusions 

Nonrandomness has indeed been found in bright stars (10a deviation) and bright 
galaxies (15a deviation) by applying the method (program I) described in Section 2 
to objects located along a great circle of the celestial sphere. It is obvious from these 
results that nonrandomness is present generally in galactic and extragalactic objects. 
However, it is not clear what is responsible for it, i.e. whether it is the geometrical 
impossibility of putting an arbitrarily large number of equivalent random points 
on the surface of a sphere or the chain-of-galaxies effect due to clustering in a hier
archical universe. What can be said is that the recognition that the predicted effects 
are significant seriously compromises the claims made by Arp (1970) concerning the 
distributions of certain types of objects. In view of the low level of correlation found 
for objects from the Arp catalogue, it would seem that nonrandomness in inter
object positions is the rule rather than the exception and that it does not imply the 
physical hypotheses discussed by Arp and others concerning the origin of such bodies. 
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