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Abstract 

An application of Willis's anharmonic theory has been made to improve the earlier calculations of 
the Debye-Waller factors of (X-iron and sodium reported in Part I, and to estimate the effect of 
including anharmonic. terms in the crystal potential. The calculations have been compared with the 
existing experimental data in terms of the Debye-Waller factor temperature parameter Y. The 
agreement between the calculated values and the experimental results is now shown to be quite 
good over a wide range of temperature. 

Introduction 

Results of previous calculations of the Debye-Waller factors of a-iron and sodium 
reported in Part I (Prakash et aT. 1975) agreed well with the experimental observations 
only up to a certain temperature, above which the theoretical values were found 
to be lower than the experimental data. The most likely reason for this discrepancy 
appears to be the neglect of anharmonic effects, which become significant at higher 
temperatures, as shown by Hahn and Ludwig (1961), Krivoglaz and Tekhonova 
(1961), Cowley (1963), Maradudin and Flinn (1963) and Kashiwase (1965). Experi
mental evidence in support of such a modified treatment is due to Steyart and Taylor 
(1964), Rouse et aT. (1968) and Cooper et aT. (1968). 

Hahn and Ludwig (1961) studied the effect of anharmonic vibration on the thermal 
scattering of X-rays from crystals for temperatures above the Debye temperature. 
In their theory, the anharmonic effect was given in terms of a temperature-dependent 
dispersion relation instead of the temperature-independent dispersion relation 
which is used in the usua~ formula for X-ray thermal scattering by crystals. Maradudin 
and Flinn (1963) considered a monatomic crystal with atoms arrayed at lattice 
points of a cubic Bravais lattice, and they obtained anharmonic contributions to 
the Debye-Waller factor that were proportional to both the square and cube of the 
absolute temperature in the classical limit. Their calculations are extremely lengthy, 
and nowhere was a comparison with experiment made. More recently, Willis (1969) 
adopted the fashionable approach to the problem by treating the crystal as an 
Einstein solid, in which each atom vibrates in a potential field which is unaffected 
by the motion of the neighbouring atoms. He extended this analysis to crystals 
with rocksalt, diamond and fluorite type structures, and he obtained good agreement 
with experiments in KCl and BaF2 • His theory has further been applied by our 
group (Chandra et aT. 1972; Prakash et aT. 1973) to investigate the effect of lattice 

* Part I, Aust. J. Phys., 1975, 28, 63-8. 
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anharmonicity on the Debye-Waller factors of KBr and NaF respectively, and it 
has been found to show fairly good agreement with experiment. In the present paper, 
we have applied the same technique to the cubic metals a-iron and sodium. The 
interest in the present calculations arises from the fact that experimental values for 
the Debye-Waller factor temperature parameter Y were found to be considerably 
higher than the theoretical harmonic values reported in Part I. 

Theory 

From the kinematic theory of diffraction, the X-ray scattering amplitude for the 
scattering of X-rays from a monatomic crystal is proportional to 

A(Q) = L: fexp[iQ.{r(l)+u(l)}], (1) 
I 

where Q is the scattering vector (Q = 4nA -1 sin 0, A being the wavelength of the 
X-rays), f is the X-ray atomic scattering factor of the atom at rest, r(l) is the radius 
vector defining the equilibrium position of the lth atom and u(l) is the displacement of 
the Ith atom from its equilibrium position. The summation is understood to extend 
over all N atoms of the solid. 

The differential scattering cross section do-jdQ, representing the intensity of 
scattering into unit solid angle for unit incident beam, is given by (AA*), that is, 

do-jdQ = L: L: ff' exp[iQ. {r(/)-r(l')}] 
1 I' 

x (exp[iQ. {u(/) -u(l')}]). (2) 

The angle brackets ( ) represent the average value over a period of time which 
is longer than the period of the vibration of the atom, and the displacements u(/) are 
time dependent. In the classical or high-temperature limit, this time average is 
evaluated as an ensemble average using 

(exp[iQ. {u(l) - u(l')}]) 

f f r·· fexP[ - VjkBT]exp[iQ. {u(l)-u(/')}] dX1 dX2 dX3 ••• dX3N 

= , m f f r·· f exp[ - VjkB T] dX1 dX2 dX3 ••• dX3N 

where V and kB are the potential energy of the total system of coupled oscillators 
and the Boltzmann constant respectively, and the integration is carried out over the 
3N cartesian coordinates dXi of the N atoms in the crystal. The Debye-Waller 
factor is related to the differential cross section for Bragg scattering (do-jdQ)o, and 
is given by those terms in equation (3) which are independent of I and I'. Thus the 
effect of thermal motion on the Bragg intensity is equivalent to multiplying the 
scattering amplitude of the lth atom by the temperature factor T(Q), defined by 

T(Q) = exp{-W(Q)} = (exp{iQ.u(/)}). (4) 

In the harmonic approximation, the average (exp{iQ. u(/)}) obeys a gaussian 
distribution, so that we have 

2W = ({Q.u(l)Y). (5) 
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However, anharmonicity introduces additional terms in W which are of higher 
order than quadratic in Q. For an Einstein solid, we can obtain (exp{iQ.u(/)}> by 
weighting each possible value of exp{iQ.u(I)} by its thermodynamic probability, 
using the equation 

I ao Iao Iao exp{ - V/kB T}exp{iQ.u(l)} dUI dUzdu3 
(exp{iQ.u(l)}> = -ao -: -: ao ' (6) 

I-ao Lao Lao exp{ - V/kB T} dUI dU2 dU3 

where Ul' U2 and U3 are the cartesian coordinates of the displacement u(/), and V 
is the potential energy of the / th atom vibrating as an anharmonic oscillator in the 
average force field of its neighbours. The temperature factor T(Q) can be reduced 
to the standard form by expanding the potential energy with the help of Taylor's 
theorem in terms of the coordinates U1> U2 and U3' In the harmonic approximation, 
the potential expansion terminates at the quadratic and is of the form 

V = Vo +ta(u~+ui+u~), (7) 

where 'the parameter a is related to the mean square displacement (uz(/» of the 
atom in this potential (which is same in all directions) by 

a = kB T /(uz(/». (8) 

Anharmonic contributions to V are represented by adding higher-order terms 
to the right-hand side of equation (7). These anharmonic terms are either isotropic 
or anisotropic. By considering the potential expansion up to quartic terms, a general 
expression for the potential of the Ith atom in a cubic crystalline field is given by 

V(Ul,U2,U3) = Vo +1arz +PUIUZU3 +l'r4 +<5(ut+u~+u1-tr4). (9) 

Here r2 = u~+ui+u~ and a, p, I' and ~ are the potential parameters. For a cubic 
monatomic lattice with m3m symmetry, we have p = 0 and hence 

V = Vo +larz +l'r4 +~(ut+u!+u1-tr4). (10) 

The thermal expansion is taken into account by assuming the potential parameters 
to vary with temperature in accordance with 

a/ao = 1'/1'0 = ~/~o = (l - 21'0 XT), (11) 

where ao, 1'0 and ~o are the temperature-independent parameters, 1'0 is the Grlineisen 
parameter and X is the volume expansion coefficient. 

If the displacement u(/) is such that the anharmonic terms in equation (10) are 
small compared with kB T, we can write 

exp{...,. V(Ul' Uz, u3)jkB T} = exp{ - VO/kB T}exp{ -lar2/kB T} 

x {1 -l'r4/kB T -~(ut+u~+u1-tr4)/kB T}. (12) 

Inserting this expression into equation (6) and replacing Q. u(1) by 

2na-1(h1 Ul +h2 Uz +h3 U3)' 
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where a is the lattice parameter and hi> h2 and h3 are the Miller indices, we obtain 
a final expression for the temperature factor as 

exp{ - W(Q)} = N exp{ _!Q2CX- 1 kB T} 

X [1-15kB Tycx- 2 +10(kB T)2(2n/a)2ycx-3(hi+h~+h;) 

-{kB T)3 (2n/a)4ycx-4(hi+h~+ h;)2 

-(kB T)3 (2n/att5cx- 4 {hi + h~ + hj-t(hi +h~ +h;)2}] , (13) 
with 

N = {I -15kB Tycx- 2} -1, 

The explicit temperature dependence of the temperature factor follows by con
sidering equations (11) and (13). The Einstein treatment then leads to the following 
expression for the exponent of the Debye-Waller factor: 

2W = (2n/a)2(hi + h~ + h;)[l/cxoJ kB T + (2n/a)2(hi + h~ + h;)[2YaX/cxo kBJ(kB T)2 

-(2n/a)2(hi + h~ + hD[2Oyo/cx~J(kB T)3 + (2n/a)4(hi + h~ + hD[2Yo/cx~J(kB T)3 

-(2n/a)4(hi h~ +h~ h; +h; hi -thi -th~ -thj)[12t5o/5cx~J(kB T)3, (14) 

where the quantities in square brackets are independent of temperature. Here the 
first term is the harmonic contribution to 2 W; the second term is the thermal 
expansion correction to the harmonic contribution; the third and fourth terms are 
the isotropic anharmonic contributions due to the quartic component of the potential; 
and the last term is the anisotropic contribution to 2W. For the metals under con
sideration, the contributions of the last two terms to 2 Ware quite small except at 
very high temperatures and for high values of (sinO)/A. Thus, neglecting the quartic 
terms in equation (14) and writing exp( -x) ~ I-x for x ~ 1, we find that the 
temperature factor is approximately given by 

or 
T(Q) ~ exp{ --!-cx;) 1 kB T(l +2XYa T)(1 -20kB TyoCX;)2)Q2} 

B(T) ~ Bh(T){1 +T(2XYa-20kBYocx;)2)}, 

where B(T) is the isotropic B-factor at temperature T, which is given by 

T(Q) = exp{-B(T)A-2 sin20} , 

while Bh(T) is the harmonic B-factor at temperature T, given by 

Bh(T) = 8n2 cx;) 1 kB T, 

(15) 

(16) 

(17) 

Thus, in the harmonic approximation, the B value is proportional to T, but in the 
anharmonic approximation an extra term appears in the expression which is propor
tional to T2, This term consists of two parts: one due to thermal expansion and 
the other due to the quartic modification of the potentiaL 
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Fig. 1. Comparison of the present theoretical curves with experimental data for the 
temperature variation of the Debye-Waller temperature parameter Yfor (0) (X-iron and 
(b) sodium. 
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Comparison with Experiment 
Comparison between the present calculated values and the experimental results 

is made here in terms of the Debye-Waller factor temperature parameter Y given by 

Y = (A/sin(})210g10(IT/ITo) = 0·86{B(To)-B(T)} , (18) 

where IT and ITo are the experimentally measured intensities of a particular reflection 
at temperatures T and To respectively. The calculated Y, T curves are compared 
with the experimental results for oc-iron and sodium in Figs 1a and 1b respectively. 
In these figures, the curves labelled H show the theoretical variation according to the 
harmonic theory, and are based on the calculations of Part I. The curves labelled 
Q were obtained after applying the quasiharmonic correction to Bh(T) by retaining 
the thermal expansion term, but putting Yo oc02 = 0 in equation (15). The curves 
labelled A represent the anharmonic form of Willis's (1969) equation (15), and they 
were drawn by choosing yooc~2 in such a way as to make the anharmonic curves pass 
through the experimental points at the highest temperatures, where the influence of 
anharmonicity is greatest. The harmonic parameter OCo is calculated from equation 
(17). In calculating the Q and A curves, the Griineisen constants for the metals 
were taken from Slater (1939) and the temperature dependence of the thermal expan
sion coefficients taken from Gray (1963). 

a-Iron 

Measurements of the temperature variation of the Debye-Waller factor of oc-iron 
have been made both through X-ray diffraction techniques (Ilyine and Kritskaya 
1955; Haworth 1960; Herbstein and Smuts 1963) and y-ray resonant absorption 
experiments (Debrunner and Morrison 1964). Haworth's measurements were made 
over the classical high-temperature range and so are preferable for comparison 
with the present theory. These results, however, possess a large scatter which 
Haworth attributed to statistical changes in the distribution of the reflected particles. 
These results are shown in Fig. 1a for To = 286 K along with the data of Debrunner 
and Morrison. The anharmonic curve was allowed to pass through the experimental 
point at T = 1321 K. The calculated harmonic parameter OCo and anharmonic 
parameter Yo are 134·4 Jm- 2 and -2·745 x 1022 Jm-4 respectively. The ~greement 
of the calculated values of Y with experiment is fairly good throughout the temperature 
range studied. 

Sodium 

The effect of temperature on the intensities of X-ray reflections from a single 
crystal of sodium was studied experimentally by Dawton (1937) in the temperature 
range 117-368 K. He measured intensity ratios I117/IT at the three temperatures 180, 
291 and 368 K for a chilled crystal. These ratios were found for the (400), (310), 
(220), (200) and (110) reflections, and Dawton recommended amongst these, the 
(400), (310) and (220) reflections as the most reliable. The average values of Yfor the 
above three planes with To = 117 K have been plotted against temperature in 
Fig. lb. The anharmonic curve was allowed to pass through the experimental point 
at T = 368 K. The calculated harmonic parameter OCo and anharmonic parameter Yo 
are 5·98Jm- 2 and -1·28xI02o Jm- 4 respectively. The theoretical results agree 
satisfactorily with the experimental values. 
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Discussion 

Comparison of the theoretical plots with the experimental values reveals that the 
anharmonicity for the Debye-Waller factors of IX-iron and sodium is explained to a 
great extent by the inclusion of quartic anharmonic contributions to the Debye-Waller 
exponent - 2 W, along with the harmonic contribution and the thermal expansion 
correction. The quartic contribution represented by the difference between the curves 
Q and A is much more for these metals than the thermal expansion contribution 
represented by the difference between the curves Hand Q. This is contrary to the 
situation in the case of KC1, where the quasiharmonic values were found by Kashiwase 
(1965) and Willis (1969) to be in good agreement with the experimental data of James 
and Brindley (1928). However, a critical appraisal of the anharmonic theory requires 
more precise experimental data. Nevertheless, we have shown conclusively that 
anharmonic effects are accounted for satisfactorily by using an Einstein model of 
the crystal. 
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