
Aust. J. Phys., 1975,28,543-55 

The Use of 
X-ray Interferometry to 
Measure X-ray Refractive Indices 

D. C. Creagh 

Physics Department, Royal Military College, Duntroon, A.C.T. 2600. 

Abstract 

A Laue-case X-ray interferometer has been constructed to enable the measurement of X-ray refractive 
indices for X-ray wavelengths ranging from Ag Krx.1 to Fe Krx.1. Refractive indices have been measured 
for some alkali and alkaline-earth halides. From these the real part of the X-ray forward scattering 
amplitude I!J.f~ has been calculated for each atomic species. Comments are made on the validity of 
some of the assumptions made in quantum mechanical estimations of I!J.f~. 

Introduction 

Since the invention of Laue-case interferometers by Bonse and Hart (1965) a 
number of attempts have been made to determine the real part of the forward 
scattering amplitude I:!..f~ from measurements of the X-ray refractive index. The 
earliest experiment was that of Bonse and Hellkotter (1969) who measured the 
refractive indices of 1ucite, beryllium, lithium fluoride and sodium fluoride for 
Cu Ka1 radiation. Their estimate of I:!.f~ for fluorine was more than twice the value 
calculated by Cromer (1965). At the same time Creagh and Hart (1970) measured 
the refractive index of lithium fluoride at wavelengths ranging from Ag KIlt to 
Cu Ka1. The values of I:!.f~ calculated from these measurements were in reasonably 
good agreement with Honl's (1933a, 1933b) theory of anomalous dispersion. Bonse 
and Matterlik (1972) made measurements for nickel at the wavelength of Cu Ka1' 
that is, on the long wavelength side of the K absorption edge. Their value for I:!.f~ 
was not in good agreement with Honl's theory, and differed signincantly from earlier 
measurements. Hart (1974) has since improved the accuracy -of interferometer 
methods by using a variation of his (1968) Angstrom ruler technique. He measured 
I:!.f~ for silicon at the wavelengths of Mo Ka1 and Ag Ka1. His values lie between 
those calculated by Wagenfeld et al. (1973) and those calculated by Cromer and 
Liberman (1970). It should be noted that all these authors found that (I:!.f~~o - (l:!.f~)Ai 
is equal to 0·03. The present paper describes recent experiments using a Laue-case 
interferometer and discusses some of the problems encountered in the calculation 
of I:!.f~. 

Experimental Techniques 

Principles underlying the operation of an X-ray interferometer 

Because a Laue-case interferometer consists of three spaced wafers machined 
from a large boule of single crystal silicon, it is an advantage to discuss the processes 
which occur when an X-ray beam passes through one of the crystal wafers. According 
to the dynamical theory of X-ray diffraction the propagation of electromagnetic 
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waves in a region, in which the electron density is a periodic function of position 
within the crystal, can be described by the simultaneous solution of Maxwell's 
equations and the Laue equation 

Ko+O = Kg, (1) 

where Ko and Kg are the wavevectors for the incident and diffracted waves, 0 is the 
reciprocal lattice vector for the effective Bragg reflection, and we have 

IKol = IKgl and 

Brillouin 

__ H 

o , H 

101-1 = d(hkl). 

Fig. 1. Schematic representation of the 
dispersion surfaces (lower bold curve, 
branch 1; upper bold curve, branch 2) 
in the region of the Brillouin zone 
boundary (dashed line). Ko and Kg are 
the wavevectors of waves associated 
with the tiepoint T. 

Within the Borrmann triangle, i.e. the volume enclosed by the direct and diffracted 
beams, there exists a standing wavefield whose properties are determined by the 
periodicity of the crystal lattice. The locus of all the wavevectors which are simul­
taneous solutions of Maxwell's equations and the Bragg equation is a family of 
surfaces called 'dispersion surfaces' (see Fig. 1). In the two-beam X-ray case these 
surfaces can be shown (see e.g. Batterman and Cole 1964) to form a pair of hyperbolic 
surfaces in the region of the Brillouin zone boundary (that plane which is normal 
to the midpoint of the reciprocal lattice vector 0). These surfaces have as asymptotes 
spheres centred at (000) and (hkl) in reciprocal space and having radii of k(1- r Fo), 
where k is the vacuum wavevector, and r Fo describes the effect of the average 
electron distribution on the wave velocity. 

These hyperbolic surfaces can be described by the quantities eo and eg which are 
respectively 

eo = (KooKo}!-k(1-!PFo) 

The product 

and eg = (KgoKg)t-k(1-1rFo). 

eOeg = tk2p2r2FgF_g 

is the equation of the hyperbolae, P is a factor which describes the polarization of 
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the incident beam, and Fg and F _g are the geometrical structure factors for the 
reflections 9 and -g respectively. A point on one of the dispersion surface branches 
is referred to as a 'tiepoint'. These tiepoints describe the directional and absorptive 
properties of the waves and, as well, characterize the field amplitudes 

Dg/Do = -2~o/kprF_g = -kprFg/2~g, (2) 

where Dg and Do are the complex field amplitudes associated with the X-ray polar­
ization described by P. For points on the dispersion surface at the Brillouin zone 
boundary the ratio Dg/Do tends toward ± 1. The tiepoints that are active in a 
particular reflection depend on the orientation of the crystal surface with respect 
to the incident radiation, the orientation of the diffracting planes with respect to 
the crystal surface, and the divergence of the incident beam. X-ray interferometers 
are usually designed to operate in the symmetric Laue mode, i.e. the tiepoints excited 
by the incident radiation are symmetric about the Brillouin zone boundary. 

For thick crystals, only those wavefields associated with the upper hyperbola 
(branch 2) persist because these wavefields have nodes at the atomic sites and therefore 
experience little photoelectric absorption. Wavefields associated with the lower 
hyperbola (branch 1) have their nodes between the atoms and their maxima at the 
atom sites. They therefore experience much more photoelectric absorption than 
the upper branch wavefields, and their field amplitude tends to zero with increasing 
crystal thickness. In this case, from equation (2) we have 

Dgl/Dol = ~l ~ 0 and D92/Do2 = ~2 < O. 

The total wavefield has intensity 

ID212 = IDg2+Do212 

= D~211 +~~ +2~2cos(2nr.g) I. 

The survival of the wavefields associated with branch 2 of the dispersion surface 
was first observed by Borrmann (1941, 1950). 

For thick crystals the beams which emerge from the crystal form a standing 
wavefield outside of the crystal surface, the antinodes of which lie between the atom 
planes. The crystal lattice has acted as a phase coherent beam splitter which has bent 
the rays through twice the Bragg angle. 

In a thin crystal all the wavefields associated with branches 1 and 2 of the 
dispersion surface are present, and we have from equation (2) 

Dgl/Dol = ~l > 0 and Dg2/Do2 = ~2 < o. 

In the symmetric Laue case we have 

~1 = ~2' 

All the wavefields generated are phase coherent and the total field is given by 

I Dll = I Dgl +DOl +Dgz +Dozll 

oc 1 + sin(2n 9 • r) sin(2n,r 1't) , 
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Fig. 2. Schematic representation of the wavefields present in an ideal interferometer. The wafers 
are labelled 1 to 3 and their Bragg planes are represented by vertical lines. 

In case (a) the wavefields are present in the exit beams because the maxima of the standing 
wave patterns in front of wafer 3 lie in between the Bragg planes, and little photoelectric absorption 
occurs. 

In case (b) a phase shifting object PS has been placed in one of the ray paths of the interferometer 
and has caused the standing wave pattern to coincide with the Bragg planes of wafer 3. The wavefields 
excited within the crystal experience severe photoelectric absorption and are rapidly attenuated. 
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where T is the crystal thickness. This dependence of wavefield intensity on crystal 
thickness was predicted by Ewald (1958). The beams are still phase coherent but 
the intensity of the exit beam is a function of crystal thickness. If T = pLJ the wavefield 
is a maximum and the crystal behaves like an ideal mirror. 1fT = (p+l)LJ the crystal 
again behaves like an ideal mirror. However, if T = (p ± t)LJ the beam is split into 
two parts, one in the incident beam direction, and the other in the diffracted beam 
direction. These beams have equal amplitudes and are phase coherent. Hence, 
careful choice of wafer thickness allows the incident beam to be divided into 
two phase coherent beams of equal amplitude (see Fig. 2). These beams can be 
recombined by subsequent interactions with other ideal beam splitters to form an 
interferometer. 

In Laue-case interferometers the three wafers involved are produced by cutting 
into a single crystal boule. Sufficient material is left at the base of the wafers to 
ensure that the atomic planes of the wafers remain aligned with one another after 
machining. When an X-ray beam satisfies the Bragg condition in the first wafer, 
and if the wafer is of the correct thickness to behave like an ideal beam splitter, two 
beams leave the exit surface of the wafer and travel on to interact with the second 
wafer. Since the atomic planes in this wafer are aligned with the first wafer, the 
Bragg condition is satisfied and each incident beam is split into two beams, one 
travelling in the incident beam direction and the other in the diffracted beam direction. 
It is usual to make the thickness of the second wafer equal to that of the first. From 
the exit surface of this wafer, four phase coherent beams emerge. It is convenient to 
construct interferometers such that the distance between the first and second wafers 
is equal to the distance between the second and third wafers. In this case the two 
beams which converge after leaving the second wafer interact at the surface of the 
third wafer. Because they have a finite width they overlap in front of the third wafer 
and, being phase coherent, they interact with one another to form a standing wave 
pattern in front of the third wafer. The exact position of this standing wave pattern 
with respect to the atomic planes of the third wafer depends on the relative phases 
of the interacting waves. In the ideal interferometer just described, the maxima 
occur between the atomic planes and little absorption of the resultant waves results, 
so that the contrast is a maximum. However, if a difference in phases occurs, the 
maxima lie closer to the atomic planes and the waves encounter increased photo­
electric absorption. The presence of phase shifting elements in the beam paths 
will therefore change the contrast in the outgoing beams. Furthermore, the third 
wafer transforms the atomic scale fringe pattern into a macroscopic pattern which 
can be observed using either film or counter techniques. The standing wavefield in 
front of the third wafer couples with the crystal lattice to form a moire pattern. 
Inhomogeneous shifts in the beam paths will cause the standing wavefield to shift 
and the moire pattern will change. It is this property of the interferometer which 
is used when X-ray refractive indices are measured. 

Specimen mounting and preparation 

The technique used in the measurement of refractive indices was the same as 
that described by Creagh and Hart (1970), and is shown schematically in Fig. 3. 
A thin plastic wedge was introduced into one beam path to produce a system of 
fringes in one of the exit beams. This fringe pattern is formed because the wedge 
rotates the standing wavefield in front of the final wafer, and the interaction of this 
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wavefield with the lattice causes a twist moire pattern to be formed. The specimen 
crystal, which was a parallelopiped cleaved from a single crystal boule, was introduced 
into the other beam of the interferometer. Specimens of LiF and NaF have cleavage 
planes of the {100} type, and were mounted such that the (001) planes lay parallel 
to the X-ray beam. Specimens of CaF2 were cleaved along {ill} planes and were 
mounted such that these planes lay perpendicular to the X-ray beam. The insertion 
of the specimen cause~a shift in the moire fringe position because the refractive 
index of the specimen was different from that of air, and a phase advance of 21t(I+s) 
ensued. Here I is an integer and s is a fraction. The fringe pattern was recorded on 
Ilford L4 nuclear emulsion plates. These were developed using standard procedures 
(Meieran 1970) and the fringe positions were measured with a travelling microscope. 

[010] 

+ _[001] 

~[1001 

Fig. 3. Schematic representation of the use of an X-ray interferometer· for 
the measurement of X-ray refractive indices. The symbols used are: I, 
incident X-ray beam; W, polyethylene wedge; S, specimen. Each wafer 
is O· 5 mm thick and the distance between wafers is 10·5 mm, while the 
useful surface area of the interferometer is about 10 x 10 mm2• 

The equipment on which the interferometer was mounted was placed in an 
enclosure to reduce the possibility of vibration of the wafers due to air currents. 
It was also necessary to mount the interferometer carefully on small balls of soft 
wax to prevent the transmission of externally generated vibrations to the inter­
ferometer. No special precautions were taken to control the temperature of the 
enclosure. The room which contains the X-ray equipment is air conditioned, and 
the temperature remained at 20° C throughout the duration of the experiments 
described in this paper. Sometimes the exposure times for the nuclear emulsion 
plates were long, approaching 48 h . for experiments involving Fe Ka.1 radiation, 
although in most cases only 12 h exposure resulted in the production of acceptable 
contrast on the photographic plate. 

The interferometer exhibited strong absorption at the longest wavelength used 
(Fe Ka.1) but only weak absorption at the shortest wavelength (Ag KP). In the 
latter case some pendellosung fringes occurred because of the interaction of the 
branch 1 and branch 2 wavefields in the interferometer wafers. However, these 
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fringes were of completely different character from the moire fringes and their presence 
did not impair the accuracy to which the fractional fringe shift e could be measured. 
Measurements of the fractional fringe shift were made for the characteristic radiations 
of silver, molybdenum, copper and iron. These were derived from Philips fine-focus 
X-ray tubes which were driven by a mains-stabilized Philips PWl120 generator. 

All the specimens were tested for their crystalline perfection by diffracted beam 
X-ray topography using a camera described by Creagh (1972). Typically, dislocation 
densities were less than 104 cm - 2. The surfaces were free of cleavage steps. A Baker 
microscope fitted with a Cooke A.E.I. image splitting eyepiece was used to measure 
the specimen thickness. The error in the measurement of length was reduced to 
o . 001 mm using a statistical sampling technique. 

Calculation of X-ray refractive indices 

The change in fringe order p obtained when a specimen of thickness d is placed 
in one beam of the interferometer is given by 

p = I+e = (n-n~)dj)." 

where n is the refractive index of the sample, n~ is the refractive index of air 
(1-1'75 x 10-9 ).,2) and)" is the X-ray wavelength. Experimentally,)" is known to 
better than 1 part in 105 , d can be measured to 1 part in 500, and e can be estimated 
to 0·02 of a fringe spacing. Using specimens of different thicknesses, one can measure 
I using Benoit's (1898) method of excess fractions. Hence the value of the specimen's 
refractive index can be determined to an accuracy of O' 2 %. 

Theory 

When electromagnetic radiation passes through a region in which a distribution 
of charges exists it interacts with the charges and forces them to vibrate. This inter­
action causes a change in wave velocity relative to that in a region which does not 
contain a distribution of charges, and the medium is said to possess a refractive 
index n. This can be written as 

n = 1 -().,2j2n)rePf, (3) 

where)., is the X-ray wavelength, re = e2 j4neomc2 is the classical radius of the 
electron, P is the density of the charges and f = f' + jf" is the complex scattering 
power of the charge distribution. For a crystal the charge density can be written 
as the Fourier sum 

p(V) = V- 1 L Fhk1 exp(-2njg.r), 
h,k,1 

where Fhkl is the structure factor, 9 = hat + ka! + la~ is the reciprocal lattice vector 
and V is the volume of the unit cell. 

For the experiment discussed in this paper no active Bragg reflections occur, and 
measurements were made in the direction of the incident beam, which corresponded 
to values for (hkl) of (000). The quantity Fooo/V represents the quantity pfin equation 
(3). Like J, it is a complex number which is usually written as 

Fooo/V = L Nifo +l1fo +jl1f;)a 
a 
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for a system which contains Na atoms of type a per unit volume. The value of (fO)a 
corresponds closely to the atomic number of species a. The term (I:!..JO)a is the real 
part of the dispersion correction and (I:!..Jo')a is the imaginary part of the dispersion 
correction for atoms of type a. The latter term is always positive and corresponds 
to the scattering by the induced dipole which lags in phase by !n relative to the 
primary wave. Since dipoles lying in any sheet parallel to the primary wavefront 
produce a resultant wave whose phase is retarded !n behind the primary wave, the 
scattered wave corresponding to (I:!..Jo')a lags by n. Consequently (I:!..Jo')a adds a 
scattered wave component n out of phase with the primary wave, and the effect is 
therefore to diminish the amplitude of the primary wave, i.e. absorption occurs. 
However, the imaginary part does not affect the phase of the resultant wave. Measure­
ments of refractive index based on the observation of phase shifts are related solely 
to the real part of the scattering factor. 

Differences between methods oj calculation oj I:!..f' 

All the calculations of the dispersion correction I:!..f' have as their aim an estimation 
of the comparison between the scattering power of an electron bound into an orbital 
in a free atom and that of a completely free electron. The notions of classical electro­
magnetic theory were initially employed to calculate these scattering factors (see 
James 1948). The equivalence of the classical and quantum theory formulae was 
shown by James (1948) who used nonrelativistic perturbation theory, and by Cromer 
and Liberman (1970) who used Dirac-Slater wavefunctions in the development of 
th~ir theory. 

Classical Approach 

Electromagnetic radiation traversing a region containing charges sets up an 
instantaneous polarization in the medium. Each electron behaves like an oscillating 
dipole and is therefore a source of radiation having the same frequency as the 
incident wave. Classical electromagnetic theory gives for the amplitude of a wave 
radiated in the equatorial plane by the dipole 

( e2 ) ( ro2 E ) 
A = 8nBo mc2 ro~ - ro2 ~ jl5ro ' 

where roo is the natural frequency of the electron orbit, ro is the frequency of the 
incident wave and 15 is the damping factor. The scattering power Jis defined as the 
ratio of the amplitude scattered by the dipole to that scattered by a free electron. 
For an unbound electron, we have roo = 0 and 15 = 0, so that it follows that 

J = ro2/( ro2 - ro~ - jl5ro) . 

If measurements are not being made in the region of the absorption edge, the 
effect of the damping factor is not marked, and the scattering power of a dipole for 
which the resonant frequency is ro. can be approximated by 

J=f'+jr, 
where 

f' = ro2/( ro2 - ro;) and r = I5ro3/{(ro2 _ro;)2 +152ro2}. 
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If a distribution of natural frequencies exists in the atom (taken for convenience to 
be a single-electron atom) and the probability of finding an electron with a natural 
frequency Ws is g (s), then the real part of the scattering factor becomes 

f' = L g(S)W2J(W 2_W;) , 
s 

which can be written as 

f' = Lg(s)- Lg(s)w;J(w;-w2). 
s s 

Since we are considering the influence of the incident radiation on a one-electron 
atom, the first summation must be 

L g(s) = 1, 
s 

which is the classical expression corresponding to the Thomas-Reiche-Kuhn sum 
rule in quantum mechanics. The second term is the dispersion correction 11/0 caused 
by the interaction between the single electron and the incident electromagnetic wave. 

Transitions between virtual oscillator (bound) states can occur, but it can be 
shown that transitions to higher-level unoccupied states have a very small probability, 
and the only transitions which are significant correspond to transitions to positive 
(unbound) energy states. These transitions form a continuous set of values ranging 
from the binding energy of the electron upwards, so that the second summation 
becomes an integration. In the experiments performed on light atoms it is the inter­
action of the K-shell electrons that is important. If the lower frequency limit (given 
by the binding energy EK of the K electrons) is W K , and if the number of virtual 
oscillators in the frequency range from W to W + dw is given by (dg jdw) dw, the total 
oscillator strength for the K electrons can be calculated to be 

gK = foo (dgJdw)K dw. 
())K 

For a many-electron atom the effect of electrons of type k, for which the appropriate 
density of oscillator states is (dgjdwh and the binding energy is hWk' becomes com­
pounded by simple addition to give a formula for the total scattering power of the 
atom. Hence the formula for the real part of the scattering factor is 

f' =/0+ 11/0' 
where 

I1fo = L foo (w2(~gJd~)k) dw, 
k ())k Wi- W 

(4) 

and /0 is the scattering power at frequencies which are high compared with the 
natural frequencies of the atom. For many practical purposes /0 is equal to Z, the 
total number of electrons in the atom. The expression (4) for 11/0 is the form into 
which all authors put their equations prior to computation. This expression should 
be compared with equation (26) of Cromer and Liberman (1970) and equation 
(3 ·42) of James (1948). 
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Methods of estimating Af~ 

Three apparently different methods of estimating Af~ have been given. Hanl 
(1933a, 1933b) used an approximation to the one-electron density of states for the 
K oscillator continuum calculated by Suguira (1927) on the assumption that the 
electrons had hydrogen-like wavefunctions. These early calculations have been 
extended by Barnea (1966) and Guttmann and Wagenfeld (1967). One of the problems 
with this type of computation arises from the fact that in formulating the wave­
functions a screening potential has to be used, and this causes an effective shift ~k 
in the absorption edge to be used in the calculation. The influence of this approxi­
mation becomes more and more severe as the wavelength of the incident radiation 
approaches the wavelength of the absorption edge. 
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Fig. 4. Plot of measured X-ray refractive indices in the form 1 - n as a function 
of the wavelength A for LiF and CaF2 • The curves relate to values calculated 
using Htinl's (1933a, 1933b) theory. 

Other theories are based on the semi-empirical theory of Parratt and Hempstead 
(1954). The approximation is made that the atomic absorption coefficient fJ.(W) , 
which is directly proportional to the oscillator density of states, can be approximated· 
by a power law of the form 

fJ.( w) = (Wk/ Wit fJ.( Wk) , 

where fJ.(wk) is the absorption coefficient at the absorption edge and n is a number 
which depends on the type of electron being considered. From this expression 
Af~ can be calculated as 

foo W2 
2mc n dw. Af~ = -2 fJ.( Wk) Wk (W~ _ (2)W ne Wk, 

(5) 

Cromer (1965) concluded that values of fJ.(w) were unreliable and attempted to 
calculate the fJ.(wk) etc. from oscillator strengths. He recognized the deficiencies of 
this method, and subsequently Cromer and Liberman (1970) published a new set of 
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tables for the dispersion corrections based on the use of Dirac-Slater wavefunctions. 
They calculated the photoelectric cross section a(/iw) using the Brysk and Zerby 
(1968) program with data from Bearden (1967) as the eigenvalues for the wave­
functions. Ris value for AID was put into the form 

A/o = ~pfOO (8+ -81)2 a (8+ -81) d8+ 

2n2/ie2 m/ (/iw)2_(8+ -81)2 ' 
(6) 

and suitable nonrelativistic approximations were made to eliminate some minor terms. 
In essence, however, all methods estimate A/o through the photoelectric cross section, 
which is either computed from measured electronic energy level data or from measured 
values of the mass absorption coefficient. Of the various attempts which have been 
made to estimate AID and AI!) the calculations of Cromer and Liberman (1970) 
have the soundest theoretical basis and were derived using the most rigorous set of 
computer programs developed to this time. Thus their results are often used as the 
standard with which the experimental values are compared. 

Table 1. Comparison of experimental and theoretical values of Af~ 

Source 
of 

results 

Present results 
Cromer and Liberman (1970) 
lIonl(1933a,1933b) 

Present results 
Cromer and Liberman (1970) 
lIonl (1933a,1933b) 

Present results 
Cromer and Liberman (1970) 
lIonl (1933a,1933b) 

Results 

Af~ at the wavelength of 
FeKrxl 

(1·93597 A) 
Cu Krxl Mo Krxl 

(1· 54051 A) (0· 70926 A) 

(a) LjF 

0·114±0·01O 0·091±0·005 
0·102 0·070 
0·106 0·073 

(b) NaF 

0·20 ±0·02 
0·198 
0·202 

(c) CaF2 

0·43 ±0·03 
0·479 
0·43 

0·020±0·005 
0·014 
0·020 

0·060±0·OO5 
0·044 
0·061 

0·26 ±0·03 
0·231 
0·257 

Ag Krxl 
(0·55936 A) 

0·014±0·006 
0·006 
0·014 

0·040±0·007 
0·022 
0·042 

0·21 ±0·02 
0·148 
0·207 

Measurements of X-ray refractive indices, using the methods described above, 
yield values which are accurate to 'V 0·2 % because there are errors in the measure­
ments of the phase shift of 'V o· I % and the specimen thickness of 'V o· 1 %. Typical 
results are shown in Fig. 4. The points plotted are for lithium fluoride and calcium 
fluoride for the wavelength range from Ag KP to Fe KCI.. The curves relate to values 
of refractive index calculated using RanI's (1933a, 1933b) theory. When these results 
are processed to determine the real part of the dispersion correction the precision of 
the experiment decreases markedly because, although the error in the measured 
refractive index is small, when the molecular scattering factor 10 is subtracted, the 
resulting value of AID still has the same error as 10 + AID· 

The computed values of AID are shown in Table 1 for the lithium fluoride, sodium 
fluoride and calcium fluoride molecules. These values are compared with the 
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theoretical predictions of Cromer and Liberman (1970) and the values obtained 
using Honl's (1933a, 1933b) theory. Notice that there is a marked discrepancy 
between the experimental values and those computed by Cromer and Liberman. 
The measured values are always higher than their calculated values for lithium fluoride 
and sodium fluoride. For calcium fluoride the measured values are larger than the 
calculated values at the wavelengths Ag Krt.l and Mo Krt.l, but less at Cu Krt.1 . 

However, good agreement exists between the experimental values and those predicted 
using HonI's theory. 

D. T. Cromer (personal communication) has estimated the accuracy of his calcu­
lations of !J.f~ to be within 2 % of the value stated in his table. Because the values for 
a(hw) predicted by Cromer and Liberman (1970) seem to be in reasonable agreement 
with experimental values (Creagh 1974), any error (if such exists) must lie either in the 
evaluation of the integral (6) or in the assumptions upon which the theory is based. 

One of the likely sources of error is the assumption that the atoms involved are 
independent and essentially free of one another, a condition which is not fulfilled 
in practice. It could be argued that, because of the broadening of the energy levels 
in the formation of the solid, the density of oscillator states is altered, and the 
computed values of !J.f~ are therefore in error. Aikala and Mansikka (1970,1971) 
examined the effect that the crystal lattice has on the scattering factors of alkali 
halide molecules. They derived expressions for ionic crystals using free-ion wave­
functions. The nonorthogonality of these wavefunctions in the crystalline state was 
allowed for by the use of Lowdin's rt.-function technique (1956). The wavefunctions 
were derived by Clementi (1965) using the Hartree-Fock technique. Overlap between 
next and next-to-nearest neighbours was considered for the negative ions. Only 
next-neighbour overlap was considered for the positive ions. Calculations were 
performed for the alkali halides LiF, LiCI, LiBr, NaF, NaCI and KBr. In brief, 
they found that the static overlap contribution was small for large scattering angles. 
For moderate scattering angles the effect was quite marked, e.g. an increase in effective 
scattering factor of 0·10 electrons occurred for the 200 reflection from lithium fluoride 
(/0 = 7·62). Larger differences occurred for those alkali halides for which the overlap 
effect was more pronounced. In the forward direction, i.e. the direction of the X-ray 
beam, the effect was small, being '" 0·001 electrons. It may be concluded that, for 
the present experiment, the crystalline nature of the specimens has little effect on the 
scattering powers of the ions from which they are formed. 

The discrepancy between the experimental results and the computed values of 
Cromer and Liberman (1970) cannot be explained by means of the perturbation of 
energy levels in the formation of free ions into a crystal. One must then examine 
the proposition that some systematic error has occurred in the evaluation of equation 
(6). Measurements of the mass absorption coefficients for alkali halide specimens 
have been performed by Creagh (1975). His values for the mass absorption coefficient 
are close to, but systematically larger than, the values quoted by Cromer and 
Liberman. It follows that, if these experimental values were inserted into equation (6), 
the resulting values of !J.f~ would also be systematically larger than those of Cromer 
and Liberman. 

The measured values tend to lie between those calculated by Cromer and Liberman 
(1970) and those calculated using HonI's (1933a, 1933b) theory. In most cases the 
latter lie within the limits of error of the measured values. It can be concluded 
therefore that the scattering power of light elements is described more accurately 
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by the use of hydrogen-like wavefunctionsthan by the use of the more comprehensive 
relativistic Slater-Dirac wavefunctions. 

The limitation of the photographic method to those atoms and wavelengths for 
which specimen absorption is small renders this method unsuitable for a definitive 
test between the theories of X-ray dispersion. A new method described by Hart 
(1974) shows promise of producing highly accurate (to 1 % precision) measurements 
of A/o. Preliminary measurements on a silicon specimen gave a value of Alo which 
was the arithmetic mean of the two theoretical values. This implies that for this 
atomic number neither theory provides a good description of the X-ray scattering 
process. Further measurements by Hart on other materials should enable a more 
complete theory to be formulated. 
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