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Abstract 

In applications of the semi-classical approximation to excitation of atoms by electron impact, it is 
commonly assumed that the trajectory of the incident electron can be taken to be a straight line. 
The validity of this assumption is tested by comparing cross sections obtained in a coupled channel 
model using either a straight line trajectory or a trajectory computed from an effective potential. 
It is found that as far as total cross sections are concerned the assumption of a straight line trajectory 
does not cause appreciable error for elastic scattering at incident energies above 200 eV and for 
inelastic scattering above 100 eV. The influence of the choice of trajectory on the angular distributions 
is discussed briefly. 

Introduction 

The semi-classical or 'impact parameter' approximation has been used in atomic 
collision problems for many years (Bransden 1970; McDowell and Coleman 1970). 
To illustrate the method, we can consider the excitation of a hydrogen atom by a 
projectile of charge Z and mass m (atomic units with me = h = e = 1 are used 
throughout). Under suitable conditions it is possible to represent the motion of the 
projectile by a classical trajectory. These conditions are that the potential field in 
which the projectile moves should not vary appreciably over one wavelength and 
that the angular deflection of the projectile should be well defined. The first of these 
conditions can be stated roughly as 

a ~ (mv)-l, (1) 

where v is the velocity of the projectile and a the 'size' of the atomic field (several 
times ao, the Bohr radius of the atom). The second condition is 

where () is the angle of scattering and the critical angle ()c is given by 

()c = (mva)-l. 

(2) 

(3) 

In the case of the excitation of an atom by protons or other heavy particles, the 
condition (1) is well satisfied at all energies above a few electron volts, and the critical 
angle (}c is very small, so that (2) is satisfied over the range of () accessible to experi
ment. For electron scattering, to reduce ()c to less than 0·1 rad, taking a ~ 1 a.u., 
we require energies above 3 keY. Despite this, methods based on the semi-classical 
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approximation appear to produce useful results at much lower energies so that the 
conditions (1) and (2) must be considered to be sufficient rather than necessary. 

If R is the position vector of the projectile with respect to the nucleus of the target 
atom, the classical trajectory followed by the projectile can be written 

R = R(b,t), (4) 

where b is a two-dimensional impact parameter vector in the scattering plane such 
that, as t --+ - 00, the trajectory coincides with the straight line (see Fig. 1) 

R = b+vt, 

b 

z 

b.v = O. 

Fig. 1. Diagram of vectors involved 
in the atomic collision problem 
(see text for definitions). 

(5) 

The collision problem then consists in the solution of the time-dependent Schr6dinger 
equation for the bound electron 

(_tv2 + V(r,t) -r- 1 )IJ'(r,t) = iolJ'(r,t)/ot, (6) 

where the interaction between the projectile and the target atom is 

VCr, t) = {R(t)} -1 - I R(t)-r r 1 . (7) 

It is not possible to solve equation (6) exactly, so various approximations have been 
devised; but before these can be applied, it is necessary to define the trajectory (4) 
followed by the projectile. It has been almost the universal practice* in electron 
scattering to make the rather drastic approximation of ignoring the deflection of the 
projectile and taking the trajectory to be the straight line (5). 

It is the purpose of this paper to determine the energy above which the straight 
line trajectory approximation becomes accurate, by comparing cross sections for 
the excitation of the n = 2 levels of hydrogen computed from a straight line trajectory 
with those computed from a curved trajectory determined by assuming an effective 
potential between the projectile and target. For proton scattering by a neutral target 
the solution to this problem is well known (see e.g. Bransden 1972). The straight 
line approximation remains valid down to energies of about 1 keY, and for lower 
energies it is important to use a better approximation to the trajectory of the proton. 

* Within the Glauber approximation to equation (6), combinations of two straight line trajectories 
have been proposed (see Gerjuoy and Thomas 1974) and an improved formulation allowing for 
different velocities of the projectile in different channels has been developed by Flannery and McCann 
(1974a). 
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Coupled Channel Model 

To carry out numerical calculations of the Is~2s and Is--t2p cross sections, the 
approximate method of solution of equation (6) must be defined and the trajectory 
(4) chosen. For our purpose it is not necessary to employ the most accurate methods 
of solution such as the second-order potential method of Bransden and Coleman 
(1972) or the pseudo-state expansion of Flannery and McCann (1974b), but it is 
sufficient to use an expansion in terms of the target eigenfunctions <pir), retaining 
the four terms corresponding to the Is, 2s, 2po and 2P±1 levels, which will be labelled 
n = 1, 2, 3 and 4 respectively. The approximate wavefunction 'P(r, t) then has the 
form 

4 

'P(r, t) = L <pn(r)exp( -i8nt)an(b, t), (8) 
0=1 

where 8n is the energy of the nth level of the hydrogen target. For t --t - 00, the 
probability amplitudes an must satisfy the boundary condition 

(9) 

and at t = + 00 the total cross sections for elastic scattering or excitation are given by 

(10) 

The equations which determine the an(b, t) are found by inserting the approxi
mation (8) into equation (6) and projecting with the wavefunctions {<Po exp( - i8n t)}. 
We find 

. oaib, t) ~ V. (b ) (b ) 
1 a = '-' nj ,t aj ,t 

t j=l 
(n = 1,2,3,4), (11) 

where 

(12) 

Effective Potential and Trajectory 

To represent the effective potential in which the incident electron moves, we have 
taken a combination of the static interaction Vll (R) and the Buckingham polarization 
potential 

(13) 

with 0( = 4·5 and d = 1· O. The classical trajectory corresponding to the effective 
potential W = Vll + Vpol was found by numerical solution of Hamilton's equations. 

Numerical Results and Discussion 

The coupled equations (11) have been solved at incident energies E = 25, 50, 100 
and 150 eV, with R(t) given by (a) the straight line trajectory and (b) the effective 
nonlinear trajectory. The corresponding total cross sections are shown in Table 1, 
for elastic scattering (Q1.) and excitation of the n = 2 levels (Q2., Q2p). It is seen 
that even at the very low energy of25 eV, the total cross section for the strong optically 
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allowed 1s--+2p transition is quite insensitive to the choice of trajectory. In contrast, 
the cross sections for the weak 1s--+2s transition do not agree in the two approxi
mations within 10% until energies of greater than 50 eV are reached while, in the most 
sensitive case of elastic scattering, the two approximations still disagree by about 
15% at 150 eV. The lack of sensitivity of the ls--+2p cross section to the choice of 
trajectory is due to the fact that the transition probability is small for small impact 

Table 1. Total cross sections for electron scattering by hydrogen 

The results shown are the total cross sections Qn (in units of 7!a~) calculated 
assuming (a) a straight line trajectory and (b) a curved trajectory 

E Qls Q2s Q2p 
(eV) (a) (b) (a) (b) (a) (b) 

25 0·8923 1·590 0·128 0·169 1'171 1·134 
50 0'519 0·739 0·088 0·099 0'959 0·937 

100 0·285 0·348 0·052 0·055 0·685 0·674 
150 0·186 0·227 0·037 0·038 0·534 0'528 

parameters, and the important range of values of b for which 1 a2p 12b is significant 
is always in the region b > 1. For such values of b, the trajectory in the effective 
potential is practically a straight line and correspondingly the straight line approxi
mation will provide accurate total 2p cross sections (cf. the comment on p. 459 of 
the monograph by Massey and Burhop 1969). 

Table 2. Transition probabilities as a function of impact parameter 

Results calculated for (a) a straight line trajectory and (b) a curved trajectory 

Impact Transition prohabilities 
parameter 1s 28 2p 

b (a) (b) (a) (b) (a) (b) 

E = 50eV 
0·151 2·526 1·988 0·054 0·045 0·027 0·049 
0·689 0·234 0·503 0·0339 0·0384 0·0392 0·0233 
1·106 0·0459 0·1107 0·0180 0·0264 0·0491 0·0296 
1·621 0·0079 0·0112 0·0070 0·0081 0·0592 0·0502 
2·236A 0·0018 0·0020 0·0025 0·0025 0·0465 0·0476 

E = 100eV 
0·151 1·516 1·427 0·0332 0·0264 0·0108 0·0213 
0·689 0·121 0·199 0·0212 0·0232 0·0179 0·0100 
1·106 0·0227 0'0353 0·0116 0·0139 0·0242 0·0182 
1·621 0·0035 0·0042 0·0046 0·0051 0·0280 0·0267 
2·236A 0·00062 0·00064 0·0015 0·0015 0·0263 0·0264 

A For values of b greater than 2,236, the approximations (a) and (b) coincide. 

To get some idea of the angular range over which the straight line trajectory 
approximation is valid, the transition probabilities (vn/v I ) 1 Dni - an(b, (0) 12 are shown 
in Table 2 as a function of the impact parameter b at 50 and 100 eV. As expected, 
for small values of b, which correspond to large angle scattering, the straight line 
trajectory approximation is inaccurate. On the other hand, for large b (~2), the 
straight line approximation is very good. 
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By comparing elastic differential cross sections in a one-channel approximation 
in a partial wave and impact parameter formalism, Winters et al. (1974) showed that 
the impact parameter cross section agreed well with the partial wave cross section for 
small angle scattering () ::::;; 30° for E ;;;::: 100 eV. Taken together with the present 
results this suggests that the semi-classical approximation itself is accurate for energies 
as low as 100 eV for elastic scattering and the deficiencies at large angles arise from 
the assumption of a straight line trajectory. For inelastic scattering, our results 
suggest that the semi-classical method can be reliable for even lower energies and 
that, for the optically allowed transitions, the results are remarkably insensitive to 
the straight line approximation. 

Conclusions 

For a number of reasons, the semi-classical coupled equations are much easier 
to deal with numerically than the corresponding partial wave equations. This is not 
only because these equations are of first order but also because at higher energies, 
where very large values of I may be required, it is much more convenient to deal 
with the continuous impact parameter variable b rather than the discrete variable I. 
Some of this simplicity is lost when it is necessary to allow for the departure of the 
trajectory of the incident particle from a straight line. The present calculations 
indicate that for total inelastic cross sections the straight line approximation is 
accurate above 100 eV and, for elastic scattering, above 200 eV. As expected, the 
straight line trajectory will produce accurate differential cross sections in a limited 
angular range about the forward direction, at 100 eV extending to ,....,25° for elastic 
scattering, and perhaps to 35° or 40° for excitation (Bransden and Winters 1975). 
To extend the region of validity of the impact parameter model over a larger angular 
range it is essential to allow for the curvature of the trajectory of the incident particle. 
In the present simple model, no allowance has been made for the effects of electron 
exchange; however, having established the region of validity of the semi-classical 
approximations, exchange effects can be included by using effective exchange poten
tials (Furness and McCarthy 1973; Bransden and Noble 1976) and corrections to 
the coupled channel model can be made by the second-order potential method of 
Bransden and Coleman (1972). 
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