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Abstract 

It has been found that the mass yield curves for 232Th, 233U, 235U, 238U and 239pU neutron fission 
can be fitted, with an accuracy of better than 20 %, by the superposition of two pairs of asymmetric 
gaussian curves and a single symmetric gaussian curve. The parameters of the fit have been investi­
gated as a function of the nuclear temperature at the saddle point of the fissioning compound nucleus, 
and the widths and positions are found to vary linearly with this temperature. In addition, broad 
peaks are found in the weights of the gaussians, the weights being related to partial fission cross 
sections. This empirical analysis has been compared with the predictions of the Nix (1969) model 
of fission and deficiencies in the existing theory are discussed. 

Introduction 

In a recent review, Specht (1974) discussed the long-standing puzzle as to why 
the yield curves for spontaneous and neutron fission should be so asymmetric. No 
quantitative theory has yet explained this satisfactorily nor been able to predict 
the detailed shape of the yield curves. In an earlier model, Nix (1969) argued that 
the shape of the fissioning nucleus can be described in terms of normal coordinates 
which oscillate with time. The probability distributions for the initial position and 
momentum coordinates are gaussian in shape for such oscillators. Nix assumed that 
the transformation equations which take the nucleus to the saddle point are linear, 
and therefore the resultant distributions for the masses and energies at infinity must 
also be gaussian in shape. However, he neglected the well-known fact that for such 
nuclei (Specht 1974) the scission point takes place at a much later time than the 
saddle point, and in such a time the mass distributions between the two halves of 
the nucleus could change appreciably. Nix was well aware of these deficiencies in 
his model; furthermore, he only obtained symmetric fission with the model. It 
seems likely, therefore, that an empirical investigation of the yield curves could 
throw some light on the details of what a comprehensive theory should predict in 
relation to the magnitude of parameters and their energy dependence. Such infor­
mation is of value in reactor physics design studies, in which the energy dependence 
of yield curves is usually neglected, and for which no suitable information is available 
for neutron energies between 2 and 14 MeV, over which range the curves change 
appreciably. 

Delayed radiochemically determined yield curves for neutron fission of 232Th, 
233U, 235U, 238U and 239pU were fitted by E. A. C. Crouch (personal communication) 
who assumed that the prompt fragment yield curve consisted of a superposition of 
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two gaussians and that their counterparts reflected about half the fissioning mass. 
He then fitted the delayed yield curves by generating a set of neutron emission prob­
abilities from a Poisson distribution and determined the prompt yield gaussian 
parameters. Although he obtained an energy dependence for these parameters he 
did not investigate the laws involved. Furthermore, he assumed that the symmetric 
contribution is always flat. 

Mass Yield Curve 

Following the assumptions of Crouch (personal communication) and the con­
clusions of the Nix (1969) theory, one can see by inspection that the delayed yields 
evaluated by Flynn and Glendenin (1970) and Meek and Rider (1974) should fit 
reasonably well to five gaussian curves. Accordingly we put 

s 
YeA) = 100 L WdC2n)taJ -1 exp{ -(A-Ai)z/2af}, (1) 

i= 1 

where YeA) is the mass yield of a given chain of nuclides with mass number A, 
aT the variance of the ith gaussian, Ai the peak of the ith gaussian and Wi the weight 
of the ith gaussian. Each of these quantities is a function of the nuclear excitation 
energy E. Integrating equation (1) over A, we find the condition on the weights 

S 

W1 +t I Wi = 1, (2) 
i=Z 

where the first gaussian IS chosen to be symmetric about the symmetric delayed 
fission mass 

(3) 

with Af the mass of the nucleus undergoing fission and v the average number of 
neutrons released per fission. 

We now postulate that neutron emission from the prompt fragments does not 
have much effect upon the symmetry of the mass yield curve and we put 

A4 = 2A1 -Az , 

A3 = 2A1- A S' 

so that the condition (2) becomes 

(4) 

(5) 

This yields eight parameters, which have in excess of 100 points and vary over five 
orders of magnitude, to be fitted to mass yield curves. 

Figs la-Ii (pp. 127-31). Fits to mass yield curves from neutron fission: 
(a) 2 MeV neutrons on 232Th, 
(d) 2 MeV neutrons on 235U, 
(g) 14 MeV neutrons on 238U, 

(b) thermal neutrons on 233U, 
(e) 14 MeV neutrons on 235U, 
(h) thermal neutrons on 239pU, 

(c) thermal neutrons on 235U, 
(f) 2 MeV neutrons on 238U, 
(0 2 MeV neutrons on 239PU. 
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Using a least-squares analysis, the following fits were carried out: 

232Th. Neutron fission at incident energies of 2 and 14 MeV. 

233U. Neutron fission at incident energies of thermal and 2 and 14·8 MeV. 
235U. Neutron fission at incident energies of thermal and 2 and 14 MeV. 
238U. Neutron fission at incident energies of 2 and 14 MeV. 

239pU. Spontaneous fission of 240pU; neutron fission at energies of thermal 
and 2 and 14 MeV. 

The 14·8 MeV 233U and 14 MeV 239pU data are very poor, with only a limited 
number of points. The fits where at least 100 points were measured are shown in 
Figs la-Ii. The r.m.s. deviation from the fits nowhere exceeded 20% and improved 
as the excitation energy became greater. This deviation came almost entirely from 
fine structure which is in part understood (Musgrove et al. 1973). Let us now consider 
the energy dependence of the parameters obtained from the fits. 

Energy Dependence of Gaussian Variances 

Following Lang and Le Couteur (1954) and Gilbert and .Cameron (1965), the 
nuclear temperature e of the fissioning nucleus at the saddle point, where the fission 
barrier of energy Ee has to be overcome, is related to the excitation energy E by the 
approximate equation 

(6) 



132 J_ L. Cook et ai_ 

Table 1. Fits to standard deviations 

Energy 0"1 0"1 0"2 0"2 0"3 0"3 
(MeV) (data) (fit) (data) (fit) (data) (fit) 

232Th (Ee = 6-15 MeV) 

6-8 11-4±1-1 11-4 3-32±0-4 3-32 2-80±0-07 2-80 
18-8 12-66±0-06 12-66 4-53 4-53 2-2±0-3 2-2 

0"1(0): 11-1±1-4 2-38±0-06 3-0±0-1 
Slope: 0-4±0-4 0-49±0-03 -0-22±0-12 

233U (Ee = 5-08 MeV) 

6-8 9-9±0-3 10-1 4-28±0-03 4-24 3-33±0-07 3-32 
8-8 13-9±0-1 13-9 4-42±0-02 4-44 1-5±0-1 I-51 

21-6A . 1O±5 27 6-1±0-3 5·1 8±4 5 

0"/(0): 2-2±1-0 3-81±0'09 7'2±0-3 
Slope: 6'1±0'5 0-33±0-05 -2'0±0-2 

235U (Ee = 6'10 MeV) 

6-5 10-68±0-Q3 10-66 4-03±0-02 4·06 2'90±0-05 2-93 
8·5 11-01±0-06 11-10 4'64±0'03 4-55 2-97±0'09 2-83 

20-5 12-60±0'04 12·60 6-03 ±0'04 6·06 1-73±0'42 2-5 

0"1(0): 9'86±0'05 3 ·24±0·05 3'1±0-2 
Slope: 0-70±0-02 0·72±0·02 -0-16±0-11 

23 8 U (Ee = 6-12 MeV) 

6-8 9'88±0-3 9·88 4-22±0-02 4-22 2·91 ±0-04 2-91 
18-8 11-98±0-08 11-98 6·21 ±0·02 6-21 2-2±0'3 2·2 

0"/(0): 0·04±0·05 3-43 ±0-04 3-2±0-1 
Slope: 0-81±0'03 0-77±0-02 -0-25±0-11 

23 9pU (Ee = 4-80 MeV) 

0 2-2±1-0 2·2 3-9±0-3 3·8 1-9±0-2 2-4 
6'5 4-5±0'7 4·5 4-74±0'03 4-73 3· 59±0-06 3-50 
8-5 5-5±1-1 5·5 5-16±0-04 5·17 3· 84±0-08 3·97 

20-5 8-8±4-4 9·1 11-8±2-0 6-6 HI 5-6 

0"1(0): 2'2±0-2 3'8±0-1 2-4±0-1 
Slope: 1·7±0·4 0'70±0-07 O' 80±0-1 

A The data for 21 . 6 MeV were poor_ 

where a is the level density parameter of Gilbert and Cameron, which is given by 

a = AeO-00917 S +0-142, (7a) 
with 

S = S(Z)+S(N) (7b) 

Gilbert and Cameron provided tables of S(Z) and S(N)_ We used the recent measure­
ments of the fission barriers for heavy nuclides of Back et ai_ (1973a, 1973b) for the 
values of Ee, the value taken being the largest of the two barriers in the now estab­
lished double humped fission barrier theory_ 

We further postulate that the variances of the gaussians change slowly with 
nuclear temperature and so the Taylor expansion 

(8) 
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can be truncated at the second term. If this assumption is justified, the standard 
deviations of the gaussians should vary linearly with (E - Ef)t. 

Table 1 gives the results of linear least squares analysis of the three variances 
for the five nuclides investigated. The linear least squares error analyses of the slope 
and intercept of the straight line fit for each of 233U and 235U, where there are three 
points, and 239pU, where there are four points, give an indication of the acceptability 
of the law (equation 8). In each case, the errors were small and the fits can be con­
sidered to be good, especially in the case of 235u. 

The only theory that so far predicts the energy dependence of these variances is 
that of Nix (1969). In the quantized version of his theory each mode of oscillation 
in the liquid drop model contributes an amount 

(9) 

where W;. is the characteristic frequency of the Ath mode, in the usual liquid drop 
model. For small e or large W;. 

(lOa) 

while for large e or small w;. 

(lOb) 

We see, for low energy oscillators, that equation (lOb) predicts a linear dependence 
upon e for ar;.. Thus if 

00 co 

al(E) = L aliE) = a12(E) + L a;iE) , 
;'=2 ;'=3 

then 

(11) 

where the remaining terms in the Taylor expansion are small. One can see that 
under conditions where Wz is small, while W3 and the other frequencies are large, 
the standard deviations will be approximately linear with e. 

Results for calculated values of a direct fit to equation (8) are shown in Table 2 
and the frequencies obtained are compared with the predictions of the liquid drop 
model and the Nix (l969) model. One can see that the frequencies obtained from 
the experiments are of the same order as the predictions of the Nix theory, but one 
cannot specify which mode contributes most to each gaussian, as one would expect 
the frequencies at scission to have changed appreciably from the frequencies at the 
saddle point. Note also that the rule (9) predicts a monotonically increasing function 
of E for a 3(E), while the fits in Table 1 show clearly that it is a monotonically decreas­
ing function of E. Clearly, the liquid drop theories are inadequate in explaining 
either the asymmetry or the energy dependence. 

The third peak has one interesting feature. For each mass number of a product, 
Wahl et aI. (1962) have shown that there is a dispersion in charge Z which has a 
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gaussian distribution about a mean value Zp(A). From these values of Zp we find 
that the position of the small third gaussian occurs for A-Zp = 82, a magic number 
in the shell model. Thus, a shell structure in the daughter nuclides contributes 
appreciably to the shape of the inside slopes of the mass yield curves. No such 
correlation exists for the position of the large outside gaussians. 

Table 2. Fits to density of states of oscillators 

The frequencies W A obtained from the fits are compared with the predictions of the 
liquid drop and Nix (1969) models 

Calculated values Liquid drop Nix 
Nuclide xA (J"~(O), hW1 (MeV), hW2 (MeV), hW2 (MeV), 

(J"~(O) hW2 (MeV) hW3 (MeV) hW3 (MeV) 

232Th 0·7527 123, 1'01, 1'2, 0'60, 
8'5 0·72 2·8 1·50 

233U 0'7739 111, 1'72, 1· 2, 0'65, 
17·42 0·928 2·8 1·55 

235U 0·7717 114,8, 1·22, 1'2, 0·65, 
15·32 O' 581 2·8 1·55 

238U 0'7686 81'7, 1'00, 1·2, 0'63, 
11·76 0·558 2·8 1·58 

239pU 0·7897 5, 0·1, 1· 2, 0'70, 
20·2 0·645 2·8 1·60 

A x is Nix's fissionability parameter. 

Energy Dependence of Positions 

Owing to the symmetry of the mass yield curve about l(Ar - v), we need consider 
only AI' Az and A3 in determining the energy dependence of the positions of the 
peaks. From equation (3) and the relation (Templin 1961) 

veE) = v(O) + BE , (12) 

where B is a constant, we find that 

(13) 

gives the energy dependence of the centre. This is indeed observed to be the case 
for all examples, as shown in Table 3. The values of V(O) obtained by us are within 
the experimental errors tabulated by Hyde (1971). The other two heavy peaks show 
a weaker dependence upon energy and so, once again, we surmise that the Taylor 
expansions 

Az(E) = AzCEf) +a- t ( dAzCEf)7de)(E-Ef)t + ... , (14a) 

A3(E) = AiEf) +a- t ( dA3(Er)/de)(E-Ef )t + .. . (14b) 

might suffice. This conjecture proves to be correct in all cases, as shown in Table 3. 
The Nix (1969) theory leads only to symmetric fission, so it makes no statement 

about the possible positions of asymmetric peaks. ' 
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Table 3. Energy dependence of position~ of peaks 

Energy 
(MeV) 

23zTh 

6·8 
18·8 

A,(E!): 
Slope: 

6·8 
8·8 

21·6 

A,(E!): 
Slope: 

6'5 
8·5 

20·5 

A,(EI ): 

Slope: 

6·8 
18·8 

o 
6·5 
8·5 

20·5 

A,(E.): 
Slope: 

Centre 
(data) 

Centre 
(fit) 

115·7±0·1 115·7 
114·7±0·1 114·7 

116·3±0·5 (E = 0) 
-0'086±0'004 

115·8±0·2 115·9 
116'0±0'2 115·8 
115·1±0·7 115·3 

116·2±0·1 (E = 0) 
-0,041 ±0'005 

117·0±0·1 117·0 
116·9±0·1 116·9 
116·3±0·1 116'3 

1l7·3±0·1 (E = 0) 
-0,051 ±0·03 

118·4±0·1 118·4 
117·7±0·1 117·7 

118'8±0'0 (E = 0) 
-0,061 ±0·003 

119·1±0·2 119·0 
118·7±0·1 118·8 
118·8±0·1 118'7 
1l7·9±0·4 118·2 

119·0±0·1 (E = 0) 
-0·040±0·006 

Energy Dependence of Weights 

Az 
(data) 

Az 
(fit) 

142· 7 ±O' 2 142· 7 
139·5±0·3 139·5 

143·7±0·3 
-1·18±0·13 

140· 7 ± O' 2 140· 6 
139'6±0'1 139·6 
136'8:f0'9 136·1 

142·8±0·5 
-1·64±0·25 

142·1±0·1 142·1 
140·8±0·2 140·9 
137·2±0·2 137·2 

144·1±0·2 
-1·77±0·08 

143·7±0·1 143·7 
138·8 ± O' 2 l38· 8 

145·6±0·2 
-1·89±0·10 

140·6±2·1 141·7 
143·9±0·2 143·5 
143·9±0·3 144·4 
l37'5±0'7 147·2 

141'7±0'5 
1·4±0·3 

A3 
(data) 

135 

135·8±0·2 135·8 
134'4±0'3 134·4 

136: 3 ±O· 3 
-0·53±0·15 

133·8±0·3 133·8 
l32· 9 ± O' 2 l32· 9 
135 ± 10 130 

135·9±0·9 
-1'6±0'5 

134· 8 ± O' 2 134· 7 
133·9±0·2 134·1 
132'5±0'4 132'4 

135'7±0'3 
-0·86±0·17 

135·1±0·1 135·1 
132·9±0·3 133·0 

l36·0±0·2 
-0·84±0·13 

133·6±0·7 134·3 
135·5±0·2 l35·4 
135·9±0·2 135·9 
136·0±0·9 137'5 

l34·3 ::bO· 3 
0'80±0'18 

The weights defined in equation (1) are related to the cross section for the formation 
of fragments in each mode, i.e. 

(15) 

where aiE) is the fission cross section for the formation of all modes. Since the 
largest gaussians are evidently related to the collective modes of oscillations, we 
parameterized the three weights in terms of production phase shifts 81 and 82 such that 

(16) 

We also tried parameterizing the production phase shifts by means of the relations 

(17) 

where E1 and E2 are resonance energies and r 1 and r 2 are total widths. The values 
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for these parameters are listed in Table 4. Plots of tan 81 and tan 82 gave straight 
lines in all cases, with a value for E2 very close to 14 MeV and the second chance 
fission threshold. It appears likely that this peak is related to the (n, nf) fission cross 
section threshold, since it occurs just before the large enhancement in the fission 
cross section due to this process. In 239pU, a plot of cos 82 rather than the tangents 
gave a straight line, indicating that the character of the resonance had changed for 
that nuclide to a maximum in the inner peak. 

Table 4. Resonance parameters for gaussian weights 

Nuclide £1 £2 r 1 r 2 

(MeV) (MeV) (MeV) (MeV) 

232Th 4·2±0·2 14·4±1·3 59· 7 ± 1·1 20·3±1·4 
233U 5'7±0'2 14·6±2·1 53·9±1·2 29·8±3·6 
235U 4·6±0·2 17·3±1·0 95·9±2·0 25·4±1·2 
238U 3·4±0·2 15·6±0·7 94·3±2·9 17·0±0·6 
239pU 1·5±2·6 21·5±7·0 2·5±8·0 39·7±12·2 

As a test of these laws, the eight yields quoted by Flynn and Glendenin (1970) 
are compared in the following tabulation with the predictions for 235U bombarded 
by 8 MeV neutrons; the agreement is seen to be satisfactory. 

Mass number 99 144 147 149 153 154 159 161 

Measured yield (%) 5·4 3·6 2·05 1·25 0·185 0·035 0·0063 0·002 
Calculated yield (%) 5·3 3·7 1·93 1·17 0·192 0·051 0·0058 0·0021 

Conclusions 

In this work, empirical laws for the energy dependence of gaussian parameters 
for fission product mass yield curves have been tested successfully. A comparison 
of the predictions of models for the fission process has shown that the Nix (1969) 
theory correctly forecasts the Gaussian shape of each mode and the variation of 
some of the variances. However, this theory does not predict the energy dependence 
of the peak positions or the gaussian weights, but nor does any subsequent theory. 
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