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Abstract 

A quantum-mechanical wave equation for two particles of spin 0 is presented in Hamiltonian 
formalism and is then simplified and discussed. Solutions are found for square-well and Coulomb 
interactions, and energy levels are determined. It is shown that, for the Coulomb interaction, the 
energy levels to the lowest order agree with those given by the hydrogen atom formula. 

Introduction 

A quantum-mechanical wave equation for two particles of any spin with an 
arbitrary instantaneous interaction was recently derived by the author (Tam 1973). 
This equation contains the sum of the Hamiltonians of the two particles, and it 
can be explicitly written for any specific particles once the Hamiltonians and the 
interaction of the particles are known. In this paper, solutions to the equation for 
spin-O particles with some common interactions such as square-well and Coulomb 
are presented and discussed. The two-particle wave equation originally in matrix 
form is first reduced to four simultaneous equations with four unknown components 
of the wavefunction, and the four equations are then combined to yield a single 
equation for one component. This equation holds for any arbitrary instantaneous 
interaction. For square-well and Coulomb interactions, solutions are found and 
energy levels are determined. 

Throughout this paper, quantities are expressed in natural units with h = c = 1, 
that is, with h, Planck's constant divided by 2n, and c, the speed of light, taken as 
unity. The imaginary fourth component convention is also used, in which the 
space-time four-vectors are xI' = (x,y, z, it) and the invariant is 

XI'XI' = X2+y2+Z2_t 2 . 

Two Spin-O Particles 

For a spin-O particle, the Hamiltonian is (see Tam 1973) 

H = '\J2u/2m -mp, (1) 
where 

u = [~ ~] and p = [~ ~]. 
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Squaring the operator (1) gives 
H2 = (_ V 2 +m2)I, 

where I is a 2 x 2 unit matrix, so that the spin-O Hamiltonian equation HI/I = i 81/1/8t 
reduces to the Klein-Gordon equation 

( - V 2 + m2)1/1 = - 821/1 /8t 2 . 

The time-independent wave equation for two particles of any spin is (see Tam 1973) 

(HI + H2 + V)I/I = EI/I, 

which, for two spin-O particles, becomes symbolically 

(~~~1 + ~~:2 -(m1Pl +m2P2)+ V)I/I(X1,X2) = EI/I(XI,X2), (2) 

where the two-particle wavefunction is 

./,( ) _ [1/111 1/112] 0/ Xl,X2 - . 
1/121 1/122 

The first index in the components of the wavefunction is associated with the first 
particle and the second index with the second particle. Equation (2) has the following 
matrix form 

vi [0 0] [1/111 1/112] v~ [1/111 1/112] [0 2] 
2ml 2 0 1/121 1/122 + 2m2 1/121 1/122 0 O. 

[ [0 1] [1/111 1/112] [1/111 1/112] [0 1]] [1/111 1/112] [1/111 1/112] 
- mIlO 1/121 1/122 +m2 1/121 1/122 10 + V 1/121 1/122 = E 1/121 1/122 . 

(3) 
After equating each component of the matrix equation (3), we obtain 

E-V m2 m1 0 
r~ul 

-V~/m2 +m2 E-V 0 m1 1/112 

-Vi/ml +m1 l ~"J ~ O. 
(4) 0 E-V m2 

0 - Vi/m1 +m1 -V~/m2 +m2 E-V 1/122 

Free Particles 

Consider first the case of two free particles, in which we put V = O. Going to 
momentum space, we replace vi by -pi and V~ by -p~. In order that the solution 
be nontrivial, the determinant of the matrix must be zero, that is, we must have 

deJ pllm: +m, 
m2 m1 0 
E 0 m1 

lpl!m~ +m, 
= o. 0 E m2 

pi/m1 +ml p~/m2 +m2 E 
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Expanding the determinant and solving for E gives 

E = ± {(pi +mi)t ± (p~ +in~)t}. 

Arbitrary Interaction 

Next consider equation (4) in the c.m. frame in which vi = V~ = V~, where 
x = Xl -X2 is the relative coordinate; we suppress the subscript x in V~ in the 
following discussion. Then, in the c-.m. frame with vi and V~ replaced by V 2 in 
equation (4), the resulting expression can be simplified to obtain an equation in
volving only 1/111' namely 

(v2-(mi+m~)+!(E- V)2+ (ml +m2)2(rnl - rn2)2 V2(E- V») 
2(E- V)2 + E- V 1/111 = 0, (5) 

where 1/111 corresponds to the usual Klein-Gordon wavefunction for ·two particles. 

Square-well Interaction 

For a square-well potential 

VCr} = - Vo 

=0 

equation (5) becomes, for r ~ a, 

for r ~ a, 

r> a, 

( V2+ (rnl +m2)2(m1- rn2)2 -.1(rni+rnD+i(E+ VO)2)1/111 = O. (6) 
4(E+VO)2 2 

With the substitution 1/111 = 111 (r) Ylm(O, (jJ) in equation (6), the radial equation 
becomes 

(~ + ~i. +K2_ 1(1+1»)/11(r) = 0, 
dr2 . 'r dr r2 

(7) 

where 
K2 = i(rn1 +m2)2(ml -m2)2/(E+ VO)2 -!(mi+m~)+i(E+ Vo)2. 

The solution of equation (7) is 
111 (r) = Ajl(Kr). 

The other components of the wavefunction can be obtained from equation (4), with 
vi = V~ = V 2 • They are: 

./, =~A_(.1(E+V.)2_(rnl+rn2)2(rnl-rn2)2)J·(Kr)Y (0-1.) 
'1'22 mlrn24 0 4(E+VO)2 I 1m ,,/,, 

1/112 = - :2 (l(E + Vo)- ~~!~~:j)jz(Kr)Ylm(O,cjJ), 

./, A (l( ) (rn~-mi»). 
'1'21 = - rnl 2: E+ Vo - 2(E+ Yo) Jz{Kr)Ylm(O,cjJ). 
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For r > a, equation (5) reduces to 

( V2+ (ml +m2)2(ml- m2)2 -!(mf+m~)+!E2)"'11 = O. 
4E2 

With the substitution "'11 = gl1(r) Y ,m«(}, cp), the radial equation becomes 

( d2 2 d 2 1(1+1») - + -- +ex - -2- Ull(r) = 0, 
dr2 r dr r 

where 
ex2 = !(ml +m2)2(ml-m2)2/E2 -!(m~+m~)+!E2. 

The solution of equation (8) is 
gl1(r) = Bh~l)(exr). 

(8) 

Again, the other components of the wavefunction can be obtained from equation (4): 

./, = ~(~E2- (ml +m2)2(m1-m2)2)h(1)(exr)Y «() -1..) 
'I" 22 m1 m2 4" 4E2 I 1m ,'I', 

VCr) 

o 

./, _ B (~E (mf-m~»)h(l)() «(}-I..) 
'I" 12 - - m2 z - 2E I exr V'm ,'I' , 

./, _ B (lE (m~ - mD)h(l)(Nr) Y «() -1..) '1"21 - - ml Z - 2E I "" 1m. 'I' • 

Fig. 1. A more realistic 
modified square-well potential. 

-voLI ------ " 

To determine the energy levels, the solutions inside and outside the well are 
matched at r = a. If "'11 and the first derivative of "'11 correspond at r = a, we have 

AHKa) = BhP>(cxa) and KAj,(Ka) = exBhP)'(cxa) , 

and thus their ratio 
j/(Ka)/Kj,(Ka) = hp)(exa)/exh~l>'(cxa) 

will give the energy levels. If other components of the wavefunction are matched at 
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r = a then, for r < a, the wavefunction will contain in the coefficient of the spherical 
Bessel function a term involving E + Vo, whereas, for r > a, a term involving only E. 
This is due to the discontinuous change of the potential at r = a. For a more realistic 
potential of the form shown in Fig. 1, the function is continuous at r = a and, since 
the value of the limit of the potential from both sides is the same, a matching of any 
component of the wavefunction will give the same result. 

Coulomb Interaction 

The wave equation for two spin-O particles is now used to describe a pionic atom 
which consists of a negatively charged pion circulating around a positively charged 
pion. For this system, m1 = m2 = m and the potential between the two pions is 
Coulombic and is given by VCr) = -ezlr. 

Equation (5) becomes in this case 

( \7Z-2mz+ HE+ezlr)2+ E\7z )1/111 + \7z(ezI/I11lr) = o. (9) 
E+e2lr E+e2lr 

The last term in this equation can be simplified. We consider the region r =I- 0 
because the potential is singular at the origin. For this region, 

\72(r -1 1/111) = r -1 \7Z1/1 11 - 2r - 2 01/1111 or 

and therefore equation (9) becomes 

( eZlrz a) 
\7z-mz+l<E+e2/r)Z_ E+ez/r or 1/111 = o. 

Putting 1/111 = fi1(r)Y 1m«(), </J), we have for the radial equation 

{~ + !(2 _ e2 Ir )~ + (E + eZ /r)2 _ 1(1 ~ 1) _ mZ}f11 (r) = O. (10) 
drz r E+e2/r dr 4 r 

But, since 
e2 1 1 - = - - + ---.--,-

r(Er+e2) r r+ez/E' 

equation (10) becomes 

{~+(!+ 1 )~+(!EZ_mZ)+EeZ +!e4 -1(1+1)}fu(r) =0. (11) 
drz r r+ez/E dr 2r r2 

Now consider the ratio eZ/E. In SI units, eZ is of the order of 10- 38 CZ while 
E is of the order of the mass of a pion and is 10z MeV or 10- 11 J. Therefore, the 
ratio eZ lEis of the order of 10 -17 m, where a constant 9 x 109 N m C - Z has been 
inserted for the SI system. Thus we have 

eZ/E'" to-17 m ~ 1O-15 m = re' 

re being the radius of an electron. Equation (11) has no exact solution because of 



500 Kwong-Chuen Tam 

the presence of the term (r + e2 j E) -1. However, since e2 j E is very much less than the 
radius of an electron, it can be neglected and we can approximate the former term 
by r- 1• With this 'approximation, equation (11) takes the form 

{d2 2d ( Ee2 f32)} dr2 +rdr + -K2+2,+ r2 ' 111(r) = 0,' (12) 

where 
K2 = m2-tE2, 132 = te4 -1(1+1). 

Equation (12) can be solved by the usua.l method (see e.g. Schiff 1968). 
eigenvalue is given as 

The energy 

{ e4 e8 (3 1) } 
E = 2m 1- 8n2 + 16n3 8n -21+1 + ... ~13) 

to terms of order eS , where the principal quantum number n can take positive integral 
values. In terms of the reduced mass of the system Jl = 1m, equation (13) becomes 

_ Jle4 JleS ( 3 1) 
E - 2m- 2n2 + 4n3 8n - 21+1 + .... 

The first term on the right-hand side is the rest mass of the system and the second 
term is identical with the one for nonrelativistic particles. The third term is the 
fine-structure energy which differs from usual Klein-Gordon and Dirac one-particle 
levels. 

The radial wavefunction is 

111 = exp( - Kr) rS L~(2Kr) , 
where 

s = -t+H(21+ 1)2 _e4 }t, p = 2s+1, q = Ee2j4K +s. 

The other components of the wavefunction can be found from equation (4). The 
complete wavefunction is 

ljJ = C [ 111 Y1m(O, cjJ) 

-tm- 1(E+e2jr)/ll Y1m(O, cjJ) 

111 being defined as above. 

Conclusions 

-tm-1(E+e2jr)/ll Ylm(O,cjJ)] , 

tm- 2(E+e2jr)2 fil Y1m(O, cjJ) 

We have seen that the wavefunction for two spin-O particles in the Hamiltonian 
formalism has four components and that the corresponding wave equation can be 
simplified to give four equations for these four components which can then be 
combined to yield a single equation for one component. The resulting equation 
holds for two particles of unequal mass and an arbitrary potential which is a function 
of the magnitude of the relative position of the two particles. The solutions found 
for a square-well interaction are the product of spherical harmonics and spherical 
Bessel functions. An approximate solution has also been found for a Coloumb 
interaction and the corresponding energy levels have been determined. In the 
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expression for these energy levels, the first two terms are identical with the corre
sponding terms for nonrelativistic particles, while the third term gives a fine-structure 
energy which is of the order of e8 • This result thus shows why the energy level 
formula for the nonrelativistic hydrogen atom can be used for a system of two pions 
to obtain a result which agrees with experiment. In fact, when dealing with any 
two-body system, a two-body equation should be used rather than a single-body 
one like the Klein-Gordon or Dirac equation as has often been used. 

In subsequent papers, the present two-body equation will be applied to two-body 
systems with spins of ! and 1. 

Acknowledgment 

The author is grateful to Dr D. Shay of the Physics Department, University of 
Oklahoma, for many enlightening discussions. 

References 

Schiff, L. I. (1968). 'Quantum Mechanics', pp. 90 and 470 (McGraw-Hill: New York). 
Tam, K. C. (1973). Ausl. J. Phys. 26, 567. 

Manuscript received 10 April 1975 




