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Abstract 

The distribution of static charged dust in the Brans-Dicke theory is considered. It is shown that 
the ratio of charge density to mass density is related to the scalar interaction '" so that for small 
values of '" the charge density will far exceed the mass density. This result suggests that the existence 
of a finite electron can be realized in the Brans-Dicke theory of gravitation through a static charged 
dust distribution. 

1. Introduction 

In classical theory a static charged dust distribution is held in equilibrium under 
the actions of gravitational attraction and electrostatic repulsion if the charge density 
is equal to the mass density (0- = ± p). The same result also holds true in the general 
theory of relativity (Majumdar 1947; Das 1962; De and Raychaudhuri 1968). 
However, such a charged dust model cannot be used to represent finite electrons 
because the charge of an electron far exceeds its mass, and any analogy could only 
apply to unstable electrons. Thus it is not possible to account for finite electrons 
with a static charged dust model in the domain of general relativity, and indeed it 
is generally held that the properties of a finite electron cannot be explained on the 
basis of known interactions. It is therefore worth while investigating the problem 
of charged dust in the. Brans-Dicke (BD) theory of gravitation (Brans and Dicke 
1961), in which a new scalar interaction, namely a 4> interaction, has been introduced 
to make the theory Machian. The aim of the present work is to find whether the 
presence of this 4> interaction can help in explaining the structure of a finite electron. 

A solution to the problem is attempted here based on a relationship obtained by 
the present author (in unpublished calculations for the BD theory), namely 

-g44 = 4>-1(4mjJ2 +AI/I +B), (1) 

where g 44 is the metric component of the static universe, 4> is the BD scalar field, 
1/1 is the source-free electrostatic field, and the constants A and B are arbitrary. The 
BD electrostatic field equations have been solved by expressing 411:1/12 + A 1/1 + B as 
a perfect square with a suitable choice of the constants A and B such that 

-g44 = 4>- 1 411:(1/1 ± .J2)2 . (2) 
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In the present paper we assume the form (2) to be valid within the charged matter. 
This ultimately leads to the result 

u/p= ±e/J-t, (3) 

where u and (4n)tp' = p are the charge density and matter density respectively. In 
Section 3 we discuss the possibility of explaining the existence of a finite electron with 
the help of a static charged dust model in which the relation (3) holds. 

2. Field Equations and Deduction of Relation (3) 

The BD Maxwell field equations are given as 

Rij-!Rgij = -Sne/J-1Tij -We/J-2(e/J,ie/J,j -tgije/J,ke/J,k)_e/J-l(e/J;ij -gije/J;~), (4a) 

(3+2w)e/J;~ = SnTL (4b) 

F;) = uui , (4c) 

Fij,k +Fjk,i +Fki,j = 0, (4d) 
with 

Tij = p'uiuj + (gab FaiFbj -!gijFabFab) , (5) 

where a subscript comma or semicolon denotes respectively partial differentiation or 
covariant differentiation by the index that follows it. The static condition gives 
u" = 0 and u4 = (-g44)-t. Greek indices take the values 1,2,3 while Latin indices 
take the values 1,2,3,4. 

Equation (4a) can be simplified to yield 

-R = -Sne/J- 1T+we/J-2e/J,ie/J,i +3e/J-le/J;~. (6) 

Since ui U i = -1, equation (5) gives 

T= -p'. (7) 

Using the relations (4b) and (7), we can rewrite equation (6) as 

-R = + Snp' + We/J,ie/J,i _ ~ Snp' 
e/J <b2 e/J 3+2w 

or 
-R = ~ Snp' We/J,ie/J,i 

3+2w e/J + • (S) 

From equations (4a) and (S) we have 

R _ SnT;j We/J,ie/J,j e/J;ij w+l 8np'gij 
ij - -T- e/J2 -T-3+2w-e/J- (9) 

We attempt to solve the field equations (4b)-(4d) and (9) in a static universe 
defined by 

(ds)2 = g"pdx"dxP - V2(dx4)2, (10) 



Static Charged Dust Distribution 587 

where gap and g44 (= - V2) are independent of X4. Equation (4d) is satisfied when 

Fij = ljJj.i -ljJ i,j' (11) 

where ljJi is the electromagnetic four-potential. For ljJa = 0 and ljJ4 independent of 
X4, we have only an electrostatic field in the static universe. For convenience we 
write ljJ4 == ljJ. Thus 

Fa4 = ljJ,a 

From these relations we also obtain 

F a4 = _ V - 2 gaP ljJ ,p 

and 

and 

FaP = O. (12) 

FaP = O. (13) 

From equations (12) and (13), the only nonvanishing components of the stress energy 
tensor Tij given by (5) are 

Tap = V - 2(tg ap gay ljJ ,a ljJ, y -ljJ ,a ljJ ,p) (14a) 
and 

T - 'V 2 +~ ay,/, ,I, 
44 - P zg 'I' ,a 'I' ,y , (14b) 

where 
Ua = 0 and U4 = (-g44}t . 

The relation (9) can be rewritten in terms of its components using equations (14) as 

R = _ 8n(tgapgaY ljJ,aljJ,y-ljJ,aljJ,jI)_ weP,aeP,p _ eP;ap _ w+l 8np'gap (15a) 
ap eP V2 eP2 eP 3+2w eP 

and 

R44 == - V gaP V;ap = _ 8n( w+2 )p'V2_ 8ng(JYljJ,(JljJ,y _ eP;44 
eP 3 + 2w 2eP eP ' 

where eP.4 = O. Also, equations (4b) and (4c) reduce respectively to 

(3 + 2w)(gaP eP ;ap + V -lgap V,a eP ,p) = - 8np' 
and 

V -lgap '/'. - V - 2gap ,I, V = (J. 
tf' ,('J,p 0/ ,IX ,p 

(15b) 

(16) 

(17) 

In order to arrive at the relation (3) we now proceed as follows. We first assume 
a functional relationship between V, eP and ljJ, 

V = VeeP, ljJ), (18) 

where eP and ljJ are independent of each other. This mutual independence is in the 
spirit of the BD assumption that the Lagrangian density of matter is not a function 
of eP. With the assumption (18) then, the expression (15b) reduces to 

V",gaP eP;ap + V",,,,gaP eP.a eP ,p + 2 V"'''' gaP ljJ ,a eP ,p + V",gaP ljJ;ap + V"'''' gaP ljJ ,a ljJ ,p 

= 4ngaP ljJ,aljJ,p _ V",ga(JeP,aeP,p _ V",ga(JljJ,aeP,(J 8np'V w+2 (19) 
eP V eP eP + eP 3+2w' 

where 
eP ;44 = - Vga(J V,a eP ,(J 
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apd we have used the symbolism 

v'" = av/afjJ, V", = av/al/t, V",,,, = a2v/afjJ2, 

V",,,, = a2 v/al/t2 and V",,,, = a2 VjafjJ al/t . 

Eliminating fjJ;l%/I and I/t;I%/I from equation (19) with the help of the relations (16) and 
(17), we obtain 

- ~n:i~' + (v",,,,-it)gl%/lfjJ'l%fjJ,/I +uV", V + (v",,,, + 1)gl%/lI/t'I%I/t,/I +2V"'t{l gl%/lI/t,I%t/>,/I 

= 4ngl%/lI/t,I%I/t,/I_ V",gl%/lfjJ,l%fjJ,/I_ V",gl%/lI/t,l%fjJ,/I 8np'V (.0+2 (20) 
fjJV . if> fjJ + fjJ 3+2(.0 

and, in matter-free space (u = p = 0), we thus have 

( V",,,, -1) gl%/I fjJ ,,, fjJ ,/I + ( v",,,, + -1) g"/I I/t,,, I/t ,/I + 2 V",,,, g"/I I/t,,, fjJ ,/I 

4n ,,/I I/t I/t V ,,/I fjJ fjJ v. ,,/I I/t fjJ = g ," ,/I _ ",g ,,, ,/I _ ",g ,,, ,/I 
fjJ V fjJ fjJ 

(21) 

It can be shown from equation (21) that the functional form of the relation (18) is 
given by equation (1), namely 

-g44 = V2 = fjJ-l(4nl/t2 +AI/t +B). 

It is clear from equation (20) that (1) will also be valid within the charged matter if 

_ 8nV",p' +uV.V _ 8np'V (.0+2 
3+2(.0 '" - -fjJ-3+2(.O 

or 

V",u =~((.O+2+~) 
p' 3+2(.0 fjJ V· 

(22) 

Since the relation (2) is a special form of equation (1), it will also be valid within 
the charged matter when equation (22) holds. From equations (22) and (2), we thus 
arrive at the relation (3), namely 

u/p = ±fjJ-t, 

which shows that the ratio of charge density to mass density is related to the scalar 
interaction fjJ. 

3. Concluding Remarks 

Unlike the corresponding result in general relativity, the ratio u/p is related to the 
scalar fjJ which primarily determines the local value of the gravitational constant. 
Now, if the gravitational constant is taken to be a universal constant G = 1 in 
relativistic units, then the assumption that fjJ varies as G-1 also necessitates taking fjJ 
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to be a constant and equal to unity. For this value of <p the relation (3) reduces to 
(l/p = ± 1 and, as noted in the Introduction, clearly such a model cannot be used to 
represent an electron. However, the relation (3) here suggests that for small values 
of <p the charge density will exceed the mass density. Since the value of <p at any 
point is determined by the distribution of matter around that point, different dis
tributions will have different <p values. Specifically, in a static spherical shell of 
mass M and radius R the value of <p in its interior is (Brans and Dicke 1961) 

<p --- M/R. 

Thus, only for small values of M/R will the value of <p be small, and M/R will be very 
small when the radius is very much greater than the mass. Such a model of charged 
dust distribution with a small value of R could accommodate electrons, and this may 
point towards the possibility of explaining the existence of an electron on the basis 
of the Maxwell field equations in the Brans-Dicke framework. 
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