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A model based on dimensional arguments is presented in order to predict the propagation velocity 
of the entrained fluid of a neutrally buoyant spherical vortex. The model vortex is characterized 
by single length and velocity scales. Its behaviour is considered in the two limiting cases of zero 
and infinite Reynolds number. Comparison of predictions from the model with experimental 
observations suggests that all stable vortices can be characterized by these two cases. 

Introduction 

A vortex is formed in a viscous homogeneous fluid whenever a finite volume of 
the fluid impulsively attains momentum relative to its surroundings. Provided that 
the moving fluid is not influenced by any boundary after the initial impulse, the 
viscous stresses produced by the motion give rise to a localized region of vorticity 
which causes the volume to entrain ambient fluid and to propagate in the direction 
of the initial impulse. If the initial aspect ratio of the volume is not too far from unity 
then the shape of the volume of entrained fluid may be expected to be spheroidal 
(but when the initial aspect ratio is far from unity, the resulting motion probably 
is unstable and breaks down to form a family of spherical vortices). Indeed, some 
observations by Maxworthy (1972) of vortices generated by the injection of a small 
quantity of water through a hole in one side of a water filled tank suggest that the 
shape of the entrained volume of fluid is spherical. Moreover, it has been shown that 
the behaviour of vortices produced by water drops falling into a water tank is des
cribed well by a theory involving spherical vortices (Manton 1974). 

In the present paper, dimensional arguments are given to predict the radius and 
propagation velocity of a spherical vortex in the formal limiting cases of zero and 
infinite Reynolds number. In the former case inertial effects are assumed to be 
dominated by viscous effects, while the gross properties of the vortex are taken to 
be independent of the molecular viscosity of the fluid in the latter case. The model 
equations in this paper include a formulation of the assumption that the momentum 
of a vortex is conserved. This contradicts the suggestion of Maxworthy (1972) that 
a vortex systematically loses momentum in the form of a wake. On the other hand, 
the predictions of the model are found to be consistent with the independent measure
ments made by Banerji and Barave (1931), Keedy (1967) and Maxworthy. Moreover, 
the low Reynolds number results are identical to those obtained by Manton (1974) 
from the asymptotic solution of the Navier-Stokes equations. The existence of a 
distinct wake behind a vortex has not been demonstrated unambiguously (L. Cubitt 
and B. R. Morton, personal communication). 
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Model of Vortex 

Because observations suggest that vortices of initial aspect ratio near unity are 
approximately spherical, we consider a class of vortices whose bulk properties can 
be characterized by a single length scale r and a single velocity scale v. The length 
scale is to be identified with the radius of the entrained fluid (or radius of the equivalent 
sphere if the entrained fluid is not spherical) and the velocity scale is to be identified 
with the propagation velocity of the entrained fluid. It follows that the momentum 
and energy of the vortex can be scaled with pr3v and pr3v2 respectively, where p is 
the fluid density. 

Because there is no net external force acting on the system once the vortex is 
formed, momentum is conserved and so 

(1) 

where t is time. A second relation between r and v is given by the assumption that 
the rate of dissipation of the energy of the vortex depends explicitly upon neither 
time nor the initial conditions, i.e. the dissipation rate is a function only of the local 
scales r and v and of the fluid properties p and /l, the dynamic viscosity. Thus the 
II theorem (see e.g. Sedov 1959) implies 

(2) 

where r = prvl/l is the local Reynolds number, and F is a dimensionless function. 
The system of differential equations (1) and (2) is closed by the specification of 

the initial conditions and the dissipation function F. The initial conditions are taken 
to be 

r = R and v = V at t = 0. (3) 

We consider the form of F in two limiting cases. As the Reynolds number r goes to 
zero, we expect inertial effects to become unimportant, and so the dissipation rate 
ought to become independent of p. Hence we take 

F(r) '" air as r --+ 0, (4) 

where a is a dimensionless constant. At very large Reynolds numbers, the rate of 
energy dissipation should become explicitly independent of the fluid viscosity, this 
being the case in turbulent flows where the rate of dissipation is governed by the 
large scale motions. We therefore assume that 

F(r) '" f3 as (5) 

where f3 is a dimensionless constant. 
The solution of the system (1) and (3) with F given by (4) is 

and (6a, b) 

where to = (3/2a)(R2Iv) and v = /lIp is the kinematic viscosity of the fluid. Equations 
(6) correspond to the asymptotic (zero Reynolds number) solution of Phillips (1956) 
and B. R. Morton and J. L. McGregor (personal communication). Equation (6b) is 
identical to equation (13) of Manton (1974) (except for a linear transformation in 
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time), with the parameter 1]0 in the latter work given by 

I]~ = aj3. 
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(7) 

Integrating equation (6b) with respect to time, we find the propagation distance 
of the vortex centre y to be such that 

(8) 

where r 0 = RVjv is the initial Reynolds number of the vortex. Hence, from equations 
(6b) and (8), the velocity of the vortex as a function of position is seen to be 

vjV = {I -(aj3)rol(yjr)p. (9) 

Thus equations (6)-(9) describe the gross behaviour of a vortex in the low Reynolds 
number case. 

For the high Reynolds number case, the system (1)-(3) with F given by (5) has the 
solution 

and (lOa,b) 

where tl = (3j4fJ)(RjV). From equation (10b) we find the propagation distance 
and velocity of the vortex to be given by 

and vjV = {I + (fJj3)(yjR)} -3. (lla, b) 

Discussion 

To compare the predictions of the previous section with experimental results, 
it is necessary to know the initial velocity V and radius R of each observed vortex. 
The value of V can be found reasonably well by extrapolating the data back to the 
time origin. On the other hand, the equivalent radius R cannot be obtained in general. 
However, it is seen from equations (8), (9) and (11) that the functional form of the 
relationship between v and y is not affected by the value of R. The low Reynolds 
number parameter a could be replaced by aj R2, and the high Reynolds number 
parameter fJ by fJjR. This implies that choosing incorrect values of R for different 
sets of data leads to different values of a, although each data set should be consistent 
with the appropriate equation of the previous section. 

A further problem is that the kinematic viscosity v of the fluid (water) used in 
each of the experiments discussed here was not stated by the authors. Manton (1974) 
considered the results of Keedy (1967) in terms of v = 1·3 x 10 - 2 cm 2 s -1. This 
corresponds to a temperature of 10°C, which probably is unrealistically low. In 
the present work, we therefore take v = 1·0 X 10- 2 cm2 s-t, corresponding to a 
temperature of 20°C. Using equation (7) and compensating, for the changed value 
of v, we find from Manton (1974) that the observations of Keedy for initial Reynolds 
numbers ro between 189 and 311 fit equation (9) with a = 12·9. Keedy's vortices 
are generated by dyed water drops falling into a tank of clear water, and so the initial 
radius R is not well defined. The value of R is taken to be the radius of the dyed 
vortex core extrapolated back to the origin. 

Fig. 1 shows the behaviour of the vortex velocity v with propagation distance y 
observed by Maxworthy (1972) for vortices with initial Reynolds numbers r 0 ;S 250. 
(Two other data sets with roof the order of 400 are presented in that work, but they 
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do not align with the data shown here.) It is seen that these results are consistent 
with the low Reynolds number equation (9) for IX = 16·0. However, as no informa
tion was given on the volume of fluid initially injected, the equivalent radius R is not 
known. Consequently, R is set equal to the radius of the tube through which the 
injection took place, namely, 0·25 inches . 
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Fig. 1. Comparison of the predicted 
relationship (straight line) between the 
normalized velocity vi V and the normalized 
propagation distance ylR as given by the 
low Reynolds number equation (9) for • ~ 250 
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IX = 16·0 with the experimental results of 
Maxworthy (1972) for the initial Reynolds 
numbers indicated. 

Some careful observations of vortices generated by injecting a known volume of 
water into a tank were displayed by Banerji and Barave (1931). In Fig. 2a, their results 
for r 0 ;:S 350 are compared with the low Reynolds number equation (8) for IX = 16· 1. 
The initial equivalent radius R differs by a factor of 2·0 in the observations, although 
the radius of the inlet tube was unchanged. The lack of scatter in the data suggests 
that R is indeed the relevant length scale. 
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Fig. 2. Comparison of the predicted relationships (curves) between the normalized propagation 
distance ylR and the time t as given by 

(a) the low Reynolds number equation (8) for IX = 16·1 and 

(b) the high Reynolds number equation (Ila) for P = 0·0567 

with the experimental results of Banerji and Barave (1931) for the initial Reynolds numbers indicated. 

Thus three independent studies suggest that the gross behaviour of vortices with 
initial Reynolds numbers less than about 350 is described adequately by the present 
model in the low Reynolds number case. Although the experimental value of IX 

varies between 12·9 and 16· 1, there is a large degree of uncertainty associated with 
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the experimental values of Rand v. The observations are therefore not inconsistent 
with the dissipation parameter rx being a universal constant equal to approximately 16. 

Banerji and Barave (1931) presented data for three vortices with r 0 > 600. These 
data do not appear to conform with the low Reynolds number equation (8). On the 
other hand, they do coincide well with the high Reynolds number equation (lla) 
for fJ = 0·0567 (see Fig. 2b). Now Maxworthy (1972) asserted that vortices with 
Reynolds numbers in the range 300;5 r 0 ;5 500 are inherently unstable, while 
stable vortices with r 0 ;;;:; 500 can exist. This result and the observations of Banerji 
and Barave suggest that all stable vortices can be characterized by the present model: 
the high Reynolds number case is applicable to vortices with r 0 ;;;:; 500 and the low 
Reynolds number case to those with r 0 ;5 300. 

From equations (4) and (5), we see that the rate of dissipation of energy in a 
vortex for the low Reynolds number case equals that in an equivalent vortex for 
the high Reynolds number case when the Reynolds number is r t , where 

(12) 

Thus, if a stable vortex exists at a Reynolds number r and if the vortex tends to 
maximize the rate of dissipation of its energy, then F(r) ought to be given by equation 
(4) for r < r t and by equation (5) for r > rt. Inserting the value of rx and fJ found 
from the results of Banerji and Barave (1931) into equation (12), we obtain r t = 284. 
This can be compared with the observation of Maxworthy (1972) that vortices 
with r 0 ;;;:; 300 are unstable. Hence r t appears to give an upper limit on the low 
Reynolds number case. Any vortex with r < r t ought to be laminar and to remain 
stable as r decreases with time. 

On the other hand, the behaviour of vortices which approach r t from above 
has apparently not been studied. The Reynolds number of a vortex in the high 
Reynolds number case decreases continuously; in particular, equations (10) and (11) 
give 

rlro = {1 + (fJI3)(yIR)} -2. (13) 

Thus a stable vortex must be followed over a large distance before the Reynolds 
number approaches rt. For example, equation (13) implies that a vortex travels 
about 22 R before r falls to half its initial value. 
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