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Abstract 

The evolution in time of an initially closely bunched group of ions in a neutral gas is examined by 
solving a model kinetic equation, and limits to the validity of the linear law of diffusion (Pick's law) 
are established. The implications of nonlinear diffusion processes for determination of ion transport 
coefficients in drift tube experiments are discussed. 

1. Introduction 

Determination of transport coefficients from ion and electron swarm experiments 
in neutral gases has in the past relied upon the linear law of diffusion (Fick's law) 
to describe the charged particles in transit through the neutral gas. The particle flux 
in this approximation is thus written as 

J = nKE-D.'Vn, 

where n is the ion density, K the mobility coefficient, E the electric field and D the 
diffusion tensor with components DII and D 1. parallel and perpendicular to the field 
respectively. However, density gradients in experiments may be large and a linear 
theory of diffusion based upon the assumption of weak variations in n is clearly 
inadequate. 

Ideally, one would like to solve Boltzmann's equation in which E appeared as an 
arbitrary parameter and spatial variations in density were not assumed small from 
the outset. As yet, only special cases have been dealt with, where the mathematical 
problems are not so severe: Skullerud' (1974) examines the case of electrons under 
the assumption that the distribution of velocities is very nearly spherically symmetric 
(the well-known 'two-term' approximation; see e.g. Robson and Kumar 1971) and 
finds significant corrections to the earlier predictions of Parker and Lowke (1969) 
for the so-called time-of-flight experiment; Whealton (1975) shows that shock-wave 
phenomena arise from nonlinear diffusion of heavy ions in a gas. It appears that a 
solution to the general problem is a long way off, as even the weak gradient situation 
is very difficult to handle for strong enough electric fields (Kumar and Robson 1973). 

An alternative to the rigorous analytic approach is to simulate the electron or ion 
swarm on a computer (McIntosh 1974). This has proved particularly useful in 
demonstrating the pear-shaped asymmetry· of the swarm which must arise from 
nonlinear diffusive effects (Kumar and Robson 1973). Yet another alternative 
is to replace the collision term in the Boltzmann equation by an approximate 
expression which accounts for collisions in a phenomenological way; thus a simple 
relaxation-time model, often used in the kinetic theory of gases (Bhatnagar et al. 
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1954), is proposed to describe the collisions between ions and neutral molecules. 
What is lost in precision (it must be acknowledged that the model is very approximate) 
is balanced by the fact that an analytic solution is obtained and the physical under
standing of the evolution of the ion swarm in time is consequently enhanced. This 
approach therefore provides a useful picture to complement the purely numerical 
work seemingly inevitable in any rigorous theory. 

The problem specifically dealt with here is the idealized time-of-flight experiment, 
in which the ions are injected into the gas as a sharp pulse. We first derive exact 
expressions (valid at all times) for the position of the centroid and the mean square 
width of the pulse (equations (13a) and (13b) respectively). In Section 3, we examine 
the asymptotic behaviour of the swarm in time and as a result find small, but never
theless significant, corrections to the predictions of the classical linear theory. 

2. Theory 

Solution of Model Kinetic Equation 

Assume an unbounded neutral gas into which a tenuous pulse of no ions of mass 
m and charge e are injected at the origin of coordinates at time t = O. The ion velocity 
distribution function fer, e, t) is assumed to obey a relaxation-time model kinetic 
equation of the form 

of/ot +e. Vf +a.of/oe = -v(j-nw(ex, c») , (1) 

where v is the ion-neutral collision frequency,* 

nCr, t) = I de fer, e, t) 

is the ion number density, 

w(ex, c) = (ex2/2n)3/2 exp( - -!-ex2C2) 

is the Maxwellian velocity distribution function appropriate to the gas temperature 
T, and 

ex2 = m/KT and a = eE/m, 

K being the Boltzmann constant. 
The solution of equation (1) via Fourier transformation in real space and in 

velocity space, together with Laplace transformation in time, yields for the trans
formed distribution function: 

/(k,s,OJ) = Io'" dt Ide Idr!(r,e,t)exP{-i(k.r+s.e-OJt)} 

-exp{islI(-!-SII all +S.1 .a.1 -Q)/k} 

I'" 1 [{ ( O'2+ S2) } x do- k n(k, OJ) exp - 2ex2 .1 + JoCk, 0', S.1) 

( _ iO'(tO'ali +s.1.a.1 -Q»)] 
xexp k ' (2) 

* Ion-ion interactions are neglected in comparison with ion-neutral interactions. Strictly speaking, 
v is not the true collision frequency but some other closely related parameter; however, the distinction 
can be ignored for our purposes. 
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where 
Sll = (s. k)k/k2 , 

all = (a. k)k/k2 , 

Sol = s-slI' 

aol = a-all' 

Q w+iv, 
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(3) 

and the transformed ion density and initial distribution function are given respectively 
by 

n(k,w) = IdtIdrn(r,t)exP{-i(k.r-wt)}=J(k,s=O,W) (4) 

and 

loCk,s) = I dr I dcf(r, c, t=O)exp{ ~i(k.r +s.c)}. (5) 

The ions are initially supposed to have a gaussian distribution of velocities, 

fer, c, 1=0) = no <5(r) w(a', c) , 

where a,2 = m/KT' and T' is the initial temperature of the ions. The transform (5) 
of the initial distribution function is therefore also gaussian: 

foCk,s) = noexp{ -s2/2a,2}. (6) 

Equations (2) and (4) together yield the expression for the Fourier-Laplace 
transform of the ion density: 

n(k,w) = no 13' Z(C){iJ2k(1 +ivf3Zeo/J2k)}-1, (7) 

where Z is the plasma dispersion function, which is well known in the theory of 
wave propagation in plasmas (Fried and Conte 1961); it is defined by 

zeo = n- t I:oo dx exp{ _X2/(X_0} , Imeo > 0, (8) 

and by the analytic continuation of this function for Imeo < O. The other new 
symbols appearing in equation (7) are defined by 

p-2 = a- 2 +k-2a.k and ( = Qf3/J2k, (9) 

13' and (' being similarly defined in terms of a'. 
The first step in obtaining nCr, t) from n(k, w) is to carry out the inversion of the 

Laplace transform. This leaves us with the Fourier transform ii(k, t) of the ion 
density. Thus from equation (7) we have 

ii(k, t) = I dr nCr, t) exp( - ik. r) 

= (2n)-1 Ie dw n(k, w) exp( -iwt), (10) 

where C is a contour in the complex w-plane lying above the singularities of the 
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integrand. These singularities are poles arising from the vanishing of the denominator 
of equation (7); hence we have the 'dispersion relation' 

1 +ivfJZ(0/.J2k = O. (11) 

Once the zeros of this expression, W = Wk, are known, the contour integral (10) 
can be determined by the usual method of residues. We do this specifically in the 
limit of small k (weak density gradient approximation) in the following subsection. 

Centroid and Mean Square Width of Pulse 

The quantities determined by experiment are the position of the centroid and the 
mean square width of the pulse, denoted respectively here as 

<r) = no 1 I dr n(r, t)r 

and 

<RR) = no 1 I dr n(r, t)RR = <rr)-<r)<r) , 

where R = r-<r) is the position of an ion relative to the centroid. Since these 
'moments' of the density are simply related to ft(k, t) by 

( 8ft) no<r) = 1 8k k=O and ( 82ft ) 
no<rr) = - 8k8k k=O' (12) 

we can find the quantities of experimental interest directly by differentiation of 
equation (10). There is no need to solve the dispersion relation (11) if this is all the 
information required. 

After some lengthy but straightforward calculation, we thus obtain 

<r) = av- 1t -av- 2 + ae- vt v- 2 , (13a) 

<r r) = 21{ (a2v) -1 t + (a'v) -2 - 2(av) - 2 + e -vt[{ (av) -z - (a'v) -Z}vt+ 2(av) -z - (a 'v) - zJ} 

+aa v-4{V ZtZ _6+2e- vt(vZtZ + 3vt+ 3)}. (13b) 

In the absence of neutral molecules, the ions would suffer a uniform acceleration a 
(provided i on-ion interactions could be ignored); even when neutrals are present, 
the pulse will exhibit a similar behaviour immediately after it is released, before many 
collisions have occurred. Thus, for times t ~ v- 1 equation (13a) gives 

<r) ~ -tatz . 

After only a few collision periods, that is, t ~ V -1, the exponential terms can be 
neglected, and the resulting expressions show that the experimentally determined 
quantities behave linearly with time in this limit: 

<r) = av- 1t -av- 2 , (14a) 

<RR) = 2({1(aZv)-1 +aav- 3 }t +1{(a'v)-Z-2(av)-Z} -faav-4). (l4b) 
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The coefficients of t in equations (14a) and (14b) are just the drift velocity Wand 
twice the diffusion tensor D respectively (see equations (26) below). The constant 
terms become negligible after many collisions (for times t ~ v- 1) and thus the 
expressions for the centroid position and the mean square width as predicted by the 
diffusion equation (see equations (19) below) are regained in this limit. The conditions 
prevailing in drift tube experiments are such that the ions do in fact make many 
collisions with neutrals in transit between the emitter and the collector. On the basis 
of this model equation calculation, it would thus seem plausible to take transport 
coefficients as being given directly by the centroid position and the mean square 
width ofthe pulse measured at the collector. The traditional theoretical interpretation 
of the time-of-flight experiment is thus supported. 

It must be emphasized that this model does not include the ion-neutral mass 
ratio m/M. For very light ions (or electrons), this parameter is most important 
and the indications are (Skullerud 1974) that it is the so-called collision frequency 
for energy transfer, (2m/M)v, which ought to appear in place of v. In this case, the 
constant terms in equations (14) may be significant (McIntosh 1974; Skullerud 1974). 
However, when ion and neutral molecule masses are not very much different, these 
expressions should be at least qualitatively correct. 

3. Long-time Behaviour of Ion Swarm 

Review of Macroscopic DiffUSion Theory 

Deviations from Fick's linear law of diffusion have been accounted for in a 
phenomenological way by Whealton (1974) and others by assuming a particle flux 
of the form 

J= nW-D.'1n +Q:'1'1n + ... , (15) 

where Q is a third rank tensor. This together with the equation of continuity, 

an/at +'1.J = 0, 

yields the following differential equation for ion number density 

an/at + W.'1n -D:'1'1n +Q: '1'1'1n + ... = o. (16) 

We refer to (16) as the diffusion equation, although this terminology is usually 
reserved for the second-order equation only, in which Q is neglected. 

The same technique as that used in solving equation (1) is again used for equation 
(16), together with the initial condition nCr, t=O) = no b(r). Thus, the Fourier-Laplace 
transform of the ion density is found to be 

ii(k,OJ) = ino/(OJ-OJ~O», 
where 

OJ~O) = W. k - i D : kk - Q: kkk - ... , (17) 

and the dispersion relation is simply OJ = OJ~O). Inversion of the Laplace transform 
then gives 

fi(k, t) = no exp( - iOJ~O) t) , (18) 

from which the classical expressions for the centroid position and the mean square 
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width of the pulse follow: 

(r) = Wt, (RR) = 20t, (19) 

where R = r- Wt. All these expressions are without any constant terms (cf. equations 
13). It is also a result of this macroscopic approach that the tensor Q plays no role 
in determining the quantities (19) of experimental interest. 

The expression for the density is found from equation (18) to be 

n(r, t) = no(2n)-3 f dk exp{i(k.r -WkO) t)}, (20) 

and this was the starting point in the theory of Kumar and Robson (1973). Setting 
Q = 0 in the expression (17) for WkO) (i.e. making the liIlear assumption) leads to 
the well-known result 

n(r, t) = noP(R, t) = no f dk exp(ik.R -tkk :RR) 

= no(2n)-3/21(RR)I-1 exp{ -RR:(2(RR»)-1}. (21) 

This describes a spheroidal pulse symmetrical about the centroid position, which is 
drifting with mean velocity W = KE and spreading in time. (Pulse widths are 
proportional to (D II t)t and (D 1. t)t in directions parallel and perpendicular to E 
respectively.) 

Kumar and Robson (1973) pointed out that the inclusion of Q destroys the 
symmetry about the centroid, thus resulting in a 'pear-shaped' pulse. Whealton (1974)
has solved equation (16) without neglecting Q, and has verified this asymmetry. He 
has also found that physically meaningful results are obtainable only for sufficiently 
small values of Q2/D II t, thus illustrating directly that equation (15) and the equivalent 
expansion (17) are correct only asymptotically at long times when gradients in the 
density are weak. 

Model Kinetic Equation Calculations 

It is assumed for mathematical simplicity that ions when released have the same 
temperature as the gas. (Note that the macroscopic theory of the preceding subsection 
does not distinguish between various possible initial energy distributions for the 
ions.) Thus we have a' = a, p' = p and r = , in equation (10). 

Suppose that W = Wk is anyone of the zeros of the dispersion relation (11). 
The residue b(wk> t) of the integrand of equation (10) corresponding to the pole at 
Wk can be shown to be given by 

2nib(Wk,t) = -no i{(k2a- 2 +ia.k)/vwk}exp(-iwkt), (22) 

and fi(k, t) will be a sum of such terms. The dominant residue at long times will 
correspond to the smallest pole. Explicitly, we seek the major contribution to 
fi(k, t) at times t > v-t, that is, after many collisions have occurred. Hence we solve 
the dispersion relation (11) with the requirement 

I wi < v. (23) 
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Now it can be shown that equation (11) admits such solutions only for small k. 
Since small wave numbers k correspond to weak density gradients Vn, ihis observation 
confirms the intuitive notion that spatial variations in density must tend to become 
smoothed out after a sufficiently large number of collisions, regardless of the initial 
sharpness of the pulse. 

For small k, the argument of the plasma dispersion function is large, that is, 

I" = I Q{3/.j2k I > 1, (24) 

and the asymptotic expansion of Z m is therefore appropriate (Fried and Conte 
1961). Thus the dispersion relation (11) becomes 

l-ivQ- I{1+k2/Q2{32+3(k2/Q2{32)2+15(k2/Q2{32)3+ ... } = O. (25) 

The small-co solution is obtained by successive iterations (starting with co = 0) and 
this yields once again the 'muItipole expansion' (17), in which the coefficients appear 
explicitly as 

w= av-I, 0 = 1(oc2v)-I+ aav-3, Q = 2{al(oc2v3)-1+2aaav- 5 }. (26) 

The condition for the validity of equation (17) (and hence the validity of the 
diffusion equation (16) is the relation (24), which for small co can be written approx
imatelyas 

I 2k2/Q2{32 I = 2v- 2 Ik2/oc2+ia.kl < 1. 

This can always be written in the form k), < 1 where, for example, for very weak fields 

A. = .j2/voc = (2KT/m)tv - I 

is the mean free path of an ion in the gas under thermal equilibrium conditions, and 
for very strong fields (or zero gas temperature) , 

A. = 2av- 2 

is twice the distance the ion swarm drifts as., a whole during one collision period. 
Thus the ion density must vary only slowJy over distances comparable with A. and, 
in particular, the width of the pulse must significantly exceed A. if the diffusion equation 
(16) is to hold. Obviously, equation (16) must not be used to describe the initial, 
sharp pulse (times t < V-I); this is the source of error in the expression (18) for 
fi(k, t) and is why Whealton (1974) found physically meaningless results at short 
times. To sum up, the classical diffusion equation (or its modified form 16) can be 
used to describe the asymptotic behaviour of the pulse, but the initial condition 
nCr, t) = no c5(r) must not be employed in its solution. 

Having solved the dispersion relation; we can now write down the expression 
for the Fourier-transformed ion density. From equation (22), 

fi(k, t) = 2ni L b(COk' t) 
Wk 

~ no[ {v- I a.k -ik2(oc2v)-I}/co~O)]exp( -ico~O) t), vt> 1. (27) 

This differs from the classical result (18) through the factor in square brackets. 
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Significantly, however, this factor approaches unity in the limit k -+ 0, so that for 
very weak gradients there is no distinction between the two results. (Note that the 
density function nCr, t), whose Fourier transform is given by (27), also satisfies the 
diffusion equation.) 

To second order in k, equation (27) can be written as 

li(k,t) = noexp(-ik.(r) -tkk:(RR» , (28) 

where the expressions for the centroid position and mean square width are given by 
equations (14a) and (14b) respectively. Errors of order k 3 will not affect these results. 
Thus the ion density is approximately of the form (21) again, that is, the swarm has a 
spheroidal shape symmetrical about the centroid position (r). Higher order correc
tions will lead to an asymmetric pulse, but the experimentally measured quantities 
(r) and (RR) are independent of whether the pulse is pear-shaped or not. Moreover, 
for very long times (vt ~ I), equations (14) show that (r) and (RR) tend to their 
classical values (19). Thus, as long as the drift tube in a time-of-flight experiment 
is long enough, the classical diffusion equation can continue to be used to predict 
transport coefficients accurately. 

4. Concluding Remarks 

The theory given here is for the time-of-flight experiment with no boundary effects. 
It is envisaged that other experiments, such as the Townsend-Huxley arrangement 
for transverse diffusion, in which boundary effects are so important, could also be 
usefully analysed through the model kinetic equation approach. In that case, the 
Fourier transformation methods used here would not be appropriate and some other 
method of solution would have to be found. 

We have seen that a macroscopic description of the ion swarm is possible only 
after times that are long compared with the mean free time V-i. (This is sometimes 
called the hydrodynamic regime.) It is inconsistent to use the diffusion equation in 
conjunction with the initial condition for ion density, even though this does in fact 
give the correct expression for density at very long times (such that vt ~ 1). Strictly 
speaking, we must have some additional information about the swarm at a later 
time to > v- i which can be used when solving the diffusion equation. This would 
involve difference measurements in the time-of-flight experiment. These observations 
are in broad agreement with the results of Skullerud's (1974) study of electron swarms 
from the Boltzmann equation. 

The simple Krook model (I) used here has several deficiencies: persistence-of
velocity effects, which are of importance for heavy ions, are lost, as are effects 
due to the difference between energy and momentum relaxation times, which are 
of importance for light ions or electrons. By taking a speed-independent collision 
frequency v we have further restricted the quantitative applicability of the results, 
but it appears that consideration of a more elaborate model would lead to prohibitive 
mathematical difficulties. Models which take these effects into account are described 
by Morse (1964) and Holway (1966). 

Note added in proof 

The BGK model predicts a field-independent lateral diffusion coefficient D.l 
(equations 26). The origin of this rather anomalous result has been pointed out by 
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H. R. Skullerud (personal communication): In the derivation of equation (1) 
(Bhatnagar et al. 1954), it is assumed that the ions are scattered after a collision with a 
Maxwellian distribution of velocities at the gas temperature T. Energy gained in 
the field direction is therefore never transferred to perpendicular directions and hence 
the lateral random energy (and therefore D 1-) does not depend upon the field strength. 
This model should perhaps best fit ions in the parent gas where resonant charge 
transfer dominates the interaction (McDaniel and Mason 1973). However, the range 
of validity of the BGK equation is by no means well established and it must therefore 
be stressed that the results obtained here should be viewed only as providing a 
qualitative description of the true physical situation (whether or not charge transfer 
processes are important). 
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