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The Sharma-Joshi and Krebs phenomenological models for the lattice dynamics of cubic metals 
have been extended and are applied to study the phonon dispersion curves of tungsten, a metal 
for whlch long range forces are also important. It has been found that, unlike extended forms of 
the de Launay model (Shukla and Cavalheiro 1973a) for certain cubic metals, the models studied here 
for b.c.c. transition metals are not always adequate. Possible reasons for the shortcomings of the 
results are pointed out and discussed. The role of angular forces, particularly when they are used 
along with a fairly good conduction electron-ion interaction term, has been examined and found 
to be unimportant. 

Introduction 

During the last decade a number of lattice dynamical models for cubic metals 
have been used to study the lattice dynamics of cubic transition metals. The model 
of Sharma and Joshi (1963) and that of Krebs (1965), with radial interactions 
extending out to second or third neighbours, have been shown to furnish a 
satisfactory interpretation of the lattice dynamical behaviour of these metals (Pal 
and Sharma 1965; Mahesh and Dayal 1966; Hautecler and van Dingenen 1967; 
Singh and Sharma 1968; Pal 1971). Several authors, emphasizing the importance of 
the angular forces, incorporated them into the above models and tried to improve 
the agreement between the experimental and theoretical dispersion curves (Behari 
and Tripathi 1972). The results obtained in all such studies, although fairly satisfac
tory, do not show the fine structure characteristics found in the experimental 
dispersion curves. Recent calculations by Shukla and Salzberg (1973) and Shukla 
and Cavalheiro (1973a, 1973b) on the extended forms of the Bhatia (1955) and de 
Launay (1956) models have renewed an interest in the study of the fine structure of 
the dispersion curves of cubic metals. 

Owing to the simplicity and general applicability of the Sharma-Joshi model and 
to the overall superiority of the Krebs model, it was considered worth while to employ 
these models in their extended forms (i.e. including angular forces) to examine 
phonon dispersion in tungsten. It is well known from the Born-von Karman model 
analyses that, for the transition metals, the long range forces are of considerable 
magnitude and hence a study of these metals by means of the extended forms of 
successfully used phenomenological models should prove worth while. 

The present work was motivated by the special characteristic features of the 
phonon dispersion curves of tungsten (Chen and Brockhouse 1964) and by a com-
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parative study of the previously reported work (Pal and Sharma 1965; Mahesh 
and Dayal 1966; Behari and Tripathi 1972). A comparison of the results obtained 
by Mahesh and Dayal with those obtained by Behari and Tripathi shows that the 
Krebs model without angular forces is better than the Sharma-Joshi model with 
angular forces. This indicates the importance of examining the role played by the 
angular forces, particularly when they are coupled with more appropriate conduction 
electron-ion interaction models. 

It is well known that, in different phenomenological models, the electron gas 
contribution is taken into account in various approximate ways. This implies that 
the extent to which a particular type of conduction electron-ion interaction model 
will account for long range forces will differ from model to model. In such 
circumstances an unlimited number of force constants coupled with a given model 
might lead to deterioration in the theoretical results. With these views in mind, in the 
present paper, we discuss the adequacy of the extended forms of the more appropriate 
phenomenological models in reproducing the fine structure of the dispersion curves, 
the importance of the angular forces and the possibility of the useful extension of a 
given phenomenological model. All these points are illustrated through the 
dispersion curves of tungsten. 

Theory 

The secular equation determining the angular frequencies of normal modes of 
vibration can be written as 

(1) 

where the dynamical matrix D is the sum of central, angular and electronic com
ponents, namely, 

(2) 

and m is the ionic mass, OJ is the angular frequency and I is the unit matrix. Denoting 
the force constants of the central interactions corresponding to the first, second, third 
and fourth neighbours by al> a2' a3 and a4 respectively and those corresponding to 
angular interactions up to third neighbours by a', a" and a"', we have 

Here, 

D~l +D~l = t(al+2a')(I-C1C2C3)+4a2St 

+4(a3+a"')(2St+S~+S~ -2si S~ -2si S~) 

+iTa4{88 +264 C1 C2 C3 -32 C1 C2 C3(9ci+ C~+ Cm 

+2a"{2 -cos(2nak2) -cos(2nak3)}, (3) 

D~2 +D12 = t(al- a')Sl S2 C3 +8(a3 -a"')Sl S2 C1 C2 

+iTa4{120S1S2C3 -32S1S2C3(3Si+3S~-Cm. (4) 

Ci = cos(naki) and Si = sin(nak;) , (5) 

a being the lattice constant, and k i being the phonon wave vector component, with 
i = 1, 2, 3. 
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In the present study, D~j is introduced through the Sharma-Joshi (1963) and 
Krebs (1965) models. For the Sharma-Joshi model, we have 

(6) 

where Ve is the bulk modulus of the electron gas, x is given by 

x = 2nkro, (7) 

ro being the radius of the Wigner-Seitz sphere, and the function G(x) is given by 

G(x) = 3x- 3(sinx -xcosx). (8) 

For the Krebs model, we have 

Here A is the electronic force constant, h is the reciprocal lattice vector, 
q = 2nk,and 

where 
K; = K;(P)J(t) , 

Ke(P) = o· 353(Ye/aoY!- kF 

(10) 

(11) 

is the Bohm-Pines screening parameter, with Ye = (3/4nneyt being the interelectronic 
spacing and ne the electronic number density, while kF is the Fermi vector and 
ao = 0·529 A is the Bohr radius. The function J(t) in equation (10) is given by 

1 1 - t2 
( 11 + t I ) J(t) = "2 + -In - , 

4t 1-t 
(12) 

where 
t = (iq+hl)/2kF • (13) 

Finally, the quantity B in equation (9) is given by 

B = 2nYe/a. (14) 

The force constants involved in the dynamical matrix of a b.c.c. metal are 
related to the measured elastic constants, the lattice constant and the zone 
boundary frequencies. In the present work the force constants were determined from 
the following experimental values (Featherston and Neighbours 1963) for tungsten 
at 300 K: 

a 

52- 327 x 1010 20 -453 X 1010 16- 072 x 1010 Pa 3-165x 10-10 m 

and the following frequencies (Chen and Brockhouse 1964): 

00~ Gl~ Gl~ Gl~ 

5-50xlO12 5-50x1012 6-75xlO12 4-40x1012 Hz 

The resulting force constants are listed in Table 1. 
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Figs la-ld. Phonon dispersion curves for tungsten in the indicated directions for: 

(a) the Sharma-Joshi model incorporating radial forces out to the fourth nearest neighbours 
and angular forces out to the second nearest neighbours; 

(b) the Sharma-Joshi model incorporating radial and angular forces out to the third nearest 
neighbours; 

(c) the Sharma-Joshi model incorporating radial forces only out to the third nearest neighbours; 

(d) the Krebs model incorporating radial and angular forces out to the third nearest neighbours. 
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Fig. Ie 
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Figs lc and ld (see caption opposite). 

Table 1. Force constants for tungsten 

Units are 102 Pa, where 1 Pa (pascal) = 10 dyn cm- 2 • 

56·483 
63 ·128 
53·532 

61·953 

41· 344 
46·049 
46'119 

44'082 

6·717 
4·392 

21'752 

3·497 

(a) Sharma-Joshi model 

2·942 

-5,115 13·243 

(b) Krebs model 

2·169 

(X"' 

-1' 714 -0,358 

-14,156 

0·1684 -0·3294 

Ve a 

15·914 
13·866 
10· 213 

34·827 
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Results and Discussion 

The dispersion curves of tungsten obtained from the extended Sharma-Joshi 
model covering radial interactions out to the fourth nearest neighbours and angular 
interactions out to the second nearest neighbours are presented in Fig. la. Results 
of the same model coupled with three radial and three angular force constants are 
displayed in Fig. lb. These results, when compared with those reported previously 
on the basis of the same model coupled with a limited number of force constants 
(Pal and Sharma 1965; Behari and Tripathi 1972), feature no overall improvement 
except for the removal of degeneracy in the transverse branch in the [110] direction 
at the cost of a marked deterioration in the longitudinal branch in the [100] direction 
(Fig. la) and the transverse branches in the [111] and [100] directions of Fig. lb. 
Also, the frequencies for the wave vectors beyond ~ = 0·5 in the [111] direction 
differ markedly from the experimental values and hence are not shown in Fig. la. 
These results clearly indicate the inadequacy of the Sharma-Joshi model in its extended 
form to reproduce dispersion curves which exhibit improved agreement with the 
experimental data. Results obtained from the Sharma-Joshi model, with three 
radial force constants only, are presented in Fig. Ie. A comparison with Fig. lb 
and with results reported previously (Pal and Sharma 1965; Behari and Tripathi 
1972) shows clearly the unimportance of the angular forces, particularly when they 
are coupled with the Sharma-Joshi model. Dispersion curves calculated for the Krebs 
model with three radial and three angular force constants (Fig. ld) when compared 
with those reported by Mahesh and Dayal (1966) lead to the same conclusion. 

It is important to comment on the deterioration apparent in certain parts of the 
present dispersion curves as compared with the successful application of the 
extended form of the de Launay model to some metals by Shukla and Salzberg (1973) 
and Shukla and Cavalheiro (1973a, 1973b). The behaviour of the longitudinal 
branch in the [100] direction (Fig. la) shows that there is an overestimation of the long 
range forces. Deterioration in certain parts of the theoretical dispersion curves 
implies that there are limitations in the conduction electron-ion interaction model, 
and thus the model will not reproduce the experimental frequencies at some points 
in the q space. 

The situation is different for the de Launay (1956) model, which differs from other 
phenomenological models in that it does not explicitly give a separate expression for 
the conduction electron-ion interactions; the effect of these interactions being 
embodied in the modified force constants for longitudinal vibrations. In this circum
stance, a gradual increase in the number of force constants and an appropriate 
modification of the force constants for longitudinal components would gradually 
account for conduction electron-ion interactions. It is for this reason that the 
extended forms of the de Launay model yield better results. To overcome such 
gratuitous agreement, it seems to us to be more important to formulate a correct 
account of the conduction electron-ion interactions, and not merely to increase the 
number of radial and angular force constants. 
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