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The effect of an iron transformer core on the field of a current loop is examined for two models 
of the core: (1) An infinite straight rod of high permeability aligned along the axis of symmetry, 
for which asymptotic expressions for the effect of the core are obtained and compared with 
numerical results. (2) A rectangular toroidal iron casing surrounding the loop. The latter model 
is more realistic because a return path is provided for the flux. For this model, the effect of air gaps 
is considered, and rapidly convergent series are obtained and numerical results are given. The 
significance of these results for tokamak equilibrium is indicated. 

1. Introduction 

An iron core is commonly used to increase the coupling between the primary 
and secondary (plasma) circuits of toroidal plasma containment devices, such as 
tokamaks. This gives rise to perturbations in the plasma equilibrium in two ways: 
(i) due to the static field errors arising from the d.c. bias windings used to premagnetize 
the core, and (ii) due to the alteration in the Green's function for currents in the 
vicinity of the plasma arising from the changed boundary conditions. The latter 
effect may be screened over a short time scale by use of a conducting wall between 
the primary windings and the core but, in the absence of a copper shell, this time 
scale may be much less than the plasma containment time (Hugill and Gibson 1974). 

It is therefore desirable to be able to estimate, at least qualitatively, the magnitude 
of the perturbations due to the iron. Mukhovatov and Shafranov (1971) used an 
infinite rod model, but this is open to the objection that it does not represent, even 
qualitatively, the effect of a finite transformer core, since the infinite rod forms a 
simply connected region (excluding a return path at infinity) while a transformer 
core is topologically toroidal. The importance of topology for this problem has 
been made clear by Van Bladel (1961) who points out that the frequently used 
infinite-permeability boundary condition of vanishing tangential B is in general 
appropriate only for simply connected regions. This is illustrated by comparing 
Figs 1a and 1b, where it is seen that the magnetic field lines enter an infinite core at 
right angles, while they enter obliquely into a core with a return path for the magnetic 
flux. The infinite core model is not quite as bad as it seems, however, since the 
boundary condition of vanishing parallel B is recovered when the total current 
circulating around the core is zero; a condition which is approximately satisfied due 
to the low resistivity of the plasma. 
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The simplest model with the correct topology is that of a circular iron cylinder 
surrounding a straight current, which may be solved by the method of images 
(Van Bladel 1961; Mukhovatov and Shafranov 1971). The more realistic model of 
a rectangular iron cylinder has been solved by Kulda (1962, 1964). In the present 
paper we adopt a model suitable for finite aspect ratio tokamaks with an axisymmetric 
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Fig. 1. Section through the axis of symmetry (z axis) of the model transformers (hatched 
lines), showing the current loop (cross) and the magnetic surfaces (continuous lines): 

(a) Infinite core, for the case b = 0·2 m, ro = 0·5 m, Zo = 0, 1= 1 A. The increment 
in 'I' between surfaces is 2·97 X 10-8 Wb rad -1 and the boundary condition is B.(b, z) = o. 

(b) Rectangular toroidal core, for the case b = 0·2 m, a = d = 1·0 m, ro = Zo = 0·5 m 
and I = 1 A. The increment in 'I' between surfaces is 3 ·19 X 10-8 Wb rad -1. The boundary 
conditions are B.(b, z) = - Bia, z) = tllo Id- 1 and B,(r,O) = B,(r, d) = O. 
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return path for the flux: a current loop surrounded by a toroidal iron cavity of 
rectangular cross section, with the same axis of symmetry as that of the current loop. 
The effect of air gaps is modelled by suitable choice of boundary conditions on the 
iron. In Section 2 we review the infinite rod model and derive some new asymptotic 
approximations. In Section 3 we develop the toroidal model, and in Section 4 we 
briefly consider the effect on tokamak equilibrium and stability. 

2. Infinite Rod 

We represent the magnetic field B of a current loop by use of a stream function 
lJ' (r, z), such that 

B = \I</> x \llJ', (la) 

where r, </> and z are cylindrical polar coordinates. In terms of the vector potential A 
we have lJ' = - rAt/>. The rand z components of B are given by 

By = r -1 8lJ'/8z and (lb) 

The changes in the fields when an infinite rod of radius b and relative 
permeability I1r = lie is inserted on the symmetry axis of a circular current loop 
carrying a current I are given by (Smythe 1950) 

where 

and 

t/J = fooo dk AlJ'k{rrO Kl(kr) Kl(krO)cos(kZ) - a2 Ki(ka)} , 

br = -ro fooo 
kdkAlJ'k K l(kr)K1(kro)sin(kZ), 

bz = ro 5000 k dk AlJ'kKo(kr)Kl(krO) cos(kZ), 

1101(I-e) 10(kb)Il(kb) 
AlJ'k = - 11: Ko(kb) 11(kb) +eKl(kb)10(kb)' 

(2a) 

(2b) 

(2c) 

(3) 

The vacuum fields lJ'v, B;, and B; may be represented by similar integrals, for 
example, 

v 110 1rro foo { } lJ' = - -- dk Kl(kro)Il(kr)8(ro-r) +Kl(kr)11(krO)8(r-ro)cos(kZ) , 
11: 0 

(4) 

where 8(x) is the unit step function (x + I x J)/2x. Because the integrals for the 
vacuum fields diverge as r ~ ro, it is much more convenient for numerical purposes 
to use the alternative forms (Smythe) 

(5a) 

(5b) 
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(Sc) 

where K(K) and E(K) are complete elliptic integrals of the first and second kind, 
with 

(6) 

In equation (2a), the function t/J == p - pv has been defined to vanish at r = ro = a 
and z = zo, where a is arbitrary. The second term of the integrand makes the 
singularity at k = 0 integrable even in the infinite permeability limit, 8 --+ O. 
Fig. 2 shows graphs of bz == Bz - B; versus r for several values of 8. It is seen that 
the convergence to the 8 = 0 result is quite slow; this being due to the logarithmic 
behaviour of the denominator in equation (3) near k = o. Nevertheless, 8 = 0 is a 
reasonable approximation for large Jlr> and we study this limit to determine the 
asymptotic behaviour of t/J in the limit {(r+ro)2 +Z2}t ~ b. 

For 8 = 0, equation (2a) becomes 

(7) 

Because of the exponential decay of Kv(x) for x ~ 1 and the oscillatory behaviour of 
cos(kz - kzo), it is clear that the principal contribution to the integral in equation (7) 
must come from the region 

(8) 

Now, for small kb, we have 

y being Euler's constant. Thus we may make an asymptotic expansion in the 
parameter 

(9) 

to give 

I roo 
t/J ~ - Jl:A n~o rn Jo dk {In(lXeXp(y)k{(r+ro)2 +z2}t)}n 

x {rro Kl(kr) Kl(krO) COS CkZ) _a2 Ki(ka)} , (10) 

where IX is an arbitrary constant of order unity. 
The leading term in the expansion (10) may be evaluated in terms of Legendre 

functions using the following identity, which is valid for I Re v I < -t, 

fooo {Cab? K.(ax) K.(bx) cos(cx) -(a'b')" KvCa'x) K.(b'x) cos(c'x)} dx 

= n2 {Caby-tp _.1.(a2+b2+c2) -(a'bT-tp _ (a'2+ b,2+ c'2)}. (11) 
4cos(vn) v 2 2ab v t 2a'b' 
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Fig. 2. Distributions of the vertical field B;(r,O) per unit current, in the absence 
of a core, and the negative of the changes b.(r,O) in it (dot-dash curves) which 
arise in the presence of an infinite core of the indicated relative permeabilities 
Jtr = pJf.lo. The conductor is assumed to be located at (ro,zo) = (0'48 m,O) and 
the core radius is b = 0·18 m. 

Fig. 3. Comparison of -{I +2rAb.(r,0)/f.loI} as a function of 1- 2 with the 
asymptotic result as 1 -+ 00, namely, 2·461 -2 (dashed line). The curves are for 
an infinite core of radius b surrounded by a current loop at (ro, zo) = (2, 5 b, 0), 
with 1 given by In(4r/b). 

5 
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Equation (11) may be obtained from a well-known identity (Gradshteyn and Ryzhik 
1965) by analytic continuation in the variable v. Applying equation (11) to the 
n = 0 term of equation (10) we find (to within a constant in the case of t/I) 

1tfloIZ C PtCO -P -tCO -2 
br = 8Ar(rro)t C2 -1 + O(A ), (12b) 

b = _ 1tfloI rt (Crlro-l)Pt (C) -(rlro-OP -tCO +O(A -2)· (12c) 
z 8Ar r C2-1 ' 

where 

The behaviour of t/I(r, z I ro, zo) in the neighbourhood of the conductor, that is, for 
r ~ ro, z ~ Zo and C ~ 1, can be obtained from the hypergeometric series for the 
Legendre functions (Gradshteyn and Ryzhik). The first few terms in the series are 

(13) 

A comparison of equation (12c) with the exact result (2c) is included in Fig. 4 (below), 
in which the parameter IX has been chosen to give a reasonable fit. 

In order to gain an idea of the convergence of the A -n expansion we examine 
the case oflarge r or Z, so that r 0 is of the same order as b, that is, r 01 r = 0 ( exp( - A) ). 
Thus, to all orders in A-I, the explicit r dependence of t/I is that of the lowest order 
term in a multipole expansion. By examining the behaviour of equation (12a) as 
r --+ 00, we see that the lowest order behaviour of t/I is as (r 2 + Z 2)t. A general 
procedure for constructing the terms of the series in inverse powers of A which multi
plies the factor (r 2 + Z2)t is given in the Appendix, and the expansion (dashed curve) 
is compared with numerical results in Fig. 3. The expansions are summarized here: 

'P '" l I( 2 Z2)t(! 1 +sin2(tO)ln(sin2(!O)) +cos2 (!O) In(cos2(!O)) ) 
'" 2flo r + A + A 2 . + ... , 

(14a) 

B '" 1 I( 2 Z2)-t(Cot(O) sin2(!O)ln(sin2(!O))-cos2(!O)ln(cos2(!O)) ) 
r '" 2flo r + A - A? + ... , 

(14b) 

B '" _1 I( 2 Z2)-t(! In(!sin(O)) ) 
z'" 2flo r + A+ A2 + ... , (14c) 

where 0 = arctan(rIZ). We have taken IX = 1, so that A = In{2b- 1(r2+Z2)t}, 
since '0 is exponentially small. Note that the vacuum fields are also exponentially 
small in this limit, so that t/I ~ 'P, br ~ B" and bz ~ Bz to all orders in rl. 

3. Rectangular Toroid 
We assume the transformer to be symmetric about the z axis, and to have the 

cross-sectional dimensions indicated in Fig. lb. Outside the iron, the stream 
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function obeys the equation 

(15) 

where a(z) is a sheet current, which in our case is 

a(z) = IO(z-zo), (16) 

and A * is the Stokes operator 

02 1 0 02 

A* == ~ --;- +-;2. 
ur r ur uZ 

(17) 

In principle we should solve Maxwell's equations for H within the iron, in order to 
find the tangential component of B at the boundary with the iron (Van Bladel 1961). 
However, the latter is a function that is independent of ro and zo, and we shall simply 
prescribe it to be a convenient function, subject only to the constraint provided 
by Ampere's law. 

For mathematical convenience we take 

B.(O,r) = B,(d,r) = 0. (18) 

Physically this means that we assume the reluctance of the vertical sections to be 
much greater than that of the horizontal sections, an assumption that is not 
unreasonable if there are air gaps in the vertical sections. We specify the tangential 
fields on the vertical sections in terms of their Fourier components 

BzCb, z) = L Bkcos(kz) and Bz(a,z) = - L B~cos(kz), (19) 
k k 

where k = nnjd and n = 0, 1, 2, .... From Ampere's law we have 

B~(!) +B~(I) = J1oIjd. (20) 

For k > 0, B~(!) and Bk(!) are proportional to I, but otherwise they are arbitrary. 
For an arbitrary sheet current a(z) we can expand tp in a series of the form 

tp = -!-(r2-r~){B~8(r-ro) -BJ8(ro-r)} + L cPk(r)cos(kz), (21) 
k>O 

where 8(x) is the unit step function, and cPk(r) is of the form 

The jumps [lXk] and [11k] are determined from the requirements that tp be continuous 
at r = ro, and that the jump in the derivative be given by 

(23) 

Using the Wronskian relation for modified Bessel functions, and performing a 
Fourier analysis on equation (16), we find 

and [11k] = -2J1oIrod-1Il(kro)cos(kzo). 

(24) 
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The coefficients rtk and f3k are now determined from equations (lb) and (22) as 

rtk = 2fJolrod-1D;;1{K1(kro)l0(ka) + 11 (kro) Ko(ka)} Ko(kb) cos(kzo) 

_k-1D;;1{B~Ko(kb) +BZKo(ka)} , (25a) 

f3k = 2fJolrod-1D;;I{K1(kro)l0(ka) + 11 (kro) Ko(ka)} Io(kb) cos(kzo) 

-k-1D;;I{BUo(kb) + BUo(ka)} , (25b) 
where 

Dk == Io(kb) Ko(ka) -Io(ka) Ko(kb) . (26) 

Although equations (21), (22), (24) and (25) represent the solution of the 
problem, they are unsuitable for numerical computation owing to the poor conver
gence of the series in the neighbourhood of ro, zo0 This may be rectified by 
subtraction of the stream function for a current loop in the gap between two infinite 
iron slabs 

poo = -fJoI(2dr18(ro-r)(r2-r~) 

- 2/10 lrro d -1 L 11(kr <) K I(kr»cos(kzo) cos(kz) , (27) 
k>O 

where r> (r <) is the larger (smaller) member of the pair (r, ro). The total field is then 
reconstructed by adding on the alternative form for poo given by the method of images, 

00 00 

poo= L pV(r,zlro,zo+2nd)+ L PV(r,zlro,-zo+2nd), (28) 
n= -co n= -00 

where pv is the vacuum field given by equation (5a). 
The expression for P may be further decomposed into contributions pa + pb 

from the k > 0 components of the boundary fields, plus a residual term l/J for which 
the series is rapidly convergent 

(29) 

In this expression, we h. ' 

(30a) 

(30b) 

l/J = -!B~(r2-r~) +r L {pfKI(kr) +P%I1(kr)}cos(kzo)cos(kz), (31) 
k>O 

where 

pf == (2fJo Iro/dDk){Io(ka) KI(krO) +Ko(ka)I1(kro)}Io(kb), (32a) 

pf, == (2fJo Iro/dDk){Io(kb) K1(krO) +Ko(kb)II(krO)}Ko(ka). (32b) 

It is interesting to observe that, setting Zo = -td and Z = Zo + Z, and allowing a 

and d to approach infinity, we may show that l/J approaches the infinite rod result of 
equation (7). Thus the topological difference is not as serious as at first it appeared. 
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The two models are compared in Fig. 4. Another interesting fact may be derived 
from equations (24) to (29). If we define a flux P' with boundary terms subtracted, 

P' = p_pa_pb_t(r2-r6)(B~-Bg), 

then we may prove that P I is symmetric under interchange of r, ro and/or z, Zoo 
This is essentially the usual symmetry of mutual inductances. 
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Fig. 4. Distributions of the negative of the changes bz, per unit current, in the 
vertical field of a current loop at (ro, zo) = (0· 5 m, ±d) which arise in the presence 
of a rectangular core of inner radius b = 0·2 m and outer dimensions a = d given 
in the legend to the curves. The dashed curve represents the asymptotic approxi
mation (equation 12c), with C( = O' 6, while the thick solid curve is identical to the 
infinite core result (equation 2c). 

We also note that the effect of air gaps in the vertical sections can be modelled 
by taking delta function tangential fields. For example, an air gap at r = b, Z = zO' 
with a magnetic potential drop of g relative to that in the whole r = b section, would 
give 

and hence 
(33) 

However, an equivalent (and numerically better) method is to model the air gap 
by a current loop at r = band Z = Zo carrying a current -dgBg/po. This 
equivalence can be demonstrated either by application of Ampere's law around 
an infinitesimal semicircle centred on b, zO' or by use of equations (21), (30) and (33), 
and the Wronskian. 

4. Plasma Equilibrium 

As mentioned in the Introduction, we may distinguish two classes of problems 
arising from the use of an iron core. The first, the effect of bias windings situated 
on the core, may be minimized in the early stage of the discharge by use of the 
equivalence (mentioned at the end of the previous section) of a negative current 
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loop to an air gap. If most of the reluctance resides in the air gaps, the initial stray 
field may be cancelled out by situating the bias windings near the air gaps. 

The effect of the core on the stability of a plasma column is discussed elsewhere 
(Dewar 1976). For the present we simply note that the existence of a system of 
external conductors that will give a stable equilibrium depends on the subtracted 
self field of the plasma column 

bS(r, z) == b(r, z I r, z), (34) 

where the vacuum contribution has been subtracted, as this depends on the detailed 
structure of the plasma (Mukhovatov and Shafranov 1971). The existence of a stable 
system depends on the quantity 

CT == e:: -~~) rl. (35) 

If CT exceeds a critical amount CTc (where CTc > 0), depending on the vacuum self field, 
then no system of external conductors with fixed currents will stabilize the system 
simultaneously against both vertical and horizontal displacements. In the case of 
the infinite rod, CT is given by 

(36) 

and is thus seen to be positive definite. Thus the iron core tends to be destabilizing. 
The same conclusion is borne out in the case of the rectangular core. 

5. Conclusions 

We have examined here the highly idealized infinite rod model, and simple 
approximate formulae suitable for order of magnitude estimates have been presented. 
We have also examined a more accurate model (especially in axisymmetric con
figurations), suitable for numerical computation in design studies. The simplest 
model of plasma equilibrium suggests that use of an iron core need not affect the 
equilibrium strongly, provided the external conductors are appropriately positioned 
around the plasma, but may have an appreciable adverse effect on its ·stability. 
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Appendix 
We may obtain the O(rA -n) correction terms for the large r limit of the equations 

(12) by requiring that 'P must satisfy the equation for magnetic fields in a vacuum, 
namely, 

(AI) 

We find that equation (AI) can be satisfied asymptotically in A by a series of the form 

00 

'P ~ (rz+ZZ)!- L rn fnCv) , (A2) 
n= 1 

where 
and 

while f,,(v) obeys the recurrence relation 

(l-vZ)f~ -(n-l)fn_1 +(n-I)(n-2)f,,_z = o. (A3) 

By symmetry, f,,(v) is an even function of v. The general solution of equation (A3) 
that is even in v is 

n 

fn = (n-l)! I Ck Sn-k(V), (A4) 
k=l 

where the Ck are arbitrary constants to be determined from the boundary condition 
Bz = 0 at r = b. The Sn(v) are given for all n by 

,,( 1 (-It) z, Sn(v) = S(n +0) L., n+ 1 + -----;;-n (1- v ) P m(v) , 
oddm (m+ 1) m 

(A5) 

where the P m(v) are Legendre polynomials. The first two Sn(v) are, explicitly, 

So(v) = I and Sl(V) = H(1 +v) In(1 + v) +(1-v) In(l- v) - 21n2} . (A6) 

To apply the boundary condition we need the behaviour of Sn(VO) and S~(vo), 
where Vo = cos 80, 80 being arctan(b(rz+ZZ)-t) = b(rz+ZZ)-t to all orders in 
A -1. In terms of 80 we have 

The asymptotic behaviour on the boundary is, to all orders in A-t, 

S~(vo) ~ (-[(-It +{I-(-lt}21- n](n-l) 

+[(-It-{l +(-It}rn] (n)) for n ~ 3. 

Applying the boundary condition at each order in A -1 we find 

Cz = (1 +lnlX)C1 , 

C3 = H(l +lnlX)(2 +lnlX) -lnlX + /2nt}C1 , etc. 
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From Ampere's law we find 

From the second of the equations (1 b) together with (A2) and (A4) we find the 
series for Bz , given Z = 0, to be 

We note that the 0(..1.-2) term can be made zero, and the 0(..1.- 3 ) term minimized, 
by taking rx = 2. It is apparent from Fig. 4 that the leading term gives an 
approximation accurate to about ± 10% for r ;;;: ro = 2·5b. The 0(r2) term 
does not, however, become a good estimate for the error until r ;;;: 6ro. 
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